Regular Behaviours with Names On the Rational Fixpoint of Endofunctors on Nominal Sets

Stefan Milius, Lutz Schröder, Thorsten Wißmann

December 1, 2015

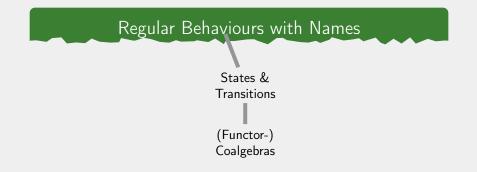
Last update: December 1, 2015

> < => < =>

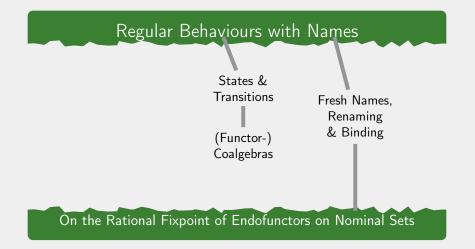
> < => < =>

Regular Behaviours with Names

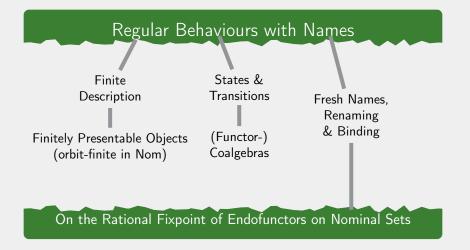
On the Rational Fixpoint of Endofunctors on Nominal Sets

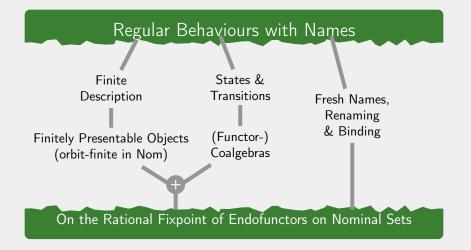


A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



> < => < =>



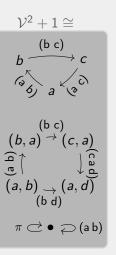


Summary References

The Framework of Nominal Sets

Finite permutations on $\ensuremath{\mathcal{V}}$

Support for a $\mathfrak{S}_{f}(\mathcal{V})$ -action $\cdot : \mathfrak{S}_{f}(\mathcal{V}) \times X \to X$ " $S \subseteq \mathcal{V}$ supports $x \in X$ ", if for all $\pi \in \mathfrak{S}_{f}(\mathcal{V})$ $\underbrace{\pi \text{ fixes } S}_{\pi(\mathcal{V}) = \mathcal{V} \ \forall \mathcal{V} \in S} \implies \underbrace{\pi \text{ fixes } x}_{\pi \cdot x = x}$



イロト イポト イヨト イヨト

The Framework of Nominal Sets

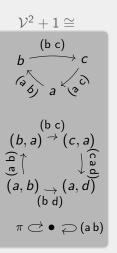
Finite permutations on $\ensuremath{\mathcal{V}}$

Support for a $\mathfrak{S}_{f}(\mathcal{V})$ -action $\cdot : \mathfrak{S}_{f}(\mathcal{V}) \times X \to X$ " $S \subset \mathcal{V}$ supports $x \in X$ ", if for all $\pi \in \mathfrak{S}_{f}(\mathcal{V})$

$$\underbrace{\pi \text{ fixes } S}_{\pi(v)=v \ \forall v \in S} \implies \underbrace{\pi \text{ fixes } x}_{\pi \cdot x=x}$$

 (X, \cdot) a Nominal Set

" \cdot " a $\mathfrak{S}_{\mathsf{f}}(\mathcal{V})$ -action & every $x \in X$ finitely supported



イロト イポト イヨト イヨト

The Framework of Nominal Sets

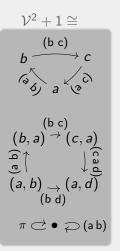
Finite permutations on $\ensuremath{\mathcal{V}}$

Support for a $\mathfrak{S}_{f}(\mathcal{V})$ -action $\cdot : \mathfrak{S}_{f}(\mathcal{V}) \times X \to X$ " $S \subseteq \mathcal{V}$ supports $x \in X$ ", if for all $\pi \in \mathfrak{S}_{f}(\mathcal{V})$

$$\underbrace{\pi \text{ fixes } S}_{\pi(v)=v \ \forall v \in S} \implies \underbrace{\pi \text{ fixes } x}_{\pi \cdot x=x}$$

 (X, \cdot) a Nominal Set " \cdot " a $\mathfrak{S}_{\mathsf{f}}(\mathcal{V})$ -action & every $x \in X$ finitely supported

x, y in the same orbit of (X, \cdot) if there is σ with $\sigma \cdot x = y$.



