
Jarhead
Analysis and Detection of Malicious Java Applets

Johannes Schlumberger
University of California, Santa

Barbara
js@cs.ucsb.edu

Christopher Kruegel
University of California, Santa

Barbara
chris@cs.ucsb.edu

Giovanni Vigna
University of California, Santa

Barbara
vigna@cs.ucsb.edu

ABSTRACT
Java applets have increasingly been used as a vector to de-
liver drive-by download attacks that bypass the sandbox-
ing mechanisms of the browser’s Java Virtual Machine and
compromise the user’s environment. Unfortunately, the re-
search community has not given to this problem the atten-
tion it deserves, and, as a consequence, the state-of-the-art
approaches to the detection of malicious Java applets are
based either on simple signatures or on the use of honey-
clients, which are both easily evaded. Therefore, we propose
a novel approach to the detection of malicious Java applets
based on static code analysis. Our approach extracts a num-
ber of features from Java applets, and then uses supervised
machine learning to produce a classifier. We implemented
our approach in a tool, called Jarhead, and we tested its
effectiveness on a large, real-world dataset. The results of
the evaluation show that, given a sufficiently large training
dataset, this approach is able to reliably detect both known
and previously-unseen real-world malicious applets.

1. INTRODUCTION
Malicious web content is a major attack vector on the In-

ternet [32]. Typically, the attacker’s goal is to install and run
a piece of malware on the victim’s computer, turning it into
a member of a botnet. To this end, attackers try to lure users
onto malicious web pages that contain malicious code [31].
This code might trick the victim into downloading and run-
ning a malware program (through social engineering). Alter-
natively, the malicious code might try to exploit a vulnerable
part of the victim’s browser, such as an ActiveX control, the
JavaScript engine, or the Java plugin. Attacks that exploit
(browser or plugin) vulnerabilities when users visit malicious
web pages are called drive-by download attacks. During the
last two years, there has been a tremendous increase in Java-
applet-based attacks - more than 300% in the first half of
2010 [15] alone. Interestingly, these exploits are widely ig-
nored by security researchers so far [22]. This is despite the
fact that commercial exploit toolkits such as “Blackhole” or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACASC ’12 Dec. 3-7, 2012, Orlando, Florida USA
Copyright 2012 ACM 978-1-4503-1312-4/12/12 ...$15.00.

“Bleeding Life” are using Java-based attacks to compromise
large numbers of computers [22, 23].

A Java applet is a piece of software designed to be exe-
cuted in a user’s browser by a Java virtual machine (JVM [24]).
Applets are embedded into web pages. They are automati-
cally loaded and executed if the browser has a Java plugin
installed (once the page has loaded), and graphical content
is appropriately displayed by the browser. Applets predate
cascading style sheets (CSS), and have typically been used
for formatting and navigation purposes before more modern
mechanisms became available (e.g., Flash, JavaScript, and
HTML5). However, an applet can be any program and is
not bound to a specific purpose.

Internet users are often not aware of the existence of ap-
plets and the Java plugin. Thus, they are not careful about
keeping the plugin up to date, or care to disable it when vis-
iting untrusted sites, even though multiple vulnerabilities
exist and keep emerging with different versions of Java plu-
gins [3, 4, 5, 6, 7]. As a result of this lack of awareness, Java
plugins are still widely deployed, and about 85% [22] of all
browsers today have the Java plugin installed and enabled.
In addition, 42% of all browsers running with Java plugins
have known vulnerabilities [21] and are thus susceptible to
attacks [19, 22].

Traditionally, malicious content is recognized by matching
programs (or data) against known malicious patterns, called
signatures [2, 33]. Unfortunately, this approach is suscepti-
ble to obfuscation techniques that make malicious content
look different and not match an existing signature [25]. Ad-
ditionally, this approach can only detect already-known at-
tacks, and new signatures need to be added to recognize new
variations of an exploit.

Another approach to detect malicious web content is to
use low interaction honeyclients [10, 30]. Honeyclients are
built as instrumented, automated browsers that visit web
pages and monitor changes to the system [1, 32]. If ab-
normal behavior, such as creation of files or processes, is
detected, the page is deemed malicious. This approach can
only detect malicious behavior that the system was explic-
itly set up to detect. In particular, if the software targeted
by an exploit is not running on the honeyclient, it cannot
be exploited, and as a result, no malicious intent can be de-
tected. It is a very tedious, human-intensive task to keep a
honeyclient running with all the different versions and com-
binations of software packages to ensure that no exploits are
missed. Thus, honeyclients can have high numbers of false
negatives [34]. Moreover, malware authors attempt to fin-
gerprint honeyclients, by testing for specific features in the

environment it provides. When such mechanisms detect a
honeyclient, the code will not behave maliciously, and there-
fore, evade detection.

To address the growing problem of malicious Java-applets,
we have developed a system, called Jarhead, that statically
analyzes Java applets. This system uses a set of features and
machine learning techniques [17] to build a classifier that
can decide whether an applet is malicious or benign. Our
approach works independently of the attacked Java version
and without recreating a realistic runtime environment. It
allows us to analyze applets fast and efficiently and to cate-
gorize them as benign or malicious.

We have tested our system on real world data sets with
more than 3,300 applets (collected both manually and from
the public submission interface of Wepawet, a popular and
publicly-available system for the analysis of web threats [8]).
Our evaluation shows that Jarhead works with high accuracy
and produces very low false positives.

The main contributions in this paper are:

• We address the problem of malicious Java applets, a
problem on the rise that is currently not well addressed
by existing work. To this end, we have developed a
reliable detector for malicious Java applets, which we
call Jarhead.

• Jarhead uses static analysis and machine learning tech-
niques to identify malicious Java applets with high
accuracy. Our detection is fast and robust to obfus-
cation. It also requires little maintenance compared
to signature-based detection systems and honeyclients;
we do not need to collect signatures or maintain a re-
alistic and complete runtime environment.

• We executed Jarhead on a large collection of malicious
Java applets collected in the wild. We found that our
system detected malicious programs with high accu-
racy, and we were able to identify a new (zero-day)
exploit against a previously unknown vulnerability.

