
Implementing Categorical Notions of
Partiality and Delay in Agda
Leon Vatthauer

April 6, 2024



1. Partiality in Type Theory

2. Categorical Notions of Partiality

3. Implementation in Agda



Partiality in Haskell

In Haskell we are able to define arbitrary partial functions
● Some can be spotted easily by their definition:
1 head :: [a] -> a
2 head (x:xs) = x

ghci> head []
Exception: code-examples/example.hs:2:1-14:
Non-exhaustive patterns in function head

● others might be more subtle:
1 reverse :: [a] -> [a]
2 reverse l = revAcc l []
3 where
4 revAcc [] a = a
5 revAcc (x:xs) a = revAcc xs (x:a)

ghci> ones = 1 : ones
ghci> reverse ones
...

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 3/26



Partiality in Haskell

In Haskell we are able to define arbitrary partial functions
● Some can be spotted easily by their definition:
1 head :: [a] -> a
2 head (x:xs) = x

ghci> head []
Exception: code-examples/example.hs:2:1-14:
Non-exhaustive patterns in function head

● others might be more subtle:
1 reverse :: [a] -> [a]
2 reverse l = revAcc l []
3 where
4 revAcc [] a = a
5 revAcc (x:xs) a = revAcc xs (x:a)

ghci> ones = 1 : ones
ghci> reverse ones
...

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 3/26



Partiality in Haskell

In Haskell we are able to define arbitrary partial functions
● Some can be spotted easily by their definition:
1 head :: [a] -> a
2 head (x:xs) = x

ghci> head []
Exception: code-examples/example.hs:2:1-14:
Non-exhaustive patterns in function head

● others might be more subtle:
1 reverse :: [a] -> [a]
2 reverse l = revAcc l []
3 where
4 revAcc [] a = a
5 revAcc (x:xs) a = revAcc xs (x:a)

ghci> ones = 1 : ones
ghci> reverse ones
...

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 3/26



Partiality in Haskell

In Haskell we are able to define arbitrary partial functions
● Some can be spotted easily by their definition:
1 head :: [a] -> a
2 head (x:xs) = x

ghci> head []
Exception: code-examples/example.hs:2:1-14:
Non-exhaustive patterns in function head

● others might be more subtle:
1 reverse :: [a] -> [a]
2 reverse l = revAcc l []
3 where
4 revAcc [] a = a
5 revAcc (x:xs) a = revAcc xs (x:a)

ghci> ones = 1 : ones
ghci> reverse ones
...

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 3/26



Partiality in Agda
The Maybe Monad

● In Agda every function has to be total and terminating, so how do we model partial functions?

● Simple errors can be modelled with the maybe monad
1 data Maybe (A : Set) : Set where
2 just : A → Maybe A
3 nothing : Maybe A

1 head : ∀ A → List A → Maybe A
2 head nil = nothing
3 head (cons x xs) = just x

● What about reverse for (possibly) infinite lists:
1 data Colist (A : Set) : Set where
2 [] : Colist A
3 _∷_ : A → ∞ (Colist A) → Colist A

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 4/26



Partiality in Agda
The Maybe Monad

● In Agda every function has to be total and terminating, so how do we model partial functions?
● Simple errors can be modelled with the maybe monad
1 data Maybe (A : Set) : Set where
2 just : A → Maybe A
3 nothing : Maybe A

1 head : ∀ A → List A → Maybe A
2 head nil = nothing
3 head (cons x xs) = just x

● What about reverse for (possibly) infinite lists:
1 data Colist (A : Set) : Set where
2 [] : Colist A
3 _∷_ : A → ∞ (Colist A) → Colist A

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 4/26



Partiality in Agda
The Maybe Monad

● In Agda every function has to be total and terminating, so how do we model partial functions?
● Simple errors can be modelled with the maybe monad
1 data Maybe (A : Set) : Set where
2 just : A → Maybe A
3 nothing : Maybe A

1 head : ∀ A → List A → Maybe A
2 head nil = nothing
3 head (cons x xs) = just x

● What about reverse for (possibly) infinite lists:
1 data Colist (A : Set) : Set where
2 [] : Colist A
3 _∷_ : A → ∞ (Colist A) → Colist A

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 4/26



Partiality in Agda
Capretta’s Delay Monad

● Capretta’s Delay Monad is a coinductive data type whose inhabitants can be viewed as suspended
computations.