Summary References

The Framework of Nominal Sets

Finite permutations on $\ensuremath{\mathcal{V}}$

Support for a $\mathfrak{S}_{f}(\mathcal{V})$ -action $\cdot : \mathfrak{S}_{f}(\mathcal{V}) \times X \to X$ "S $\subseteq \mathcal{V}$ supports $x \in X$ " if for all $z \in \mathfrak{S}_{f}(\mathcal{V})$

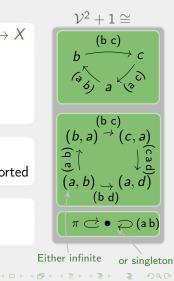
" $S \subseteq \mathcal{V}$ supports $x \in X$ ", if for all $\pi \in \mathfrak{S}_{\mathsf{f}}(\mathcal{V})$

$$\underbrace{\pi \text{ fixes } S}_{\pi(v)=v \ \forall v \in S} \implies \underbrace{\pi \text{ fixes } x}_{\pi \cdot x=x}$$

 (X, \cdot) a Nominal Set

" \cdot " a $\mathfrak{S}_{\mathsf{f}}(\mathcal{V})$ -action & every $x \in X$ finitely supported

x, y in the same orbit of (X, \cdot) if there is σ with $\sigma \cdot x = y$.



Instances of regular behaviours with names:

• Regular λ -trees

$$LX = V + V \times X + X \times X$$

• Regular λ -trees modulo α -equivalence

$$L_{\alpha}X = \mathcal{V} + [\mathcal{V}]X + X \times X$$

Regular Nominal Automata

$$KX = 2 \times X^{\mathcal{V}} \times [\mathcal{V}]X$$

3

イロト 不得下 イヨト イヨト

Instances of regular behaviours with names:

• Regular λ -trees

$$LX = \mathcal{V} + \mathcal{V} \times X + X \times X$$

• Regular λ -trees modulo α -equivalence

$$L_{\alpha}X = \mathcal{V} + [\mathcal{V}]X + X \times X$$

• Regular Nominal Automata

$$KX = 2 \times X^{\mathcal{V}} \times [\mathcal{V}]X$$

< ロト < 同ト < ヨト < ヨト

References

Instances of regular behaviours with names:

• Regular λ -trees

$$LX = \mathcal{V} + \mathcal{V} \times X + X \times X$$

• Regular λ -trees modulo α -equivalence

$$L_{\alpha}X = \mathcal{V} + [\mathcal{V}]X + X \times X$$

• Regular Nominal Automata

$$KX = 2 \times X^{\mathcal{V}} \times [\mathcal{V}]X$$

How to prove them being rational fixpoints of appropriate endofunctors on nominal sets?

Thorsten Wißmann

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

Instances of regular behaviours with names: • Regular λ -trees Lifting of a Set-functor (Part 1) $LX = \mathcal{V} + \mathcal{V} \times X + X \times X$ • Regular λ -trees modulo α -equivalence $L_{lpha}X = \mathcal{V} + [\mathcal{V}]X + X imes X$ Quotient of a lifting (Part 2) Regular Nominal Automata $KX = 2 \times X^{\mathcal{V}} \times [\mathcal{V}]X$

How to prove them being rational fixpoints of appropriate endofunctors on nominal sets?