2. BACKGROUND
Before we describe our system, this section provides some

brief background on applets and the Java sandboxing mech-
anism [16].

Applets usually come packaged as archives (called Jar
files), which consist of individual class files containing Java
bytecode (for brevity’s sake, we refer to both individual class
files and archives of class files as Jar files or Jars throughout
the paper). In addition to the Java class files, a Jar archive
can contain arbitrary additional files. If the Jar contains
an applet, it has to hold at least the files containing the
applet’s code. Additional contents typically include a man-
ifest file, describing the starting point for execution of this
applet, version information, or other package-related data
in name-value format. Additionally, Jars often contain ad-
ditional data needed by the applet, such as media files or
copyright information.

To protect against malicious applets, the JVM contains
(sandboxes) an applet and heavily restricts its permissible
operations when it is not loaded from disk. Applets loaded
over the network can, for example, only access resources on
the remote host they were loaded from, and they cannot
read certain system properties on the client side (such as

usernames or the current working directory). These protec-
tion mechanisms are part of the same-origin policy [9] of the
browser, designed to prevent untrusted sites from interfering
with the user’s communication to trusted sites. Moreover,
a sandboxed applet cannot access client resources, such as
the file system. By restricting the abilities of untrusted mo-
bile code, its abilities to infect an end user’s machine or to
tamper with her data are severely limited. Furthermore, by
preventing the applet from loading native code that is not
verifiable by the JVM, creating a class loader, or changing
the Java security manager, the JVM provides a safe execu-
tion environment. In the absence of bugs in the described
sandbox implementation, this enables end users to safely
browse the web even in the presence of sites that serve ma-
licious Java code.

Applets that are digitally signed with a certificate (that is,
certificates trusted by the user) run effectively outside the
sandbox. In such cases, the previously-described restrictions
do not apply. The browser, encountering an applet with a
signature, will usually display a dialog window asking the
user if he trusts the applet’s certificate or not. If the user
accepts the certificate, the applet runs with full privileges,
otherwise, it is sandboxed. An applet that is started from
JavaScript remains always sandboxed.

Malicious applets try to escape the sandbox and install
malware on a victim’s computer. To achieve this, some ap-
plets try to trick careless users into trusting their certificates.
Others target the JVM itself by trying to exploit a vulner-
ability in the Java plugin [3, 5, 6, 7], effectively disabling
the sandbox and turning the applet into a full-fledged, non-
restricted program with permissions equal to that of the user
running the browser.

In this paper, we address the problem of malicious Java
applets trying to exploit the Java virtual machine. Even
though Jarhead does not defend against social engineering
techniques, our system is able to identify applets used as a
necessary part of these attacks as malicious.

3. JARHEAD SYSTEM OVERVIEW
This section introduces our analysis system, called Jar-

head. We will describe design choices and provide a high-
level overview of its operation.

Jarhead relies on static analysis and machine learning to
detect malicious Java applets. Jarhead operates at the Java
bytecode level. That is, Jarhead analyzes the bytecode that
is part of a class file. Java bytecode is the encoding of the
machine instructions for the JVM, similar to binary code
for “bare metal” machines. In addition to the bytecode, we
collect strings from the constant pool. The constant pool
holds strings and other data values, and it is also part of a
Java class file. Usually, there is one class file per class of the
program. Java class files can be seen as the equivalent of
binaries in a specific format (such as ELF on Linux or PE
on Windows).

To analyze a Jar file, we extract its contents and then
disassemble all class files contained in the Jar into a single
(disassembled) file. Furthermore, we collect certain statis-
tics about the applet: The number and type of files con-
tained, its total size, and the total number of class files. We
pass these statistics and the disassembled file to our feature
extraction tool, which derives concrete values for a total of
42 features. Our full set of features will be discussed in more
detail in the next section.

Jarhead operates in two steps: First, we use a training set
of applets - each applet known to be benign or malicious -
to train a classifier based on the features Jarhead extracts
from applets. After the training phase, we use this classifier
in a second step to perform detection of malicious applets.

Our analysis system has to be robust to obfuscation, so
that attackers cannot easily evade detection by small changes
to their exploits. It should ideally also not require reconfig-
uration or retraining when new vulnerabilities are exploited,
to avoid the window of “blindness” when a new exploit sur-
faces. Furthermore, the system should be fast and not re-
quire human interaction.

Jarhead’s analysis focuses only on the Jar file (and the
Java classes within), without looking at the surrounding web
page or the interaction between the applet and its environ-
ment (and the browser). Thus, Jarhead does not require
access to the parameters stored in the web page contain-
ing the applet, nor to other parts of the environment in
which the Jar was deployed. This enables Jarhead to work
with in-vitro samples, similar to anti-virus software. The
main advantage of this approach is that we do not require
parts of the applet that are sometimes hidden by the at-
tacker through obfuscation. In fact, often, parameters are
used to provide shellcode (or a key used to decipher shell-
code strings) to the applet. When these parts are missing
for an offline sample, or they are successfully hidden from
a dynamic analysis system during online processing, detec-
tion fails. We found that, very often, malicious Java applets
require input from the surrounding environment. Unfortu-
nately, this information is often missing from samples shared
between security analysts and anti-virus companies. In these
cases, a dynamic analysis approach (which is often used for
analyzing web and script content) simply fails. More pre-
cisely, dynamic analysis systems are unable to start or even
load the code successfully and cannot gain information from
a program run.

Malicious code also uses fingerprinting to evade dynamic
analysis, by not displaying malicious behavior while ana-
lyzed. Additionally, dynamic analysis through emulation
works at a slower speed than execution on real hardware.
Therefore, a malicious program can be written in such a way
that it delays dynamic analysis by executing slowly within
the analysis system. When an analysis run is terminated be-
fore the malicious activity starts, the malware will be falsely
deemed benign. The same program can execute quickly on
real hardware, successfully infecting the users browser. By
using static analysis, Jarhead is able to analyze malware
samples that resist dynamic analysis systems in an efficient
way, while being robust to fingerprinting.