1 data Delay (A : Set) : Set where
2 now : A → Delay A
3 later : ∞ (Delay A) → Delay A

● The delay datatype contains a constant for non-termination:
1 never : Delay A
2 never = later (♯ never)

● and we can define a function for running a computation (for some amount of steps):
1 run_for_steps : Delay A → ℕ → Delay A
2 run now x for n steps = now x
3 run later x for zero steps = later x
4 run later x for suc n steps = run ♭ x for n steps

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 5/26



Partiality in Agda
Capretta’s Delay Monad

● Capretta’s Delay Monad is a coinductive data type whose inhabitants can be viewed as suspended
computations.

1 data Delay (A : Set) : Set where
2 now : A → Delay A
3 later : ∞ (Delay A) → Delay A

● The delay datatype contains a constant for non-termination:
1 never : Delay A
2 never = later (♯ never)

● and we can define a function for running a computation (for some amount of steps):
1 run_for_steps : Delay A → ℕ → Delay A
2 run now x for n steps = now x
3 run later x for zero steps = later x
4 run later x for suc n steps = run ♭ x for n steps

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 5/26



Partiality in Agda
Capretta’s Delay Monad

● Capretta’s Delay Monad is a coinductive data type whose inhabitants can be viewed as suspended
computations.

1 data Delay (A : Set) : Set where
2 now : A → Delay A
3 later : ∞ (Delay A) → Delay A

● The delay datatype contains a constant for non-termination:
1 never : Delay A
2 never = later (♯ never)

● and we can define a function for running a computation (for some amount of steps):
1 run_for_steps : Delay A → ℕ → Delay A
2 run now x for n steps = now x
3 run later x for zero steps = later x
4 run later x for suc n steps = run ♭ x for n steps

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 5/26



Partiality in Agda
Capretta’s Delay Monad

● Now we can define a reverse function for possibly infinite lists:
1 reverse : ∀ {A : Set} → Colist A → Delay (Colist A)
2 reverse {A} l = revAcc l []
3 where
4 revAcc : Colist A → Colist A → Delay (Colist A)
5 revAcc [] a = now a
6 revAcc (x ∷ xs) a = later (♯ revAcc (♭ xs) (x ∷ (♯ a)))

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 6/26



1. Partiality in Type Theory

2. Categorical Notions of Partiality

3. Implementation in Agda



Preliminaries

We work in category C that
● has finite products

● has finite coproducts
● is distributive, i.e. the following is an iso:

(X × Y ) + (X ×Z) X × (Y +Z)dstl−1∶=[⟨id,inl⟩,⟨id,inr⟩]

X × (Y +Z) (X × Y ) + (X ×Z)dstl

● has a natural numbers object N (which is stable)

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 8/26



Preliminaries

We work in category C that
● has finite products
● has finite coproducts

● is distributive, i.e. the following is an iso:

(X × Y ) + (X ×Z) X × (Y +Z)dstl−1∶=[⟨id,inl⟩,⟨id,inr⟩]

X × (Y +Z) (X × Y ) + (X ×Z)dstl

● has a natural numbers object N (which is stable)

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 8/26



Preliminaries

We work in category C that
● has finite products
● has finite coproducts
● is distributive, i.e. the following is an iso:

(X × Y ) + (X ×Z) X × (Y +Z)dstl−1∶=[⟨id,inl⟩,⟨id,inr⟩]

X × (Y +Z) (X × Y ) + (X ×Z)dstl

● has a natural numbers object N (which is stable)

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 8/26



Preliminaries

We work in category C that
● has finite products
● has finite coproducts
● is distributive, i.e. the following is an iso:

(X × Y ) + (X ×Z) X × (Y +Z)dstl−1∶=[⟨id,inl⟩,⟨id,inr⟩]

X × (Y +Z) (X × Y ) + (X ×Z)dstl

● has a natural numbers object N (which is stable)

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 8/26



Capturing Partiality
Moggi’s categorical semantics [Mog91]

Goal: interpret an effectul programming language in a category C

● Take a Monad T on C, we view objects A as types of values and objects TA as types of computations.
● Programs form a category CT with CT(X, Y ) ∶= C(X, TY )
What properties should a monad T for modelling partiality have?

1. Commutativity (also entails strength)
2. Morphisms in CT should be partial maps
3. There should be no other effect besides partiality

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 9/26



Capturing Partiality
Moggi’s categorical semantics [Mog91]

Goal: interpret an effectul programming language in a category C
● Take a Monad T on C, we view objects A as types of values and objects TA as types of computations.

● Programs form a category CT with CT(X, Y ) ∶= C(X, TY )
What properties should a monad T for modelling partiality have?

1. Commutativity (also entails strength)
2. Morphisms in CT should be partial maps
3. There should be no other effect besides partiality

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 9/26



Capturing Partiality
Moggi’s categorical semantics [Mog91]

Goal: interpret an effectul programming language in a category C
● Take a Monad T on C, we view objects A as types of values and objects TA as types of computations.
● Programs form a category CT with CT(X, Y ) ∶= C(X, TY )

What properties should a monad T for modelling partiality have?