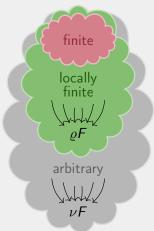
イロト イポト イヨト イヨト

Part 1: Localizable Liftings

Ξ

イロト 不聞と 不良と 不良と

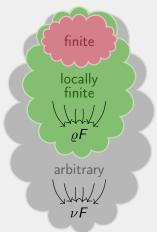
Regular Behaviours in Set



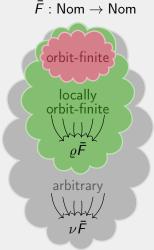
Adámek, Milius, Velebil'06; Milius'10

イロト イポト イヨト イヨト

Regular Behaviours in Set

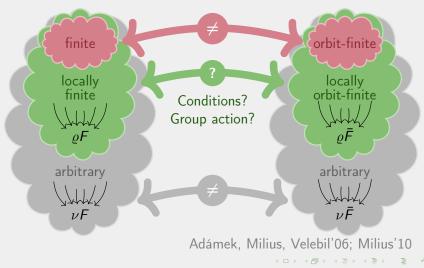


... and in Nom



Adámek, Milius, Velebil'06; Milius'10

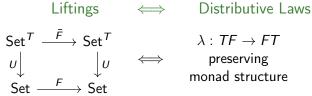
(日) (四) (三) (三)



References

Liftings

$\mathfrak{S}_{f}(\mathcal{V})$ -action on X T-algebra structure on X for the monad $T = \mathfrak{S}_{f}(\mathcal{V}) \times _$



3

イロト 不得下 イヨト イヨト

イロト イポト イヨト イヨト

(1)

Properties of liftings of $\mathfrak{S}_{\mathsf{f}}(\mathcal{V}) \times _$ over F : Set

\bar{F} Nom-restricting

 \bar{F} maps nominal sets to nominal sets.

Examples

- Closed under finite products, coproducts, composition.
- For (Y, \cdot) non-nominal, KX = Y not Nom-restricting.

(2)

Properties of liftings of $\mathfrak{S}_{\mathsf{f}}(\mathcal{V}) imes _$ over F : Set

$\lambda:\mathfrak{S}_{\mathsf{f}}(\mathcal{V})\times\mathsf{F}_{-}\to\mathsf{F}(\mathfrak{S}_{\mathsf{f}}(\mathcal{V})\times_)\text{ localizable }$

For each $W \subseteq \mathcal{V}$, λ restricts to $\lambda : \mathfrak{S}_{f}(W) \times F_{-} \rightarrow F(\mathfrak{S}_{f}(W) \times _{-})$

Examples

• Closed under finite products, coproducts, composition, constants.

• For
$${\sf F}={\sf Id}_{\sf Set}$$
, $\lambda(\pi,x)=(g\cdot\pi\cdot g^{-1})$ not localizable.

 $\cong \mathsf{Id}_{\mathsf{Set}^T}$

イロト イポト イヨト イヨト 一日

Assumptions

Assumption: \overline{F} : Nom⁽²⁾ a localizable lifting, i.e.

- \overline{F} comes from a Nom-restricting distributive law λ over $F = U\overline{F}D$.
- $\textbf{@ This } \lambda \text{ is localizable}$

(人間) トイヨト イヨト

Assumptions

Assumption: \overline{F} : Nom⁽²⁾ a localizable lifting, i.e.

- \overline{F} comes from a Nom-restricting distributive law λ over $F = U\overline{F}D$.
- $\textbf{@ This } \lambda \text{ is localizable}$

Examples

- Constants, Identity.
- Closed under finite products, coproducts, composition.
- In particular: Polynomials in Nom
- $LX = \mathcal{V} + \mathcal{V} \times X + X \times X$
- For the strength of any finitary F : Set canonically defines a localizable lifting to Nom

く得た くまた くまた

LFP in Set vs LFP in Nom

Lemma

If for $c : C \to \overline{F}C$, the underlying $c : C \to FC$ is lfp in Set, then $c : C \to \overline{F}C$ is lfp in Nom.

LFP in Set vs LFP in Nom

Lemma

If for $c : C \to \overline{F}C$, the underlying $c : C \to FC$ is lfp in Set, then $c : C \to \overline{F}C$ is lfp in Nom.

Lemma

If $c : C \to \overline{F}C$, with C orbit-finite, then the underlying $c : C \to FC$ is lfp in Set.

LFP in Set vs LFP in Nom

Lemma

If for $c : C \to \overline{F}C$, the underlying $c : C \to FC$ is lfp in Set, then $c : C \to \overline{F}C$ is lfp in Nom.

Lemma

If $c : C \to \overline{F}C$, with C orbit-finite, then the underlying $c : C \to FC$ is lfp in Set.