Furthermore, many Java vulnerabilities only apply to spe-
cific versions of the JVM. To be able to execute samples,
even those that are available to the analysis system together
with their external input data (i.e., the aforementioned ci-
pher keys or shellcode strings), one would need to run these
samples in different versions of the JVM, using different en-
vironments. Jarhead does not suffer from this problem since
its analysis is static and environment-independent.

Another limitation for dynamic analysis systems is that
they can only learn about the part of the program that is
executed. Usually, the code coverage for one run of a pro-
gram is not complete. Additionally, due to time constraints,
dynamic analysis systems often do not wait for even one full

program run to finish. Jarhead does not suffer from this
limitations and analyzes the entire code.

Java bytecode was specifically designed to be verifiable
and easy to parse. Static analysis, therefore, works well
on bytecode, and does not suffer from a lot of the limita-
tions [28] common to other binary program formats, such
as computed jumps. Furthermore, a Java program does not
have the ability to dynamically generate code at runtime,
which is usually a problem for static analysis techniques.
Thus, even when attackers make use of code obfuscation, a
static analysis approach (such as the one proposed in this
paper) can obtain sufficient information to correctly classify
an unknown program (as our results demonstrate).

4. FEATURE DISCUSSION
This section describes the features that we extract from a

potentially-malicious Jar file and that we use in our classi-
fication process. We categorize our features and argue why
they are difficult to evade.

Our features can be divided into seven categories. The
first three categories address obfuscation; they form the
group of the obfuscation features. The other four categories
aim at exposing the purpose of an applet by statically ex-
amining its potential behavior. These four categories form
the group of behavioral features.

4.1 Obfuscation Features
Obfuscation is an important aspect for all malware to-

day. Obfuscated code differs from other code because it is
generated by obfuscation kits in an automated way. These
kits chop up string constants and introduce additional state-
ments or declarations without changing the semantics of the
original code. We use different code metrics as features
to find differences between obfuscated and non-obfuscated
code. Of course, obfuscation alone is not sufficient to iden-
tify a Java program as malicious, since obfuscation kits are
also used by benign code for legitimate purposes. How-
ever, while manually examining many Java applets collected
from the Internet, we found that obfuscation is overwhelm-
ingly used by malicious applets. Furthermore we do not
rely purely on the obfuscation features but our other fea-
tures help in distinguishing benign obfuscated applets from
malicious ones.

4.1.1 Code Metrics
We collect a number of simple metrics that look at the size

of an applet, i.e., the total number of instructions and the
number of lines of disassembled code, its number of classes,
and the number of functions per class. In addition, we mea-
sure the cyclomatic complexity of the code [27].

Cyclomatic complexity is a complexity metric for code,
computed on the control flow graph (CFG). It counts the
number of linearly independent paths through the code. A
code that does not have branches has cyclomatic complexity
0. If the code has exactly one branch, the cyclomatic com-
plexity would be one; if one of the two branches contains
another branch before the two paths merge, the cyclomatic
complexity would be three, and so on. A measurement is
computed per function, and we use the average of all mea-
surements as one feature.

To find semantically useless code, we measure the number
of dead local variables and the number of unused methods
and functions. For our analysis, a variable is dead if the

variable is declared and defined at least once, but its value
is never read (loaded) after the definition. A method or
function is unused if it is defined within the applet, but
never invoked by any code within the applet.

The code metric features measure either the size of the
applet or the quality of the code. Changing the size of the
applet will either remove parts of the applet that were specif-
ically added to guard against signature-based detection or
will increase the size of the applet, and hence, increasing the
distribution cost (bandwidth, time) for campaigns. Chang-
ing the code quality requires better code obfuscation kits
(that do not simply produce dead code and variables) or
even manual obfuscation, effectively raising the bar for the
effort necessary to avoid detection.

4.1.2 String Obfuscation
Strings are heavily used by both benign and malicious

applets. However, the way these strings are used differs
according to their purpose. While strings in benign appli-
cations are mainly used to display text to the user, strings
in malicious applets are used for obfuscation and to store
machine-readable shellcode. Such strings are often chopped
up and stored in the data section of the applet, and then re-
constructed at run time, to be used as function arguments,
class names, function names or file names. The reason for
string obfuscation is to defend against signature-based sys-
tems. We have features to model the length of strings in
the constant pool, their number, and the fraction of strings
that contain characters that are not ASCII printable. For
the length feature, we determine the length of the shortest
and longest string in the pool as well as the average length
of all strings.

4.1.3 Active Code Obfuscation
The features in this category characterize code constructs

that are often used to thwart static code analysis. These
constructs are different in that they do not attempt to hide
strings (or code fragments) from manual analyst or signature-
based systems, but, instead, try to mislead static analysis.

To counter code analysis techniques that check for the in-
vocation of known vulnerable library functions within the
Java library, malicious applets frequently use reflection, a
part of the Java language that allows for a program to mod-
ify its structure and behavior at runtime, to invoke these
functions indirectly. Other (malicious) applets use reflec-
tion to instantiate objects whose type cannot be determined
statically. If an object type is not known, it is generally
impossible to statically decide which method is called on it.
Additionally, malicious applets sometimes dynamically load
parts of the exploit at runtime or use a key, passed in as
a parameter, to decrypt shellcode. To detect such activity,
we count the absolute number of times reflection is used in
the bytecode to instantiate objects and to call functions. In
addition, we check if the Java.io.Serializable interface is
implemented by any of the classes belonging to the applet.
The reason is that some malicious applets load a serialized
object at runtime that contains otherwise hidden parts of
the exploit.

In addition to using reflection, some malicious applets
avoid instantiating objects (instances) of specific types (sub-
classes) altogether. While there is some legitimate use for
instantiating instances of the base class java.lang.Object,
this is not very common in benign applets, as programmers

do not want to lose the benefits of a strongly-typed language.
We check if arrays or single instances of java.lang.Object

or java.lang.Class are instantiated.
It is also possible to interpret JavaScript from within ap-

plets, via a Java library routine. This is highly uncommon
in benign applets, but used by malicious ones to carry out
general purpose computation outside the scope of most Java
analysis tools. Therefore, we check if the JavaScript inter-
face is used.