1. Commutativity (also entails strength)
2. Morphisms in CT should be partial maps
3. There should be no other effect besides partiality

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 9/26



Capturing Partiality
Moggi’s categorical semantics [Mog91]

Goal: interpret an effectul programming language in a category C
● Take a Monad T on C, we view objects A as types of values and objects TA as types of computations.
● Programs form a category CT with CT(X, Y ) ∶= C(X, TY )
What properties should a monad T for modelling partiality have?

1. Commutativity (also entails strength)
2. Morphisms in CT should be partial maps
3. There should be no other effect besides partiality

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 9/26



Capturing Partiality
Moggi’s categorical semantics [Mog91]

Goal: interpret an effectul programming language in a category C
● Take a Monad T on C, we view objects A as types of values and objects TA as types of computations.
● Programs form a category CT with CT(X, Y ) ∶= C(X, TY )
What properties should a monad T for modelling partiality have?
1. Commutativity (also entails strength)

2. Morphisms in CT should be partial maps
3. There should be no other effect besides partiality

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 9/26



Capturing Partiality
Moggi’s categorical semantics [Mog91]

Goal: interpret an effectul programming language in a category C
● Take a Monad T on C, we view objects A as types of values and objects TA as types of computations.
● Programs form a category CT with CT(X, Y ) ∶= C(X, TY )
What properties should a monad T for modelling partiality have?
1. Commutativity (also entails strength)
2. Morphisms in CT should be partial maps

3. There should be no other effect besides partiality

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 9/26



Capturing Partiality
Moggi’s categorical semantics [Mog91]

Goal: interpret an effectul programming language in a category C
● Take a Monad T on C, we view objects A as types of values and objects TA as types of computations.
● Programs form a category CT with CT(X, Y ) ∶= C(X, TY )
What properties should a monad T for modelling partiality have?
1. Commutativity (also entails strength)
2. Morphisms in CT should be partial maps
3. There should be no other effect besides partiality

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 9/26



Capturing Partiality
Restriction Categories [CL02]

Definition
A restriction structure on C is a mapping dom ∶ C(X, Y )→ C(X, X) with the following properties:

f ○ (dom f) = f (1)
(dom f) ○ (dom g) = (dom g) ○ (dom f) (2)
dom (g ○ (dom f)) = (dom g) ○ (dom f) (3)

(dom h) ○ f = f ○ dom (h ○ f) (4)
for any X, Y, Z ∈ ∣C∣, f ∶X → Y, g ∶X → Z, h ∶ Y → Z.

Intuitively dom f captures the domain of definedness of f .

Remark
Every category has a trivial restriction structure dom f = id, we call categories with a non-trivial
restriction structure restriction categories.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 10/26



Capturing Partiality
Restriction Categories [CL02]

Definition
A restriction structure on C is a mapping dom ∶ C(X, Y )→ C(X, X) with the following properties:

f ○ (dom f) = f (1)
(dom f) ○ (dom g) = (dom g) ○ (dom f) (2)
dom (g ○ (dom f)) = (dom g) ○ (dom f) (3)

(dom h) ○ f = f ○ dom (h ○ f) (4)
for any X, Y, Z ∈ ∣C∣, f ∶X → Y, g ∶X → Z, h ∶ Y → Z.
Intuitively dom f captures the domain of definedness of f .

Remark
Every category has a trivial restriction structure dom f = id, we call categories with a non-trivial
restriction structure restriction categories.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 10/26



Capturing Partiality
Restriction Categories [CL02]

Definition
A restriction structure on C is a mapping dom ∶ C(X, Y )→ C(X, X) with the following properties:

f ○ (dom f) = f (1)
(dom f) ○ (dom g) = (dom g) ○ (dom f) (2)
dom (g ○ (dom f)) = (dom g) ○ (dom f) (3)

(dom h) ○ f = f ○ dom (h ○ f) (4)
for any X, Y, Z ∈ ∣C∣, f ∶X → Y, g ∶X → Z, h ∶ Y → Z.
Intuitively dom f captures the domain of definedness of f .
Remark
Every category has a trivial restriction structure dom f = id, we call categories with a non-trivial
restriction structure restriction categories.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 10/26



Capturing Partiality
Equational Lifting Monads [BFS03]

The following criterion guarantees that some form of partiality is the only possible side-effect:

Definition
A commutative monad T is called an equational lifting monad if the following diagram commutes:

TX TX × TX

T (TX ×X)