Corollary

 $c: C \to \overline{F}C$ lfp in Nom iff the underlying $c: C \to FC$ is lfp in Set.

$(\varrho F, r)$ from Set to $\mathfrak{S}_{f}(\mathcal{V})$ -sets

Lemma

 $(\rho F, r)$ carries a canonical group action making r equivariant.

イロト イロト イヨト

$(\varrho F, r)$ from Set to $\mathfrak{S}_{f}(\mathcal{V})$ -sets

Lemma

 $(\rho F, r)$ carries a canonical group action making r equivariant.

Proof.

$$\mathfrak{S}_{\mathsf{f}}(\mathcal{V}) \times \varrho F \xrightarrow{\mathsf{id} \times r} \mathfrak{S}_{\mathsf{f}}(\mathcal{V}) \times F(\varrho F) \xrightarrow{\lambda_{\varrho F}} F(\mathfrak{S}_{\mathsf{f}}(\mathcal{V}) \times \varrho F)$$

is lfp because λ is localizable. νF has canonical $\mathfrak{S}_{f}(\mathcal{V})$ -set structure (Bartels'04; Plotkin, Turi'97) This map is just the restriction to ϱF .

《曰》 《圖》 《臣》 《臣》

Coinduction

Definition: Coalgebra iteration

For
$$c: C \to HC$$
 put $c^{(n+1)} \equiv \left(\begin{array}{c} C \xrightarrow{c^{(n)}} & H^nC \xrightarrow{H^nc} & H^{n+1}C \end{array} \right)$.

Lemma Let H : Set be finitary. If for H-coalgebras (C, c) and (D, d)

$$X \xrightarrow{p_1} C \xrightarrow{c^{(n)}} H^n C$$

$$\xrightarrow{p_2} D \xrightarrow{d^{(n)}} H^n D \xrightarrow{H^{n_1}} H^{n_1}$$

commutes for all $n < \omega$, then $c^{\dagger} \cdot p_1 = d^{\dagger} \cdot p_2$.

《日》 《檀》 《문》 《문》

Finite support for ρF

Lemma

Any $t \in \varrho F$ is supported by

$$s(t) = \bigcup_{n \ge 0} \operatorname{supp}(r^{(n)}(t)) \text{ where } r^{(n)} : \varrho F \to F^n(\varrho F)$$

and where the support of $r^{(n)}(t)$ is taken in $\overline{F}^n D(\varrho F)$.

Finite support for ρF

Lemma

Any $t \in \varrho F$ is supported by

$$s(t) = \bigcup_{n \ge 0} \operatorname{supp}(r^{(n)}(t)) \text{ where } r^{(n)} : \varrho F \to F^n(\varrho F)$$

and where the support of $r^{(n)}(t)$ is taken in $\overline{F}^n D(\varrho F)$.

Lemma

For any $t \in \rho F$, s(t) is finite.

Universal Property

Theorem

The lifted $(\varrho F, r)$ is the rational fixpoint of \overline{F} .

Ξ

イロト イポト イヨト イヨト

Universal Property

Theorem

The lifted $(\varrho F, r)$ is the rational fixpoint of \overline{F} .

Proof.

Consider $c : C \to \overline{F}C$ with C orbit-finite.

- c is lfp in Set, then $c^{\dagger}: (C, c) \rightarrow (\varrho F, r)$ in Set
- **2** Equivariant $j: (\varrho F, r) \rightarrow (\nu F, \tau)$ in $\mathfrak{S}_{f}(\mathcal{V})$ -sets
- Sequivariant $j \cdot c^{\dagger} : (C, c) \to (\nu F, \tau)$ in $\mathfrak{S}_{f}(\mathcal{V})$ -sets
- $c^{\dagger}: (C, c) \rightarrow (\varrho F, r)$ equivariant

Not in Nom

Examples

 λ -trees $LX = \mathcal{V} + \mathcal{V} \times X + X \times X$

- $\rho \overline{L}$ in Nom = rational λ -trees (not modulo α -equivalence)
- νL in Set = all λ -trees
- $\nu \bar{L}$ in Nom = λ -trees involving finitely many variables