4.2 Behavioral Features
The overwhelming majority of applet malware has a spe-

cific purpose: Escaping the Java sandbox to infect the end
user’s machine and make it a member of a botnet. The
features in this section aim at statically identifying this be-
havior.

4.2.1 Interaction with Runtime and Security System
As described previously, the JVM sandbox restricts ap-

plets by limiting the accessible resources. Several vulnera-
bilities in different versions of the Sun Java plugin have led
to exploits that bypass the sandboxing mechanisms. Most of
these exploits need to interact with the Java security mech-
anisms in different ways to be successful. Therefore, we
collect features related to these security mechanisms. More
precisely, we check if an applet calls into the Java runtime
system (by using the Runtime class), interacts with the sys-
tem security manager, or accesses system properties. We
also check if the applet uses the System class to load addi-
tional code from the client system. Furthermore, we check
whether the applet extends the ClassLoader class in an at-
tempt to introduce its own class loader, or implements the
ClassLoaderRepository, SecurityPolicy, or Privileged-

Action interfaces. These mechanisms are used to elevate
applet privileges at runtime and can introduce code that
runs without sandbox restrictions.

Features that cover these sensitive core classes of the Java
security mechanisms allow for anomaly detection of new ex-
ploits. The reason is that it is likely that new exploits will
need to use these mechanics in some way to break out of the
sandbox.

4.2.2 Download and Execute
We characterize the download behavior of applets by check-

ing whether java.net.URL objects are instantiated or sock-
ets are used. We also check for the use of functions that are
able to write files. For a successful exploit, it is necessary
to execute a file after it has been downloaded. There exist
a number of different ways in which the Java library API
can be used to spawn a new process from a binary, e.g., by
using the java.awt.Desktop class, or, again, the system in-
terface. We have manually inspected all classes known to us
that are able to spawn a new process and collected the API
functions implementing this functionality. Since this kind
of functionality is offered only by the Java library, we con-
sulted its documentation for the relevant classes and listed
the functions. We check if any of these functions are poten-
tially used.

By detecting all known possible ways for an applet to
spawn a new process, we make it impossible for malicious
applets to achieve this without triggering the corresponding
detection feature.

4.2.3 Jar Content
Benign applets are usually written with the goal of dis-

playing something to the visitor of a web page or to play
audio. Typically, the files necessary to do so (media files,
images, . . .) are included in the Jar archive. We count the
number of files in the Jar that are not Java class files. Fur-
thermore, we check all files in the archive to see if any of
them contain binary machine code, i.e., if there is an exe-
cutable or library. In addition, we use the total size of the
Jar archive in bytes as a feature.

These features characterize benign properties rather than
malicious ones. An attacker who attempts to mimic the
structure of legitimate Jar archives is forced to increase the
size of the exploit, which raises the distribution costs for
successful campaigns.

4.2.4 Known Vulnerable Functions
Finally we also compiled a set of five well known vul-

nerable components of the Java library: Three individual
functions, a combination of two functions, and one inter-
face. The first two functions are MidiSystem.getSoundbank

and the constructor for javax.management.remote.rmi.-

RMIConnectionImpl. We will discuss the third function sep-
arately, since it needs some more explanation. The combina-
tion of functions is MidiSystem.getSequencer, and Sequencer-

.addControllerEventListener. Additionally, the javax.-

management.MBeanServer interface can be implemented by
an applet to exploit a known vulnerability.

The third, individual function that we check for is usually
used in MIDlet scams. MIDlets are applications that use
the Mobile Information Device Profile (MIDP) of the Con-
nected Limited Device Configuration (CLDC) for the Java
Micro Edition, typically used on cellular phones. Most of
these MIDlets implement games or display a specific web
page to the user. A vulnerability existed in certain phones
that allowed tricking the user into sending text messages to
expensive pay-per-call numbers. To this end, attackers had
to call the text message send function of Java ME: Message-
Connection.send. Note that apart from that specific vul-
nerability, there are a lot of MIDlets trying to trick the user
into sending SMS by social engineering means. Java ME is
no longer used in modern smart phones, such as the iPhone
or Android. Older phones are not very valuable targets for
infection, except for the mentioned text message scam.

Exploits that target well-known, vulnerable Java library
functions have to call the aforementioned functions to be
successful. We introduced five Boolean features, each of
which is set to true if we find at least one call to one of the
three functions, the combination of the two functions, or a
class that implements the vulnerable interface. Of course,
these functions (and interfaces) also serve a legitimate pur-
pose. However, we found that they are rarely used by benign
applets (and our other features help in making this distinc-
tion). To assert this we looked at more than 200 benign
applets manually, we decompiled them and inspected their
source code to check for malicious behavior and whether the
description (if available) of their intended purpose matched
what we found in the code. The benign applets we looked
at were from a random crawl of the Internet, and two sites
offering collections of applets. These data sets are described
in more detail in the evaluation chapter. Their rare usage
probably also indicates that they were not well-tested in the
first place and thus the vulnerabilities were overlooked. If

more vulnerable functions were to be added to this set later
on, we would expect them again to be somewhat obscure and
rarely used by benign applets. These few functions provide
a way to break out of the sandbox without user interaction
in vulnerable Java versions.

4.3 Feature Discussion
Jarhead collects a total of 42 features: Six are numeric

(real values), ten are integers, and the remaining 26 are
Boolean values. In the following paragraphs, we argue that
our features are robust, in the sense that they make it diffi-
cult for an attacker to evade our analysis, while still achiev-
ing his goal. Furthermore we examine the usefulness of in-
dividual feature groups and list our top ten features.

