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Partiality in Haskell

In Haskell we are able to define arbitrary partial functions
● Some can be spotted easily by their definition:
1 head :: [a] -> a
2 head (x:xs) = x

ghci> head []
Exception: code-examples/example.hs:2:1-14:
Non-exhaustive patterns in function head

● others might be more subtle:
1 reverse :: [a] -> [a]
2 reverse l = revAcc l []
3 where
4 revAcc [] a = a
5 revAcc (x:xs) a = revAcc xs (x:a)

ghci> ones = 1 : ones
ghci> reverse ones
...
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Partiality in Agda
The Maybe Monad

● In Agda every function has to be total and terminating, so how do we model partial functions?

● Simple errors can be modelled with the maybe monad
1 data Maybe (A : Set) : Set where
2 just : A → Maybe A
3 nothing : Maybe A

1 head : ∀ A → List A → Maybe A
2 head nil = nothing
3 head (cons x xs) = just x

● What about reverse for (possibly) infinite lists:
1 data Colist (A : Set) : Set where
2 [] : Colist A
3 _∷_ : A → ∞ (Colist A) → Colist A
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Partiality in Agda
Capretta’s Delay Monad

● Capretta’s Delay Monad is a coinductive data type whose inhabitants can be viewed as suspended
computations.

1 data Delay (A : Set) : Set where
2 now : A → Delay A
3 later : ∞ (Delay A) → Delay A

● The delay datatype contains a constant for non-termination:
1 never : Delay A
2 never = later (♯ never)

● and we can define a function for running a computation (for some amount of steps):
1 run_for_steps : Delay A → ℕ → Delay A
2 run now x for n steps = now x
3 run later x for zero steps = later x
4 run later x for suc n steps = run ♭ x for n steps
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Partiality in Agda
Capretta’s Delay Monad

● Now we can define a reverse function for possibly infinite lists:
1 reverse : ∀ {A : Set} → Colist A → Delay (Colist A)
2 reverse {A} l = revAcc l []
3 where
4 revAcc : Colist A → Colist A → Delay (Colist A)
5 revAcc [] a = now a
6 revAcc (x ∷ xs) a = later (♯ revAcc (♭ xs) (x ∷ (♯ a)))
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Preliminaries

We work in category C that
● has finite products

● has finite coproducts
● is distributive, i.e. the following is an iso:

(X × Y ) + (X ×Z) X × (Y +Z)dstl−1∶=[⟨id,inl⟩,⟨id,inr⟩]

X × (Y +Z) (X × Y ) + (X ×Z)dstl

● has a natural numbers object N (which is stable)
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Capturing Partiality
Moggi’s categorical semantics [Mog91]

Goal: interpret an effectul programming language in a category C

● Take a Monad T on C, we view objects A as types of values and objects TA as types of computations.
● Programs form a category CT with CT(X, Y ) ∶= C(X, TY )
What properties should a monad T for modelling partiality have?

1. Commutativity (also entails strength)
2. Morphisms in CT should be partial maps
3. There should be no other effect besides partiality
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Capturing Partiality
Restriction Categories [CL02]

Definition
A restriction structure on C is a mapping dom ∶ C(X, Y )→ C(X, X) with the following properties:

f ○ (dom f) = f (1)
(dom f) ○ (dom g) = (dom g) ○ (dom f) (2)
dom (g ○ (dom f)) = (dom g) ○ (dom f) (3)

(dom h) ○ f = f ○ dom (h ○ f) (4)
for any X, Y, Z ∈ ∣C∣, f ∶X → Y, g ∶X → Z, h ∶ Y → Z.

Intuitively dom f captures the domain of definedness of f .

Remark
Every category has a trivial restriction structure dom f = id, we call categories with a non-trivial
restriction structure restriction categories.
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Capturing Partiality
Equational Lifting Monads [BFS03]

The following criterion guarantees that some form of partiality is the only possible side-effect:

Definition
A commutative monad T is called an equational lifting monad if the following diagram commutes:

TX TX × TX

T (TX ×X)

∆

τ
T ⟨η,id⟩

Theorem
The Kleisli category of an equational lifting monad is a restriction category.
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Capturing Partiality
The Maybe Monad

● MX =X + 1

● The maybe monad is strong and commutative:
τX,Y ∶=X × (Y + 1) dstlÐ→ (X × Y ) + (X × 1) id+!Ð→ (X × Y ) + 1

● and the following diagram commutes (i.e. it is an equational lifting monad):
X + 1 (X + 1) × (X + 1)

((X + 1) ×X) + ((X + 1) × 1)

((X + 1) ×X) + 1

∆

dstl

id+!