Kurz, Petrisan, Severi, de Vries'13

Examples

 λ -trees $LX = \mathcal{V} + \mathcal{V} \times X + X \times X$

- $\rho \overline{L}$ in Nom = rational λ -trees (not modulo α -equivalence)
- νL in Set = all λ -trees
- $\nu \bar{L}$ in Nom = λ -trees involving finitely many variables Kurz, Petrisan, Severi, de Vries'13

Canonical Liftings
$$\overline{F}$$
 : Nom of F : Set $o\overline{F}$ in Nom = oF with discrete nominal structure

Examples

 λ -trees $LX = \mathcal{V} + \mathcal{V} \times X + X \times X$

- $\rho \overline{L}$ in Nom = rational λ -trees (not modulo α -equivalence)
- νL in Set = all λ -trees
- $\nu \overline{L}$ in Nom = λ -trees involving finitely many variables Kurz. Petrisan, Severi, de Vries'13

Canonical Liftings
$$\overline{F}$$
 : Nom of F : Set

 $\rho \bar{F}$ in Nom = ρF with discrete nominal structure

Unordered Trees: $FX = \mathcal{B}(X) + \mathcal{V}$

- νF = unordered trees with some leaves labelled in \mathcal{V}
- ρF = those with finitely many subtrees
- $\rho \bar{F}$ = those with renaming of the leaves

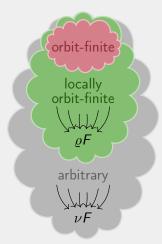
Part 2: Quotients of Nom-functors

Ξ

イロト イヨト イヨト

Regular Behaviours in Nom

$F: \mathsf{Nom} \to \mathsf{Nom}$

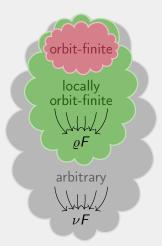


Ξ

《曰》 《聞》 《문》 《문》

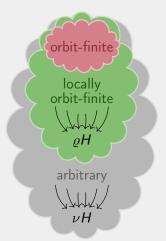
Regular Behaviours in Nom

 $F: \mathsf{Nom} \to \mathsf{Nom}$

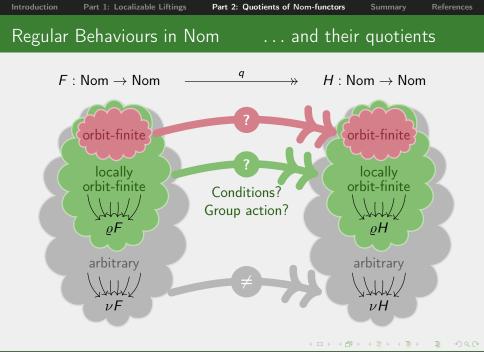


... and their quotients

 $H: \mathsf{Nom} \to \mathsf{Nom}$



ヘロト ヘアト ヘヨト ヘヨト



$$F: \operatorname{Nom}^{q} H: \operatorname{Nom}^{q}$$

Definition: Quotient

A quotient from $a: A \rightarrow FA$ to $c: C \rightarrow HC$:

some
$$h: A \to C$$
 with $A \xrightarrow{a} FA \xrightarrow{q_A} HA$
 $h \downarrow \qquad \qquad \downarrow Hh$
 $C \xrightarrow{c} HC$

$$F: \operatorname{Nom}^{q} H: \operatorname{Nom}^{q}$$

Definition: Quotient

A quotient from $a: A \rightarrow FA$ to $c: C \rightarrow HC$:

some
$$h: A \to C$$
 with $A \xrightarrow{a} FA \xrightarrow{q_A} HA$
 $h \downarrow \qquad \qquad \downarrow Hh$
 $C \xrightarrow{c} HC$

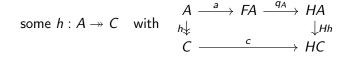
Theorem

If every orbit-finite *H*-coalgebra is a quotient of an orbit-finite *F*-coalgebra, then ρH is a quotient of ρF .

$$F: \operatorname{Nom}^{q} H: \operatorname{Nom}^{q}$$

Definition: Quotient

A quotient from $a: A \rightarrow FA$ to $c: C \rightarrow HC$:



Theorem

If every orbit-finite *H*-coalgebra is a quotient of an orbit-finite *F*-coalgebra, then ρH is a quotient of ρF .

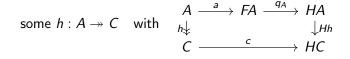
Proof.