Our features fall into two categories that capture both
the behavioral and the obfuscation aspects of malicious ap-
plets. If an attacker tries to evade the obfuscation features,
he will more likely be caught by traditional signature-based
detection systems. An effort could be made to improve ob-
fuscation techniques to match the code metrics of benign
code very closely. However, in the presence of shellcode de-
tection systems [12, 14], the shellcode within the applets,
which is typically encoded in strings, needs to be well hid-
den. Furthermore, while active obfuscation techniques, such
as reflection, are limiting static analysis, their use is not com-
mon in benign applications and hence, might even serve as
indicators for maliciousness.

Even if an attacker finds a way to evade the obfuscation
features, in order to achieve his purpose of infecting end
users, his malware will necessarily implement functionality
to achieve this goal. That is, the attacker needs to download
and start malware on the victim’s PC, and to do this, the
code needs to break out of the Java sandbox. By capturing
this behavior, intrinsic to the attacker’s goal, we make it
difficult for malicious code to evade our analysis and still
succeed.

Previous systems [11, 13] for the detection of web-based
exploits also use features to detect obfuscation and mali-
cious behaviors. However, the concrete instances of these
features are quite different. The main reason for these dif-
ferences is that Jarhead uses static code analysis. Previous
work on the detection of malicious JavaScript and Flash,
on the other hand, relies on dynamic analysis. As a result,
our novel features compute the presence and frequency of
certain functions and resources, code patterns, and artifacts
over the entire code base. Dynamic systems, on the other
hand, typically compute the number of times certain events
or activities occur during the execution of a program.

Answering the question how much impact do our top ten
features (Table 1) have, compared to the full feature set we
used a classifier with ten fold cross validation. We ran the
classifier once with all our features and then with only the
top ten features enabled on a total of 3372 applets, com-
bining all our data sets. Again, the data sets are described
in the evaluation chapter in detail along with more exper-
iments. This experiment was run after the experiments in
the evaluation section due to demand by our reviewers. Out
of the 3372 applets the classifier working only with our top
ten features misclassified a total of 122 (3.6%) applets, while
our full feature set misclassified only 35 (1.0%) applets. This
shows, that while our top ten features already perform rea-
sonably well, our other features help to achieve even better
results.

Merit Attribute Type
0.398 gets parameters behavior
0.266 functions per class obfuscation
0.271 no of instructions obfuscation
0.257 gets runtime behavior
0.254 lines of disassembly obfuscation
0.232 uses file outputstream behavior
0.22 percent unused methods obfuscation
0.211 longest string char cnt obfuscation
0.202 mccabe complexity avg obfuscation
0.197 calls execute function behavior

Table 1: The ten most useful features, sorted by
average merit.

In another experiment, we wanted to see how well the
group of the obfuscation features performs without the be-
havioral features enabled and vice versa. To this end we
used the same 3372 applets as before with ten fold cross
validation, once with only the behavioral features and once
with only the obfuscation features enabled. While the ob-
fuscation features and behavioral features both performed
reasonably well by themselves, with 119 (3.5%) respectively
150 (4.5%) misclassified applets they work best when used
together. As stated before with all features enabled, we mis-
classify only 35 (1.0%) of the applets.

5. EVALUATION
In this section, we evaluate our system to measure how

well it performs in detecting malicious applets. For our
experiments, we used two different datasets: A manually-
compiled dataset of applets (the manual set), and a set of
samples collected and provided to us by the authors of the
Wepawet system (the wepawet set).

5.1 Results: Manual Dataset
The manual dataset contains samples from four differ-

ent sources: Two online collection of applets, an archive
of mostly-malicious applets, and a number of manually col-
lected samples. The two online collections1 offer a selection
of Java applets for web designers to use in their web pages.
We crawled these two pages and downloaded a total of 1,002
Jar files. In addition, we obtained an archive of 357 Jar
files with unknown toxicity from a malware research com-
munity site2. Finally, we manually searched for malicious
applet samples on security sites3, and we wrote a crawler
that we seeded with Google search results on a combination
of the terms “Java,”“applet,” and “malicious.” This yielded
another 1,495 Jar files, for a total of 2,854 samples. By
combining applets from a broad range of different sources in
this data set we tried to ensure it is diverse, representative
of applets used in the wild and not biased to a specific kind
of applet.

We first cleaned the manual dataset by removing dupli-
cates, broken Jar files, and non-applets; i.e., we removed all
Jar files that, after extraction, did not contain at least one
class file that was derived from one of the applet base classes

1http://echoecho.com and http://javaboutique.
internet.com
2http://filex.jeek.org
3http://www.malwaredomainlist.com

(java.applet.Applet, javax.swing.Japplet or javax.micro-
edition.midlet.MIDlet). After this initial filter step, there
were 2,095 files (of unknown toxicity) left.

To obtain ground truth for building and evaluating our
classifier, we submitted the entire manual dataset to Virus-
total. Virustotal is a website that provides free checking of
suspicious files using 42 different anti-virus products. Virus-
total found 1,721 (82.1%) of the files to be benign and 374
(17.9%) to be malicious (we counted a sample as benign if
none of the Virustotal scanners found it to be malicious and
as malicious if at least one scanner found it to be malicious).

Using the results from Virustotal as a starting point, we
built an initial classifier and applied it to the manual dataset.
In other words, we performed training on the manual data
set using the results from Virustotal as ground truth. We
then manually inspected all samples for which the results
from our classifier and the results from Virustotal were dif-
ferent. We decompiled the samples and inspected their source
code checking for known exploits that use certain functions,
download and execute behavior. In the cases were docu-
mentation was available for a (probably) benign applet, we
checked if the described behavior was found in the source
code. Often checking the checksum of a jar file on Google
provided a good indication if this was a known piece of mal-
ware. If after a while of manually inspecting the applet
we were still unsure, we stuck with the verdict assigned by
Virustotal. In this process, we found that Virustotal has ac-
tually misclassified 61 (2.9%) applets. In particular, Virus-
total classified 34 (1.6%) benign applets as malicious, and
deemed 27 (1.3%) malicious applets as benign. We manu-
ally corrected the classification of these 61 applets, and used
the resulting, corrected classification as the ground truth for
our dataset (with 381 malicious and 1,714 benign samples).

