
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Chair for Computer Science 8
Theoretical Computer Science

Implementing Categorical Notions of
Partiality and Delay in Agda

Bachelor Thesis in Computer Science

Leon Vatthauer

Advisor:

Sergey Goncharov

Erlangen, March 18, 2024

Disclaimer

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,
sind als solche gekennzeichnet.

Erlangen, 18. März 2024
Leon Vatthauer

3

Abstract

Moggi famously showed how to use category theory (specifically monads) to model the semantics
of effectful computations.

In this thesis we will examine how to model possibly non-terminating computations, which
requires a monad supporting some form of partiality. For that we will consider categorical
properties that a monad that models partiality should satisfy and then compare concrete monads
in view of these properties.

Capretta’s delay monad is a typical example for a partiality monad, but it comes with a too
intensional notion of built-in equality. Since fixing this seems to be impossible without additional
axioms, we will examine a novel approach of defining a partiality monad that works in a general
setting by making use of previous research on iteration theories and drawing on the inherent
connection between partiality and iteration.

Finally, we will show that in the category of setoids this partiality monad instantiates to a
quotient of the delay monad, yielding a concrete description of the partiality monad in this
category.

5

Contents

1 Introduction 9

2 Preliminaries 11
2.1 Distributive and Cartesian Closed Categories . 11
2.2 F-Coalgebras . 14
2.3 Monads . 15
2.4 Strong and Commutative Monads . 17
2.5 Free Objects . 18

3 Implementing Category Theory in Agda 21
3.1 The Underlying Type Theory . 21
3.2 Setoid Enriched Categories . 23
3.3 The formalization . 24

4 Partiality Monads 25
4.1 Properties of Partiality Monads . 25
4.2 The Maybe Monad . 26
4.3 The Delay Monad . 27

5 Iteration Algebras and Monads 35
5.1 Elgot Algebras . 35
5.2 The Initial (Strong) Pre-Elgot Monad . 43

6 A Case Study on Setoids 57
6.1 Setoids in Type Theory . 57
6.2 Quotienting the Delay Monad . 59

7 Conclusion 69

Bibliography 71

7

1 Introduction

Haskell is considered a purely functional programming language, though the notion of purity
referenced is an informal one, not to be confused with the standard notion of pure function,
which describes functions that do not have any side effects. Indeed, as a programming language
that offers general recursion, Haskell does at least have to include partiality as a side effect. To
illustrate this, consider the following standard list reversal function

reverse :: [a] -> [a]
reverse l = revAcc l []
where
revAcc [] a = a
revAcc (x:xs) a = revAcc xs (x:a)

and regard the following definition of an infinite list

ones :: [Int]
ones = 1 : ones

Of course evaluation of the term reverse ones will never terminate, hence it is clear that
reverse is a partial function. Thus, in order to reason about Haskell programs, or generally
programs of any programming language offering general recursion, one needs to be able to model
partiality as a side effect.

Generally for modelling programming languages there are three prevailing methods. First is
the operational approach studied by Plotkin [3], where partial functions are used that map
programs to their resulting values, secondly there is the denotational approach by Scott [6],
where programming languages are interpreted mathematically, by functions that capture the
“meaning” of programs. For this thesis we will consider the third, categorical approach that
has been introduced by Moggi [5]. In the categorical approach programs are interpreted in
categories, where objects represent types and monads are used to model side effects. The goal
for this thesis is thus to study monads which are suitable for modeling partiality.

We use the dependently typed programming language Agda [24] as a safe and type-checked
environment for reasoning in category theory, therefore in Chapter 3 we start out by quickly
showcasing the Agda programming language as well as the category theory library that we will
be working with. In Chapter 4 we will then consider various properties that partiality monads
should satisfy and inspect Capretta’s delay monad [12], which has been introduced in type
theory as a coinductive data type and then studied as a monad in the category of setoids. We
will examine the delay monad in a general categorical setting, where we prove strength and
commutativity of this monad. However, it is not a minimal partiality monad, i.e. one that
captures no other side effect besides some form of non-termination, since the monad comes with
a too intensional notion of equality. In order to achieve minimality one can consider the quotient
of the delay monad where a less intensional notion of equality is used. However, it is believed
to be impossible to show that the monadic structure is preserved under such a quotient. In [16]
the axiom of countable choice has been identified as a sufficient assumption under which the
monad structure is preserved.

9

In order to define a partiality monad using no such assumptions, we will draw on the inherent
connection between iteration and recursion in Chapter 5 to define a suitable partiality monad,
by relating to previous research on iteration theories. This monad has first been introduced and
studied in [19] under weaker assumptions than we use, concretely by weakening the notion of
Elgot algebra to the notion of uniform iteration algebra, which uses fewer axioms. During mech-
anization of the results concerning this monad it turned out that under the weaker assumptions,
desirable properties like commutativity seem not to be provable, resulting in our adaptation of
this monad. Lastly, in Chapter 6 we will study this partiality monad in the category of setoids,
where notably the axiom of countable choice is provable. In this category, the partiality monad
turns out to be equivalent to a certain quotient of the delay monad.

10

2 Preliminaries

We assume familiarity with basic categorical notions, in particular: categories, functors, functor
algebras and natural transformations, as well as special objects like (co)products, terminal and
initial objects and special classes of morphisms like isomorphisms (isos), epimorphisms (epis)
and monomorphisms (monos). In this chapter we will introduce notation that will be used
throughout the thesis and also introduce some notions that are crucial to this thesis in more
detail. We write |C | for the objects of a category C , 𝑖𝑑𝑋 for the identity morphism on 𝑋,
(−) ∘ (−) for the composition of morphisms and C (𝑋, 𝑌) for the set of morphisms between 𝑋
and 𝑌 . We will also sometimes omit indices of the identity and of natural transformations in
favor of readability.