∆

τ
T ⟨η,id⟩

Theorem
The Kleisli category of an equational lifting monad is a restriction category.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 11/26



Capturing Partiality
Equational Lifting Monads [BFS03]

The following criterion guarantees that some form of partiality is the only possible side-effect:
Definition
A commutative monad T is called an equational lifting monad if the following diagram commutes:

TX TX × TX

T (TX ×X)

∆

τ
T ⟨η,id⟩

Theorem
The Kleisli category of an equational lifting monad is a restriction category.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 11/26



Capturing Partiality
Equational Lifting Monads [BFS03]

The following criterion guarantees that some form of partiality is the only possible side-effect:
Definition
A commutative monad T is called an equational lifting monad if the following diagram commutes:

TX TX × TX

T (TX ×X)

∆

τ
T ⟨η,id⟩

Theorem
The Kleisli category of an equational lifting monad is a restriction category.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 11/26



Capturing Partiality
The Maybe Monad

● MX =X + 1

● The maybe monad is strong and commutative:
τX,Y ∶=X × (Y + 1) dstlÐ→ (X × Y ) + (X × 1) id+!Ð→ (X × Y ) + 1

● and the following diagram commutes (i.e. it is an equational lifting monad):
X + 1 (X + 1) × (X + 1)

((X + 1) ×X) + ((X + 1) × 1)

((X + 1) ×X) + 1

∆

dstl

id+!

⟨inl,id⟩+!

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 12/26



Capturing Partiality
The Maybe Monad

● MX =X + 1
● The maybe monad is strong and commutative:

τX,Y ∶=X × (Y + 1) dstlÐ→ (X × Y ) + (X × 1) id+!Ð→ (X × Y ) + 1

● and the following diagram commutes (i.e. it is an equational lifting monad):
X + 1 (X + 1) × (X + 1)

((X + 1) ×X) + ((X + 1) × 1)

((X + 1) ×X) + 1

∆

dstl

id+!

⟨inl,id⟩+!

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 12/26



Capturing Partiality
The Maybe Monad

● MX =X + 1
● The maybe monad is strong and commutative:

τX,Y ∶=X × (Y + 1) dstlÐ→ (X × Y ) + (X × 1) id+!Ð→ (X × Y ) + 1
● and the following diagram commutes (i.e. it is an equational lifting monad):

X + 1 (X + 1) × (X + 1)

((X + 1) ×X) + ((X + 1) × 1)

((X + 1) ×X) + 1

∆

dstl

id+!

⟨inl,id⟩+!

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 12/26



Capturing Partiality
Capretta’s Delay Monad [Cap05]

● Recall the delay codatatype:

x ∶X

now x ∶DX
===================

c ∶DX

later c ∶DX
====================

● DX = νA.X +A
● By Lambek we get DX ≅X +DX which yields:

out ∶DX →X +DX

out−1 ∶X +DX →DX = [now, later]
● D (if it exists) is a strong and commutative monad
● D is not an equational lifting monad, because besides modelling partiality, it also counts steps

(e.g. now c /= later (now c))

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 13/26



Capturing Partiality
Capretta’s Delay Monad [Cap05]

● Recall the delay codatatype:

x ∶X

now x ∶DX
===================

c ∶DX

later c ∶DX
====================

● DX = νA.X +A

● By Lambek we get DX ≅X +DX which yields:
out ∶DX →X +DX

out−1 ∶X +DX →DX = [now, later]
● D (if it exists) is a strong and commutative monad
● D is not an equational lifting monad, because besides modelling partiality, it also counts steps

(e.g. now c /= later (now c))

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 13/26



Capturing Partiality
Capretta’s Delay Monad [Cap05]

● Recall the delay codatatype:

x ∶X

now x ∶DX
===================

c ∶DX

later c ∶DX
====================

● DX = νA.X +A
● By Lambek we get DX ≅X +DX which yields:

out ∶DX →X +DX

out−1 ∶X +DX →DX = [now, later]

● D (if it exists) is a strong and commutative monad
● D is not an equational lifting monad, because besides modelling partiality, it also counts steps

(e.g. now c /= later (now c))

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 13/26



Capturing Partiality
Capretta’s Delay Monad [Cap05]

● Recall the delay codatatype:

x ∶X

now x ∶DX
===================

c ∶DX

later c ∶DX
====================

● DX = νA.X +A
● By Lambek we get DX ≅X +DX which yields:

out ∶DX →X +DX

out−1 ∶X +DX →DX = [now, later]
● D (if it exists) is a strong and commutative monad

● D is not an equational lifting monad, because besides modelling partiality, it also counts steps
(e.g. now c /= later (now c))