⟨inl,id⟩+!
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Capturing Partiality
Capretta’s Delay Monad [Cap05]

● Recall the delay codatatype:

x ∶X

now x ∶DX
===================

c ∶DX

later c ∶DX
====================

● DX = νA.X +A
● By Lambek we get DX ≅X +DX which yields:

out ∶DX →X +DX

out−1 ∶X +DX →DX = [now, later]
● D (if it exists) is a strong and commutative monad
● D is not an equational lifting monad, because besides modelling partiality, it also counts steps

(e.g. now c /= later (now c))
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Capturing Partiality
Quotienting the Delay Monad [CUV15]

Following the work by Chapman, Uustalu and Veltri we can quotient D by the ’correct’ kind of equality:
p ↓ c q ↓ c

p ≈ q
======================

p ≈ q

later p ≈ later q
==========================

where

now c ↓ c

x ↓ c

later x ↓ c

we can model this as the coequalizer:

D(X ×N) DX D≈X
ι∗

Dfst

ρX

Problem: Defining µX ∶D2
≈X →D≈X requires countable choice.
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Partiality from Iteration
Elgot Algebras

The following is an adaptation of Adámek, Milius and Velebil’s complete Elgot Algebras [AMV06]:
Definition
A (unguarded) Elgot Algebra [Gon21] consists of:
● An object X
● for every f ∶ S →X + S the iteration f# ∶ S →X , satisfying:
○ Fixpoint: f# = [id, f#] ○ f
○ Uniformity: (id + h) ○ f = g ○ h⇒ f# = g# ○ h

for f ∶ S →X + S, g ∶ R → A +R, h ∶ S → R
○ Folding: ((f# + id) ○ h)# = [(id + inl) ○ f, inr ○ h]#

for f ∶ S → A + S, h ∶ R → S +R

Remark
Every Elgot algebra (A, (−)#) comes with a divergence constant � = (inr ∶ 1→ A + 1)# ∶ 1→ A
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Partiality from Iteration
Elgot Monads [AMV11] [GSR14]

Definition
A monad T is an Elgot monad if it has an iteration operator (f ∶X → T (Y +X))† ∶X → TY
satisfying:
● Fixpoint: f † = [η, f †]∗ ○ f

for f ∶X → T (Y +X)
● Uniformity: f ○ h = T (id + h) ○ g⇒ f † ○ h = g†

for f ∶X → T (Y +X), g ∶ Z → T (Y +Z), h ∶ Z →X
● Naturality: g∗ ○ f † = ([(Tinl) ○ g, η ○ inr]∗ ○ f)†

for f ∶X → T (Y +X), g ∶ Y → TZ
● Codiagonal: f †† = (T [id, inr] ○ f)†

for f ∶X → T ((Y +X) +X)

Remark
Strong Elgot Monads are regarded as minimal semantic structures for interpreting effectful
while-languages.
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Partiality from Iteration
pre-Elgot Monads [Gon21]

Relaxing the requirements for Elgot monads we get the following weaker concept:
Definition
A monad T is called pre-Elgot if every TX extends to an Elgot algebra such that Kleisli lifting is
iteration preversing, i.e.

h∗ ○ f# = ((h∗ + id) ○ f)# for f ∶ Z → TX +Z, h ∶X → TY

Theorem
Every Elgot monad is pre-Elgot
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Partiality from iteration
The initial pre-Elgot Monad [Gon21]

● By defining KX as the free Elgot algebra over X we get a monad K (that we assume is stable)

● K is strong and commutative
● K is an equational lifting monad
● K is the initial pre-Elgot monad

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 18/26



Partiality from iteration
The initial pre-Elgot Monad [Gon21]

● By defining KX as the free Elgot algebra over X we get a monad K (that we assume is stable)
● K is strong and commutative

● K is an equational lifting monad
● K is the initial pre-Elgot monad

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 18/26



Partiality from iteration
The initial pre-Elgot Monad [Gon21]

● By defining KX as the free Elgot algebra over X we get a monad K (that we assume is stable)
● K is strong and commutative
● K is an equational lifting monad

● K is the initial pre-Elgot monad

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 18/26



Partiality from iteration
The initial pre-Elgot Monad [Gon21]

● By defining KX as the free Elgot algebra over X we get a monad K (that we assume is stable)
● K is strong and commutative
● K is an equational lifting monad
● K is the initial pre-Elgot monad

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 18/26



Partiality from iteration
Closing the gap [Gon21]

Let’s look at K under various assumptions:
● Assuming excluded middle:

○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ DX ≅X ×N + 1
○ D≈X ≅X + 1
○ X + 1 is the initial (pre-)Elgot monad (⇒K ≅ (−) + 1 ≅D≈)

● Assuming countable choice:

○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ D≈ is the initial (pre-)Elgot Monad (⇒K ≅D≈).
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2. Categorical Notions of Partiality

3. Implementation in Agda



Goals

● Formalize the delay monad categorically and show that it is..

○ strong
○ commutative

● Formalize K and show that it is..

○ strong
○ commutative
○ an equational lifting monad
○ the initial pre-Elgot monad

● Take the category of setoids and show that K instantiates to D≈
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App: Category Theory in Agda
Setoid-enriched Categories

1 record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where
2 field
3 Obj : Set o
4 _⇒_ : Obj → Obj → Set ℓ
5 _≈_ : ∀ {A B} → (A ⇒ B) → (A ⇒ B) → Set e
6

7 id : ∀ {A} → (A ⇒ A)
8 _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
9

10 field
11 assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D}
12 → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f)
13 identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f
14 identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f
15 equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B})
16 ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i
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