In the next step, we trained different classifiers on the
manual dataset. More precisely, the manual dataset was
split into a training set and a test set, using ten-fold cross
validation. We evaluated C4.5 decision trees, support vector
machines, and Bayes classification, which all showed compa-
rable results. Eventually, decision trees turned out to be the
most reliable classifiers, and they also provide good explana-
tory capabilities.

The detection results for the decision tree classifier were
very good. With ten-fold cross validation, the classifier only
misclassified a total of 11 (0.5%) samples. The false positive
rate was 0.2% (4 applets), the false negative rate 0.3% (7
applets).

If we compare our detection results to the results produced
by Virustotal, we find that our results are both better in
terms of false positives and false negatives, and we see a re-
duction in the total number of misclassifications by a factor
of six. This is in spite of the fact that we used Virusto-
tal to build our initial labels, before manually adjustments
(and hence, our ground truth might be biased in favor of
Virustotal).

An overview of the results for the manual dataset are given
in Table 2.

Discussion.
We examined the 11 instances (4 false positives, 7 false

negatives) in more detail: One false positive was a poten-
tially benign MIDlet, which had the ability to send text mes-
sages to arbitrary numbers. Two false positives were trig-
gered by applets that did show suspicious behavior by trying

Virustotal (42 AVs) Jarhead (10x cross-val.)
False pos. 1.6% 0.2%
False neg. 1.3% 0.3%

Table 2: Comparison of Jarhead and Virustotal mis-
classifications - note that our ground truth is biased
towards Virustotal.

to write local files and executing commands on the windows
command shell, but they were probably not intended to be
malicious. The last false positive is an obfuscated applet
that is performing calculations based on the current date,
without ever displaying the results; its purpose remains un-
clear to us.

Two false negatives were applets that contained incom-
plete (broken) exploits. While these applets would not suc-
cessfully execute exploits, we still count them as false nega-
tives, since their intent is malicious (and we classified them
as benign). We missed three additional malicious applets
that were using reflection or loading additional code at run-
time to protect against static analysis and that used an
instance of CVE-2010-0094 [5]. CVE-2010-0094 is a flaw
in the object deserialization that allows attackers to call
privileged Java functions without proper sandboxing. The
last two misclassified applets were instances of CVE-2009-
3869 [4]. This particular stack-based buffer overflow is hard
to catch for our system, since the vulnerable function it ex-
ploits within the native JVM implementation is not directly
triggered by a specific function called from the bytecode,
but, instead, is reachable from a large set of widely-used
Java library functions.

Despite a few misclassified instances, we found that our
system performs detection with high accuracy. In particular,
some of the incorrect cases are arguably in a grey area (such
as possibly benign applets that try to execute commands di-
rectly on the Windows command line and malicious applets
that contain incomplete, half-working exploits).

We also examined the decision tree produced by our clas-
sifier in more detail. We found that our most important
features, i.e., the ones that are highest up in the decision
tree, include both features from our obfuscation set and our
behavioral set. The top ten features include features cap-
turing the interaction with the runtime, the execute feature,
and the feature monitoring local file access. We also find
the text message send function to be important. On the
obfuscation side, we find size features, string features, and
the number of functions per class to be the most effective at
predicting malicious behavior.

We also tried to understand the impact of removing the
feature that checks for known vulnerable functions (since
this could be called signature-based detection). If this fea-
ture is removed, the misclassification rate increases only
marginally, by 0.17%. This confirms that many features
work together to perform detection, and the system does
not rely on the knowledge of specific, vulnerable functions.
To further emphasize this point, we draw the attention to
the ability of Jarhead to detect zero-day attacks. After we
finished the first set of experiments on the manual dataset, a
new vulnerability[7], which was not part of our training set,
began to see widespread use. When we tested our classifier
on these completely new exploits, it was able to identify all

five samples we acquired that implement this exploit, with-
out any adjustment.

5.2 Results: Wepawet Dataset
To further test our classifier on real-world data, we col-

lected Jar files from the Wepawet system. Wepawet is a
public portal that allows users to upload suspicious URLs.
Wepawet would then fetch the content at these URLs and
attempt to detect drive-by download exploits. Since certain
drive-by download exploit kits make use of malicious Java
code, we expected to find some applets that Wepawet users
on the Internet might have submitted to the system. Unfor-
tunately, Wepawet does currently not support the analysis of
Jar files, and hence, would consider all such files as benign.

The authors of Wepawet provided us with 1,551 Jar files
that the system had collected over the past months. We
removed duplicates, broken archives, and non-applets (as
before) and ended up with a set of 1,275 applets. Again, we
used Virustotal to obtain some form of initial classification.
Virustotal found 413 (32.4%) applets to be benign and 862
(67.6%) applets to be malicious. We then ran our classifier
on this Wepawet set. Compared to Virustotal, we assigned
the same verdict to 1,189 (93.3%) samples, while 86 (6.7%)
samples were classified differently. More precisely, we clas-
sified 59 (4.6%) malicious applets (according to Virustotal)
as benign and 27 (2.1%) benign applets (according to Virus-
total) as malicious.

Manual examination of the instances with different classi-
fications revealed interesting results, both for the false pos-
itives and the false negatives. For the false positives, we
found that 19 of the 27 were clearly errors in the initial
classification by Virustotal (that is, these 19 applets were
actually malicious but falsely labeled as benign by Virusto-
tal). That is, Jarhead was correct in labeling these applets
as bad. Interestingly, one of these 19 samples was a ma-
licious applet that was stealing CPU cycles from the user,
visiting a web page to mine bitcoins [29]. While we had not
seen such behavior before, Jarhead correctly classifies this
applet as malicious.

The remaining eight samples were properly classified by
Virustotal as benign, and hence, false positives for Jarhead.
Seven of our eight false positives had the potential to down-
load files to the user’s disk, and five of these seven would
even execute these files after downloading! Except for in-
tended use of these applets as software installers for poten-
tially benign programs, their behavior (and code patterns)
are essentially identical to malware. The last false positive
was a (likely benign) MIDlet that can send text messages to
arbitrary numbers.