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 13/26



Capturing Partiality
Capretta’s Delay Monad [Cap05]

● Recall the delay codatatype:

x ∶X

now x ∶DX
===================

c ∶DX

later c ∶DX
====================

● DX = νA.X +A
● By Lambek we get DX ≅X +DX which yields:

out ∶DX →X +DX

out−1 ∶X +DX →DX = [now, later]
● D (if it exists) is a strong and commutative monad
● D is not an equational lifting monad, because besides modelling partiality, it also counts steps

(e.g. now c /= later (now c))

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 13/26



Capturing Partiality
Quotienting the Delay Monad [CUV15]

Following the work by Chapman, Uustalu and Veltri we can quotient D by the ’correct’ kind of equality:
p ↓ c q ↓ c

p ≈ q
======================

p ≈ q

later p ≈ later q
==========================

where

now c ↓ c

x ↓ c

later x ↓ c

we can model this as the coequalizer:

D(X ×N) DX D≈X
ι∗

Dfst

ρX

Problem: Defining µX ∶D2
≈X →D≈X requires countable choice.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 14/26



Capturing Partiality
Quotienting the Delay Monad [CUV15]

Following the work by Chapman, Uustalu and Veltri we can quotient D by the ’correct’ kind of equality:
p ↓ c q ↓ c

p ≈ q
======================

p ≈ q

later p ≈ later q
==========================

where

now c ↓ c

x ↓ c

later x ↓ c

we can model this as the coequalizer:

D(X ×N) DX D≈X
ι∗

Dfst

ρX

Problem: Defining µX ∶D2
≈X →D≈X requires countable choice.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 14/26



Capturing Partiality
Quotienting the Delay Monad [CUV15]

Following the work by Chapman, Uustalu and Veltri we can quotient D by the ’correct’ kind of equality:
p ↓ c q ↓ c

p ≈ q
======================

p ≈ q

later p ≈ later q
==========================

where

now c ↓ c

x ↓ c

later x ↓ c

we can model this as the coequalizer:

D(X ×N) DX D≈X
ι∗

Dfst

ρX

Problem: Defining µX ∶D2
≈X →D≈X requires countable choice.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 14/26



Capturing Partiality
Quotienting the Delay Monad [CUV15]

Following the work by Chapman, Uustalu and Veltri we can quotient D by the ’correct’ kind of equality:
p ↓ c q ↓ c

p ≈ q
======================

p ≈ q

later p ≈ later q
==========================

where

now c ↓ c

x ↓ c

later x ↓ c

we can model this as the coequalizer:

D(X ×N) DX D≈X
ι∗

Dfst

ρX

Problem: Defining µX ∶D2
≈X →D≈X requires countable choice.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 14/26



Partiality from Iteration
Elgot Algebras

The following is an adaptation of Adámek, Milius and Velebil’s complete Elgot Algebras [AMV06]:
Definition
A (unguarded) Elgot Algebra [Gon21] consists of:
● An object X
● for every f ∶ S →X + S the iteration f# ∶ S →X , satisfying:
○ Fixpoint: f# = [id, f#] ○ f
○ Uniformity: (id + h) ○ f = g ○ h⇒ f# = g# ○ h

for f ∶ S →X + S, g ∶ R → A +R, h ∶ S → R
○ Folding: ((f# + id) ○ h)# = [(id + inl) ○ f, inr ○ h]#

for f ∶ S → A + S, h ∶ R → S +R

Remark
Every Elgot algebra (A, (−)#) comes with a divergence constant � = (inr ∶ 1→ A + 1)# ∶ 1→ A

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 15/26



Partiality from Iteration
Elgot Algebras

The following is an adaptation of Adámek, Milius and Velebil’s complete Elgot Algebras [AMV06]:
Definition
A (unguarded) Elgot Algebra [Gon21] consists of:
● An object X
● for every f ∶ S →X + S the iteration f# ∶ S →X , satisfying:
○ Fixpoint: f# = [id, f#] ○ f
○ Uniformity: (id + h) ○ f = g ○ h⇒ f# = g# ○ h

for f ∶ S →X + S, g ∶ R → A +R, h ∶ S → R
○ Folding: ((f# + id) ○ h)# = [(id + inl) ○ f, inr ○ h]#

for f ∶ S → A + S, h ∶ R → S +R

Remark
Every Elgot algebra (A, (−)#) comes with a divergence constant � = (inr ∶ 1→ A + 1)# ∶ 1→ A

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 15/26



Partiality from Iteration
Elgot Monads [AMV11] [GSR14]