Epi-laws for jointly-epic the families.

$$F: \operatorname{Nom}^{q} H: \operatorname{Nom}^{q}$$

Definition: Quotient

A quotient from $a: A \rightarrow FA$ to $c: C \rightarrow HC$:



Theorem

How to prove that?

< ロト (同) (三) (三)

If every orbit-finite *H*-coalgebra is a quotient of an orbit-finite *F*-coalgebra, then ρH is a quotient of ρF .

Proof.

Epi-laws for jointly-epic the families.

イロト 不得下 イヨト イヨト

Constructing a quotient backwards

Definition

$$X < Y = \{(x, y) \in X imes Y \mid \mathsf{supp}(x) \subseteq \mathsf{supp}(y)\}$$

Substrength of a functor $F: s_{X,Y} : FX < Y \rightarrow F(X < Y)$, with F outl $\cdot s_{X,Y}$ = outl (not necessarily natural).

Constructing a quotient backwards

Definition

$$X < Y = \{(x, y) \in X imes Y \mid \mathsf{supp}(x) \subseteq \mathsf{supp}(y)\}$$

Substrength of a functor $F: s_{X,Y} : FX < Y \rightarrow F(X < Y)$, with F outl $\cdot s_{X,Y} =$ outl (not necessarily natural).

Construction for $c : C \rightarrow HC$

$$B = \max_{x \in C} |\operatorname{supp}(x)| + \max_{x \in C} \min_{\substack{y \in FC \\ q_C(y) = c(x)}} |\operatorname{supp}(y)|.$$

 $W \subseteq \mathcal{V}^B$ of tuples with distinct components. *F*-Coalgebra on C < W.

イロト 不得下 イヨト イヨト

Something like "projective objects" in Nom

Definition: strongly supported Some $x \in X$ is strongly supported iff

$$\pi \cdot x = x \Longrightarrow \forall v \in \operatorname{supp}(x) : \pi(v) = v$$

Examples

W is strongly supported. $\mathcal{P}_{f}(\mathcal{V})$ not.

Proposition (Mentioned already in Kurz, Petrisan, Velebil'10)

X, Y nominal sets, X strongly supported, $O \subseteq X$ a choice of one element from each orbit. Then any map $f_0 : O \to Y$ with

 $\operatorname{supp}(f_0(x)) \subseteq \operatorname{supp}(x)$

extends uniquely to an equivariant $f : X \to Y$.

Thorsten Wißmann

Applied to our C < W

Lemma

There is an equivariant map $f : C < W \rightarrow FC$ such that:

$$C < W \xrightarrow{f} FC$$

$$\downarrow q_{C}$$

$$C \xrightarrow{c} HC$$

3

イロト 不得下 イヨト イヨト

Applied to our C < W

Lemma

There is an equivariant map $f : C < W \rightarrow FC$ such that:

$$C < W \xrightarrow{f} FC$$

$$\downarrow q_{c}$$

$$\downarrow c \xrightarrow{c} HC$$

Proposition

 $c: C \to HC$ is via outl a quotient of the orbit-finite $C < W \xrightarrow{\overline{f}} FC < W \xrightarrow{s_{C,W}} F(C < W)$ (where $\overline{f}(x, w) = (f(x), w)$).

《曰》 《圖》 《臣》 《臣》

Applied to our C < W

Lemma

There is an equivariant map $f : C < W \rightarrow FC$ such that:

$$C < W \xrightarrow{f} FC$$

$$\downarrow q_{c}$$

$$C \xrightarrow{c} HC$$

Proposition

 $c: C \to HC$ is via outl a quotient of the orbit-finite $C < W \xrightarrow{\overline{f}} FC < W \xrightarrow{s_{C,W}} F(C < W)$ (where $\overline{f}(x, w) = (f(x), w)$).

Corollary

If a finitary $F : \operatorname{Nom}^{\checkmark}$ has a substrength, and $q : F \rightarrow H$, then $\varrho F \rightarrow \varrho H$ (applying q level-wise).

Applicability

The only restricting requirement: F having a sub-strength H and q: arbitrary

Lemma

- Identity and constant functors have a sub-strength.
- The class of functors with a sub-strength is closed under finite products, arbitrary coproducts, and functor composition.