We then inspected the 59 applets that Virustotal labeled
as malicious (while Jarhead labeled them as benign). Four
programs were partial exploits that did not implement ac-
tual malicious behavior. The remaining nine were false posi-
tives by Virustotal. We do not consider these partial exploits
(which are essentially incompletely packed archives) and the
nine benign programs to be properly labeled by Virustotal.

The remaining 46 samples were actual malware. They
were largely made up of two families of exploits for which
we had no samples in our (manual) training set, which we
used to build the classifier. 28 samples belonged to a family
of MIDlet scam applets, and another 15 belonged to a new,
heavily obfuscated version of a new vulnerability (CVE-
2011-3544) that was not present in our training set. We

also missed one instance of CVE-2009-3869 [4] (discussed
previously) and one other malicious MIDlet. Moreover, one
exploit used a new method to introduce code that was not
in our training set.

Of the 46 false negatives, we missed 44 samples (or 96%)
because of limitations with the manual dataset used to train
our classifier. While we were collecting features useful for
identifying these malicious applets, our classifier did not
learn that they were important, because it was missing sam-
ples triggering these features in its training set. To show that
we can achieve better results with a better training set, and
to demonstrate that our features are indeed well-selected
and robust, we trained and tested a new classifier on the
Wepawet dataset using ten-fold cross validation. For that
experiment, we found a total misclassification count of 21
(1.6%), the total false positive rate was 0.9% (12 applets),
and the false negative rate 0.7% (9 applets).

The results for the Wepawet dataset are presented in Ta-
ble 3.

Original classifier 10x cross validated
False positives 2.1% 0.9%
False negatives 4.6% 0.7%

Table 3: Jarhead’s performance on the Wepawet
dataset.

We also collected performance numbers during our ex-
periments. On average our analysis takes 2.8 seconds per
sample, with a median of 0.6 seconds. This shows that the
majority of samples is very fast to analyze, although there is
a narrow longtail for which the analysis takes longer (specif-
ically, 2% of the samples take longer than 10 seconds and
0.3% took longer than a minute). For the slower 50% of the
samples, more than 98% of the total running time was spent
in the disassembler. Thus, these numbers could be signifi-
cantly improved simply by a more efficient implementation
of the disassembler or by implementing our feature collection
directly on the bytecode so disassembling the code becomes
unnecessary.

6. POSSIBLE EVASION
We have seen that Jarhead performs well on real-world

data. In this section, we will discuss the limitations of Jar-
head, i.e., possible ways for malicious applets to avoid de-
tection by our system.

A lot of the usual limitations for static analysis [28, 25,
26] do not apply to Java bytecode. However, for a trusted
applet, it is possible to use the Java native interface (JNI)
to execute native code on the machine. This is not covered
by our analysis. If the parts of the malware that are im-
plementing the malicious behavior are in the Java bytecode
parts of the applet, it is likely that we will detect them, oth-
erwise, there exist many analysis tools for native malware
that would be able to detect such malicious behavior.

Static analysis is also limited by the use of reflection in
a language. Interestingly, we found that reflection is not in
widespread use by benign Java applets. Malicious applets,
however, use it in an attempt to evade systems such as ours.
While we do not completely mitigate this problem, we have
features that aim to precisely detect this kind of evasion.
Moreover, other features that target the Jar file and its code

as a whole, such as code metrics and Jar content features,
are unaffected by reflection.

We examine each applet individually. Applets on the
same web page can communicate with each other, by call-
ing each others public methods. Applets can also be con-
trolled from the surrounding JavaScript in a similar fashion.
If malicious behavior is distributed among multiple applets
within a single page, or partly carried out by the surround-
ing JavaScript, our analysis scope is too limited, and we
might misclassify these applets. Fortunately, to the best
of our knowledge, malicious applets that use JNI and ma-
licious code splitting behavior between multiple applets (or
interacting with the surrounding JavaScript) do currently
not exist in the wild. Moreover, we can extend our analysis
to consider multiple applets that appear on the same page
together. We already combine all class files within a single
Jar archive, so such an extension would be rather straight-
forward.

While we have shown that today’s malicious applets are
very well covered by our features, a completely new class of
exploits or vulnerabilities could bypass our detection either
because we do not collect good features to capture the new
exploit or because the classifier was unable to learn this ex-
ploit pattern from the training set. In these cases, it might
be necessary to add new features or extend the set of known
vulnerable functions. This would be straightforward to do.
In other cases, simply retraining the classifier on a dataset
containing the new exploits might suffice.

Since we operate on the Java bytecode, identifying vul-
nerabilities in the underlying native implementation of the
JVM itself (such as CVE-2009-3869 [4]) is difficult. The
reason is that corresponding exploits target a heap overflow
vulnerability by displaying a specially crafted image. The
set of possible functions within the Java API that can lead
to execution of the vulnerable function is very large, and
the API functions are widely used. Moreover, there is not
obvious malicious activity present in the Java class file when
this vulnerability is triggered.

7. RELATED WORK
A lot of research has been done to detect malware. In this

section, we present different approaches and compare them
to Jarhead.

Signature-based approaches [33, 2] find malware by match-
ing it against previously selected code or data snippets spe-
cific to a certain exploit. Signature-based detection sys-
tems can be evaded by obfuscation, and cannot catch ex-
ploits they do not have signatures for. Jarhead complements
signature-based techniques by identifying malicious samples
based specifically on their obfuscation and behavior features.
Jarhead is also able to detect previously-unknown families
of exploits (since it uses anomaly detection).

A broad range of low and high interactive honeyclients
were proposed to identify malware [30, 10, 11]. They can-
not detect malware that targets vulnerable components that
are not installed on the honeyclient. Specifically for Java
applets, this means that the honeyclients need to have the
correct version of the Java plugin installed, running in the
correct configuration with the correct browser. Jarhead is
able to detect malicious applets independent of this envi-
ronment by using static analysis. Furthermore, the runtime
environment of honeyclients can be fingerprinted by malware
as part of evasion attempts. Since Jarhead relies purely on

static analysis, fingerprinting the analysis system is not pos-
sible.