Definition
A monad T is an Elgot monad if it has an iteration operator (f ∶X → T (Y +X))† ∶X → TY
satisfying:
● Fixpoint: f † = [η, f †]∗ ○ f

for f ∶X → T (Y +X)
● Uniformity: f ○ h = T (id + h) ○ g⇒ f † ○ h = g†

for f ∶X → T (Y +X), g ∶ Z → T (Y +Z), h ∶ Z →X
● Naturality: g∗ ○ f † = ([(Tinl) ○ g, η ○ inr]∗ ○ f)†

for f ∶X → T (Y +X), g ∶ Y → TZ
● Codiagonal: f †† = (T [id, inr] ○ f)†

for f ∶X → T ((Y +X) +X)

Remark
Strong Elgot Monads are regarded as minimal semantic structures for interpreting effectful
while-languages.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 16/26



Partiality from Iteration
Elgot Monads [AMV11] [GSR14]

Definition
A monad T is an Elgot monad if it has an iteration operator (f ∶X → T (Y +X))† ∶X → TY
satisfying:
● Fixpoint: f † = [η, f †]∗ ○ f

for f ∶X → T (Y +X)
● Uniformity: f ○ h = T (id + h) ○ g⇒ f † ○ h = g†

for f ∶X → T (Y +X), g ∶ Z → T (Y +Z), h ∶ Z →X
● Naturality: g∗ ○ f † = ([(Tinl) ○ g, η ○ inr]∗ ○ f)†

for f ∶X → T (Y +X), g ∶ Y → TZ
● Codiagonal: f †† = (T [id, inr] ○ f)†

for f ∶X → T ((Y +X) +X)

Remark
Strong Elgot Monads are regarded as minimal semantic structures for interpreting effectful
while-languages.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 16/26



Partiality from Iteration
pre-Elgot Monads [Gon21]

Relaxing the requirements for Elgot monads we get the following weaker concept:
Definition
A monad T is called pre-Elgot if every TX extends to an Elgot algebra such that Kleisli lifting is
iteration preversing, i.e.

h∗ ○ f# = ((h∗ + id) ○ f)# for f ∶ Z → TX +Z, h ∶X → TY

Theorem
Every Elgot monad is pre-Elgot

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 17/26



Partiality from Iteration
pre-Elgot Monads [Gon21]

Relaxing the requirements for Elgot monads we get the following weaker concept:
Definition
A monad T is called pre-Elgot if every TX extends to an Elgot algebra such that Kleisli lifting is
iteration preversing, i.e.

h∗ ○ f# = ((h∗ + id) ○ f)# for f ∶ Z → TX +Z, h ∶X → TY

Theorem
Every Elgot monad is pre-Elgot

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 17/26



Partiality from iteration
The initial pre-Elgot Monad [Gon21]

● By defining KX as the free Elgot algebra over X we get a monad K (that we assume is stable)

● K is strong and commutative
● K is an equational lifting monad
● K is the initial pre-Elgot monad

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 18/26



Partiality from iteration
The initial pre-Elgot Monad [Gon21]

● By defining KX as the free Elgot algebra over X we get a monad K (that we assume is stable)
● K is strong and commutative

● K is an equational lifting monad
● K is the initial pre-Elgot monad

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 18/26



Partiality from iteration
The initial pre-Elgot Monad [Gon21]

● By defining KX as the free Elgot algebra over X we get a monad K (that we assume is stable)
● K is strong and commutative
● K is an equational lifting monad

● K is the initial pre-Elgot monad

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 18/26



Partiality from iteration
The initial pre-Elgot Monad [Gon21]

● By defining KX as the free Elgot algebra over X we get a monad K (that we assume is stable)
● K is strong and commutative
● K is an equational lifting monad
● K is the initial pre-Elgot monad

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 18/26



Partiality from iteration
Closing the gap [Gon21]

Let’s look at K under various assumptions:
● Assuming excluded middle:

○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ DX ≅X ×N + 1
○ D≈X ≅X + 1
○ X + 1 is the initial (pre-)Elgot monad (⇒K ≅ (−) + 1 ≅D≈)

● Assuming countable choice:

○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ D≈ is the initial (pre-)Elgot Monad (⇒K ≅D≈).

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 19/26



Partiality from iteration
Closing the gap [Gon21]

Let’s look at K under various assumptions:
● Assuming excluded middle:
○ The initial pre-Elgot monad and the initial Elgot monad coincide

○ DX ≅X ×N + 1
○ D≈X ≅X + 1
○ X + 1 is the initial (pre-)Elgot monad (⇒K ≅ (−) + 1 ≅D≈)

● Assuming countable choice:

○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ D≈ is the initial (pre-)Elgot Monad (⇒K ≅D≈).