Example: λ -trees modulo α -equivalence

 $LX = \mathcal{V} + \mathcal{V} \times X + X \times X \xrightarrow{q} L_{\alpha}X = \mathcal{V} + [\mathcal{V}]X + X \times X$

Definition: Rational α -equivalence class of λ -trees

= contains some rational λ -tree

 λ -trees • $\rho L = rational \lambda$ -trees q_{X} • $\nu L = \lambda$ -trees with finitely many variables involved λ -trees modulo α -equivalence • ρL_{α} = rational λ -trees modulo α -equivalence • $\nu L_{\alpha} = \lambda$ -trees with finitely many **free** variables but possibly infinitely many bound variables Kurz, Petrisan, Severi, de Vries'13

イロト 不得下 イヨト イヨト

Example: Exponentiation

$$\mathsf{F} X = \mathcal{V} imes X imes \coprod_{n \in \mathbb{N}} (\mathcal{V} imes X)^n \quad \overset{q}{\longrightarrow} \quad (_)^{\mathcal{V}}$$

Definition

$$ar{q}_X(a,d,(v_1,x_1),\ldots,(v_n,x_n),b) = egin{cases} x_i & ext{if } i = \min_{1 \leq j \leq n}(v_j = b) ext{ exists} \ (a \ b) \cdot d & ext{otherwise.} \end{cases}$$

Theorem: q component-wise surjective For some $f \in X^{\mathcal{V}}$, $\{a_1, \ldots, a_n\} = \operatorname{supp}(f)$ and $a \in \mathcal{V} \setminus \operatorname{supp}(f)$, we have

$$ar{q}_X(a,f(a),(a_1,f(a_1)),\ldots,(a_n,f(a_n)),b)=f(b) ext{ for all } b\in\mathcal{V}.$$

《日》 《檀》 《문》 《문》

Example: Automata

Various Kinds of Nominal Automata

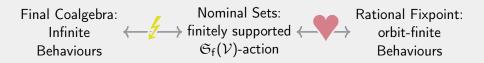
•
$$FX = 2 \times X^{\mathcal{V}}$$

•
$$KX = 2 \times X^{\mathcal{V}} \times [\mathcal{V}]X$$

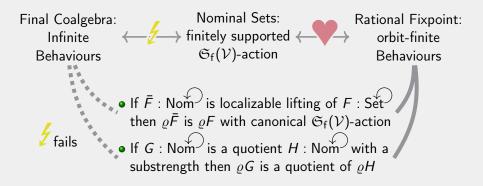
•
$$NX = 2 \times \mathcal{P}_{f}(X^{\mathcal{V}}) \times \mathcal{P}_{f}([\mathcal{V}]X)$$

Ξ

イロト イポト イヨト イヨト



Main Results



Open Questions

About Localizable Liftings

- Is every non-localizable Lifting isomorphic to localizable one?
- If not, are there applications of non-localizable liftings?

About Substrengths

- Rational Fixpoint of quotients of functors without substrength?
- Are there applications?

(人間) トイヨト イヨト

Jiří Adámek, Stefan Milius, Jiří Velebil. "Iterative Algebras at Work". In: Mathematical Structures in Computer Science 16.6 (2006), pp. 1085–1131. DOI: 10.1017/S0960129506005706.

Falk Bartels. On Generalised Coinduction and Probabilistic Specification Formats: Distributive Laws in Coalgebraic Modelling. 2004.

Alexander Kurz, Daniela Petrisan, Paula Severi, Fer-Jan de Vries. "Nominal Coalgebraic Data Types with Applications to Lambda Calculus". In: Logical Methods in Computer Science 9.4 (2013).

Alexander Kurz, Daniela Petrisan, Jiri Velebil. "Algebraic Theories over Nominal Sets". In: CoRR abs/1006.3027 (2010).

イロト イポト イヨト イヨト

Stefan Milius. "A Sound and Complete Calculus for finite Stream Circuits". In: Logic in Computer Science, LICS 2010. IEEE Computer Society. 2010, pp. 449–458.

Gordon Plotkin, Daniele Turi. "Towards a Mathematical Operational Semantics". In: Logic in Computer Science, LICS 1997. IEEE, 1997, pp. 280–291.

(人間) トイヨト イヨト