Twelve years ago, Helmer suggested an intrusion detec-
tion system aimed at identifying hostile Java applets [18].
Their system is geared towards the detection of applets an-
noying the user, rather than real malicious ones as we see
today. Their approach is also based on machine learning
combined with anomaly detection, but the features are very
different. In particular, their system monitors the system
call patterns emitted from the Java runtime system during
applet execution. The system has not been tested on real
malicious applets and requires dynamic execution, exposing
it to similar problems as honeyclients. Jarhead has been
tested on a large real-world dataset of modern, malicious
applets, and it is not subject to the limitations that come
with dynamic malware execution.

8. CONCLUSIONS
We address the quickly growing problem of malicious Java

applets by building a detection system based on static anal-
ysis and machine learning. We implemented our approach
in a tool called Jarhead and tested it on real-world data.
We also deployed our system as a plugin for the Wepawet
system, which is publicly accessible. Our tool is robust to
evasion, and the evaluation has demonstrated that it oper-
ates with high accuracy.

In the future, we plan to improve our results by using
more sophisticated static analysis techniques to achieve even
higher accuracy. For example, we would like to use program
slicing [20] to statically determine whether a downloaded
file is indeed the one that is executed later in the program
or whether a suspicious image file is actually passed to a
vulnerable function.

9. ACKNOWLEDGMENTS
This work was supported by the Office of Naval Research

(ONR) under Grant N000140911042, by the National Sci-
ence Foundation (NSF) under grants CNS-0845559 and CNS-
0905537, and by Secure Business Austria.

10. REFERENCES
[1] Capture hpc. http://nz-honeynet.org.

[2] Clamav. http://www.clamav.net.

[3] CVE-2009-3867. National Vulnerability Database.

[4] CVE-2009-3869. National Vulnerability Database.

[5] CVE-2010-0094. National Vulnerability Database.

[6] CVE-2010-0842. National Vulnerability Database.

[7] CVE-2012-0507. National Vulnerability Database.

[8] Wepawet. http://wepawet.iseclab.org.

[9] Same origin policy.
http://www.w3.org/Security/wiki/Same Origin Policy,
2010.

[10] Yaser Alosefer and Omer Rana. Honeyware: A
web-based low interaction client honeypot. ICSTW
’10, 2010.

[11] Marco Cova, Christopher Kruegel, and Giovanni
Vigna. Detection and analysis of drive-by-download
attacks and malicious javascript code. In World-wide
web conference (WWW), 2010.

[12] Manuel Egele, Peter Wurzinger, Christopher Kruegel,
and Engin Kirda. Defending browsers against drive-by

downloads : mitigating heap-spraying code injection
attacks. In DIMVA’09, 2009.

[13] Sean Ford, Marco Cova, Christopher Kruegel, and
Giovanni Vigna. Analyzing and Detecting Malicious
Flash Advertisements. In Annual Computer Security
Applications Conference (ACSAC), 2009.

[14] Y. Fratantonio, C. Kruegel, and G. Vigna. Shellzer: a
tool for the dynamic analysis of malicious shellcode. In
Proceedings of the Symposium on Recent Advances in
Intrusion Detection (RAID).

[15] Mike Geide. 300% increase in malicious jars.
http://research.zscaler.com/2010/05/300-increase-in-
malicious-jars.html,
2010.

[16] Li Gong and Marianne Mueller e.a. Going beyond the
sandbox: An overview of the new security architecture
in the java development kit 1.2. USITS, 1997.

[17] Hall and Mark e.a. The weka data mining software: an
update. SIGKDD Explor. Newsl., 11(1), 2009.

[18] Guy G. Helmer and Johnny S. Wong e.a. Anomalous
intrusion detection system for hostile java applets.
Journal of Systems and Software, 55(3), 2001.

[19] Stefanie Hoffman. Microsoft warns of unprecedented
rise in java exploits.
http://www.crn.com/news/security/227900317/microsoft-
warns-of-unprecedented-rise-in-java-exploits.htm,
2010.

[20] Susan Horwitz and Thomas Reps e.a. Interprocedural
slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12, 1990.

[21] Wolfgang Kandek. The inconvenient truth about the
state of browser security.
http://laws.qualys.com/SPO1-204 Kandek.pdf, 2011.

[22] Brian Krebs. Java: A gift to exploit pack makers.
http://krebsonsecurity.com/2010/10/java-a-gift-to-
exploit-pack-makers,
2010.

[23] Brian Krebs. Exploit packs run on java juice.
http://krebsonsecurity.com/2011/01/exploit-packs-
run-on-java-juice/,
2011.

[24] Tim Lindholm and Frank Yellin. Java Virtual Machine
Specification. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition, 1999.

[25] Cullen Linn and Saumya Debray. Obfuscation of
executable code to improve resistance to static
disassembly. In Proceedings of the 10th ACM
conference on Computer and communications security,
CCS ’03, 2003.

[26] Douglas Low. Java control flow obfuscation. Technical
report, 1998.

[27] Thomas J. McCabe. A complexity measure. IEEE
Trans. Software Eng., 2(4), 1976.

[28] Andreas Moser and Christopher Kruegel e.a. Limits of
static analysis for malware detection. In ACSAC, 2007.

[29] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic
Cash System. 2008.

[30] Jose Nazario. Phoneyc: a virtual client honeypot.
LEET’09, 2009.

[31] Niels Provos and McNamee e.a. The ghost in the
browser analysis of web-based malware. In Proceedings

of the first conference on First Workshop on Hot
Topics in Understanding Botnets, HotBots’07, 2007.

[32] Niels Provos and Panayiotis Mavrommatis e.a. All
your iframes point to us. Google Inc, 2008.

[33] Martin Roesch. Snort - lightweight intrusion detection
for networks. LISA ’99, 1999.

[34] Christian Seifert and Ian Welch e. a. Identification of
malicious web pages through analysis of underlying
dns and web server relationships. In LCN, 2008.