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 19/26



Partiality from iteration
Closing the gap [Gon21]

Let’s look at K under various assumptions:
● Assuming excluded middle:
○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ DX ≅X ×N + 1

○ D≈X ≅X + 1
○ X + 1 is the initial (pre-)Elgot monad (⇒K ≅ (−) + 1 ≅D≈)

● Assuming countable choice:

○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ D≈ is the initial (pre-)Elgot Monad (⇒K ≅D≈).

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 19/26



Partiality from iteration
Closing the gap [Gon21]

Let’s look at K under various assumptions:
● Assuming excluded middle:
○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ DX ≅X ×N + 1
○ D≈X ≅X + 1

○ X + 1 is the initial (pre-)Elgot monad (⇒K ≅ (−) + 1 ≅D≈)
● Assuming countable choice:

○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ D≈ is the initial (pre-)Elgot Monad (⇒K ≅D≈).

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 19/26



Partiality from iteration
Closing the gap [Gon21]

Let’s look at K under various assumptions:
● Assuming excluded middle:
○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ DX ≅X ×N + 1
○ D≈X ≅X + 1
○ X + 1 is the initial (pre-)Elgot monad (⇒K ≅ (−) + 1 ≅D≈)

● Assuming countable choice:

○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ D≈ is the initial (pre-)Elgot Monad (⇒K ≅D≈).

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 19/26



Partiality from iteration
Closing the gap [Gon21]

Let’s look at K under various assumptions:
● Assuming excluded middle:
○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ DX ≅X ×N + 1
○ D≈X ≅X + 1
○ X + 1 is the initial (pre-)Elgot monad (⇒K ≅ (−) + 1 ≅D≈)

● Assuming countable choice:

○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ D≈ is the initial (pre-)Elgot Monad (⇒K ≅D≈).

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 19/26



Partiality from iteration
Closing the gap [Gon21]

Let’s look at K under various assumptions:
● Assuming excluded middle:
○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ DX ≅X ×N + 1
○ D≈X ≅X + 1
○ X + 1 is the initial (pre-)Elgot monad (⇒K ≅ (−) + 1 ≅D≈)

● Assuming countable choice:
○ The initial pre-Elgot monad and the initial Elgot monad coincide

○ D≈ is the initial (pre-)Elgot Monad (⇒K ≅D≈).

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 19/26



Partiality from iteration
Closing the gap [Gon21]

Let’s look at K under various assumptions:
● Assuming excluded middle:
○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ DX ≅X ×N + 1
○ D≈X ≅X + 1
○ X + 1 is the initial (pre-)Elgot monad (⇒K ≅ (−) + 1 ≅D≈)

● Assuming countable choice:
○ The initial pre-Elgot monad and the initial Elgot monad coincide
○ D≈ is the initial (pre-)Elgot Monad (⇒K ≅D≈).

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 19/26



1. Partiality in Type Theory

2. Categorical Notions of Partiality

3. Implementation in Agda



Goals

● Formalize the delay monad categorically and show that it is..

○ strong
○ commutative

● Formalize K and show that it is..

○ strong
○ commutative
○ an equational lifting monad
○ the initial pre-Elgot monad

● Take the category of setoids and show that K instantiates to D≈

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 21/26



Goals

● Formalize the delay monad categorically and show that it is..
○ strong

○ commutative
● Formalize K and show that it is..

○ strong
○ commutative
○ an equational lifting monad
○ the initial pre-Elgot monad

● Take the category of setoids and show that K instantiates to D≈

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 21/26



Goals

● Formalize the delay monad categorically and show that it is..
○ strong
○ commutative

● Formalize K and show that it is..

○ strong
○ commutative
○ an equational lifting monad
○ the initial pre-Elgot monad

● Take the category of setoids and show that K instantiates to D≈

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 21/26



Goals

● Formalize the delay monad categorically and show that it is..
○ strong
○ commutative

● Formalize K and show that it is..

○ strong
○ commutative
○ an equational lifting monad
○ the initial pre-Elgot monad

● Take the category of setoids and show that K instantiates to D≈

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 21/26



Goals

● Formalize the delay monad categorically and show that it is..
○ strong
○ commutative

● Formalize K and show that it is..
○ strong

○ commutative
○ an equational lifting monad
○ the initial pre-Elgot monad

● Take the category of setoids and show that K instantiates to D≈

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 21/26



Goals

● Formalize the delay monad categorically and show that it is..
○ strong
○ commutative

● Formalize K and show that it is..
○ strong
○ commutative

○ an equational lifting monad
○ the initial pre-Elgot monad

● Take the category of setoids and show that K instantiates to D≈

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 21/26



Goals

● Formalize the delay monad categorically and show that it is..
○ strong
○ commutative

● Formalize K and show that it is..
○ strong
○ commutative
○ an equational lifting monad

○ the initial pre-Elgot monad
● Take the category of setoids and show that K instantiates to D≈

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 21/26



Goals

● Formalize the delay monad categorically and show that it is..
○ strong
○ commutative

● Formalize K and show that it is..
○ strong
○ commutative
○ an equational lifting monad
○ the initial pre-Elgot monad

● Take the category of setoids and show that K instantiates to D≈

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 21/26



Goals

● Formalize the delay monad categorically and show that it is..
○ strong
○ commutative

● Formalize K and show that it is..
○ strong
○ commutative
○ an equational lifting monad
○ the initial pre-Elgot monad

● Take the category of setoids and show that K instantiates to D≈

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 21/26



Bibliography I

[AMV06] J. Adámek, S. Milius, and J. Velebil. “Elgot Algebras”. In: CoRR abs/cs/0609040 (2006). url:
http://arxiv.org/abs/cs/0609040.

[AMV11] J. Adámek, S. Milius, and J. Velebil. “Elgot theories: a new perspective on the equational
properties of iteration”. In: Mathematical Structures in Computer Science 21.2 (2011),
pp. 417–480. doi: 10.1017/S0960129510000496.

[BFS03] A. Bucalo, C. Führmann, and A. Simpson. “An Equational Notion of Lifting Monad”. In: Theor.
Comput. Sci. 294.1–2 (Feb. 2003), pp. 31–60. doi:
10.1016/S0304-3975(01)00243-2. url:
https://doi.org/10.1016/S0304-3975(01)00243-2.

[Cap05] V. Capretta. “General Recursion via Coinductive Types”. In: CoRR abs/cs/0505037 (2005).
url: http://arxiv.org/abs/cs/0505037.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 22/26

http://arxiv.org/abs/cs/0609040
https://doi.org/10.1017/S0960129510000496
https://doi.org/10.1016/S0304-3975(01)00243-2
https://doi.org/10.1016/S0304-3975(01)00243-2
http://arxiv.org/abs/cs/0505037


Bibliography II

[CL02] J. R. B. Cockett and S. Lack. “Restriction Categories I: Categories of Partial Maps”. In: Theor.
Comput. Sci. 270.1–2 (Jan. 2002), pp. 223–259. doi:
10.1016/S0304-3975(00)00382-0. url:
https://doi.org/10.1016/S0304-3975(00)00382-0.

[CUV15] J. Chapman, T. Uustalu, and N. Veltri. “Quotienting the Delay Monad by Weak Bisimilarity”.
In: Proceedings of the 12th International Colloquium on Theoretical Aspects of Computing -
ICTAC 2015 - Volume 9399. Berlin, Heidelberg: Springer-Verlag, 2015, pp. 110–125. doi:
10.1007/978-3-319-25150-9_8. url:
https://doi.org/10.1007/978-3-319-25150-9_8.

[Gon21] S. Goncharov. “Uniform Elgot Iteration in Foundations”. In: CoRR abs/2102.11828 (2021).
url: https://arxiv.org/abs/2102.11828.

[GSR14] S. Goncharov, L. Schröder, and C. Rauch. “(Co-)Algebraic Foundations for Effect Handling and
Iteration”. In: CoRR abs/1405.0854 (2014). url:
http://arxiv.org/abs/1405.0854.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 23/26

https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1007/978-3-319-25150-9_8
https://doi.org/10.1007/978-3-319-25150-9_8
https://arxiv.org/abs/2102.11828
http://arxiv.org/abs/1405.0854


Bibliography III

[Mog91] E. Moggi. “Notions of Computation and Monads”. In: Inf. Comput. 93.1 (July 1991),
pp. 55–92. doi: 10.1016/0890-5401(91)90052-4. url:
https://doi.org/10.1016/0890-5401(91)90052-4.

L. Vatthauer Implementing Categorical Notions of Partiality and Delay in Agda April 6, 2024 24/26

https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4


1. Partiality in Type Theory

2. Categorical Notions of Partiality

3. Implementation in Agda



App: Category Theory in Agda
Setoid-enriched Categories

1 record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where
2 field
3 Obj : Set o
4 _⇒_ : Obj → Obj → Set ℓ
5 _≈_ : ∀ {A B} → (A ⇒ B) → (A ⇒ B) → Set e
6

7 id : ∀ {A} → (A ⇒ A)
8 _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
9

10 field
11 assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D}
12 → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f)
13 identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f
14 identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f
15 equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B})
16 ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i


	Partiality in Type Theory
	Categorical Notions of Partiality
	Implementation in Agda
	Appendix