2.1 Distributive and Cartesian Closed Categories

Let us first introduce notation for binary (co)products by giving their usual diagrams:

𝐴 𝐴 × 𝐵 𝐵 𝐴 𝐴 + 𝐵 𝐵

𝐶 𝐶

𝜋1 𝜋2

𝑔𝑓
∃!⟨𝑓,𝑔⟩

𝑖1 𝑖2

𝑓 𝑔∃![𝑓,𝑔]

We will furthermore overload this notation and write 𝑓×𝑔 ∶= ⟨𝑓∘𝜋1, 𝑔∘𝜋2⟩ and 𝑓+𝑔 ∶= [𝑖1∘𝑓, 𝑖2∘𝑔]
on morphisms. To avoid parentheses we will use the convention that products bind stronger
than coproducts.

We write 1 for the terminal object together with the unique morphism ! ∶ 𝐴 → 1 and 0 for the
initial object with the unique morphism ¡ ∶ 𝐴 → 0.
Categories with finite products (i.e. binary products and a terminal object) are also called
Cartesian and categories with finite coproducts (i.e. binary coproducts and an initial object)
are called coCartesian.

Definition 2.1 (Distributive Category). A Cartesian and coCartesian category C is called
distributive if the canonical (left) distributivity morphism 𝑑𝑠𝑡𝑙−1 is an isomorphism:

𝑋 × 𝑌 + 𝑋 × 𝑍 𝑋 × (𝑌 + 𝑍)

𝑑𝑠𝑡𝑙−1∶=[𝑖𝑑×𝑖1,𝑖𝑑×𝑖2]

𝑑𝑠𝑡𝑙

Remark 2.2. Definition 2.1 can equivalently be expressed by requiring that the canonical right

11

distributivity morphism is an iso, giving these inverse morphisms:

𝑌 × 𝑋 + 𝑍 × 𝑋 (𝑌 + 𝑍) × 𝑋

𝑑𝑠𝑡𝑟−1∶=[𝑖1×𝑖𝑑,𝑖2×𝑖𝑑]

𝑑𝑠𝑡𝑟

These two can be derived from each other by taking either

𝑑𝑠𝑡𝑟 ∶= (𝑠𝑤𝑎𝑝 + 𝑠𝑤𝑎𝑝) ∘ 𝑑𝑠𝑡𝑙 ∘ 𝑠𝑤𝑎𝑝

or
𝑑𝑠𝑡𝑙 ∶= (𝑠𝑤𝑎𝑝 + 𝑠𝑤𝑎𝑝) ∘ 𝑑𝑠𝑡𝑟 ∘ 𝑠𝑤𝑎𝑝

where 𝑠𝑤𝑎𝑝 ∶= ⟨𝜋2, 𝜋1⟩ ∶ 𝐴 × 𝐵 → 𝐵 × 𝐴.

Proposition 2.3. The distribution morphisms can be viewed as natural transformations i.e.
they satisfy the following diagrams:

𝑋 × (𝑌 + 𝑍) 𝐴 × (𝐵 + 𝐶) (𝑌 + 𝑍) × 𝑋 (𝐵 + 𝐶) × 𝐴

𝑋 × 𝑌 + 𝑋 × 𝑍 𝐴 × 𝐵 + 𝐴 × 𝐶 𝑌 × 𝑋 + 𝑍 × 𝑋 𝐵 × 𝐴 + 𝐶 × 𝐴

𝑓×(𝑔+ℎ)

𝑓×𝑔+𝑓×ℎ
𝑑𝑠𝑡𝑙 𝑑𝑠𝑡𝑙

(𝑔+ℎ)×𝑓

𝑑𝑠𝑡𝑟 𝑑𝑠𝑡𝑟
𝑔×𝑓+ℎ×𝑓

Proof. We will prove naturality of 𝑑𝑠𝑡𝑙, naturality for 𝑑𝑠𝑡𝑟 is symmetric. We use the fact that
𝑑𝑠𝑡𝑙−1 is an iso and therefore also an epi.

𝑑𝑠𝑡𝑙 ∘ (𝑓 × (𝑔 + ℎ)) ∘ 𝑑𝑠𝑡𝑙−1

= 𝑑𝑠𝑡𝑙 ∘ (𝑓 × (𝑔 + ℎ)) ∘ [𝑖𝑑 × 𝑖1, 𝑖𝑑 × 𝑖2]
= 𝑑𝑠𝑡𝑙 ∘ [𝑓 × ((𝑔 + ℎ) ∘ 𝑖1), 𝑓 × ((𝑔 + ℎ) ∘ 𝑖2)]
= 𝑑𝑠𝑡𝑙 ∘ [𝑓 × (𝑖1 ∘ 𝑔), 𝑓 × (𝑖2 ∘ ℎ)]
= 𝑑𝑠𝑡𝑙 ∘ [𝑖𝑑 × 𝑖1, 𝑖𝑑 × 𝑖2] ∘ (𝑓 × 𝑔 + 𝑓 × ℎ)
= 𝑑𝑠𝑡𝑙 ∘ 𝑑𝑠𝑡𝑙−1 ∘ (𝑓 × 𝑔 + 𝑓 × ℎ)
= (𝑓 × 𝑔 + 𝑓 × ℎ)
= (𝑓 × 𝑔 + 𝑓 × ℎ) ∘ 𝑑𝑠𝑡𝑙 ∘ 𝑑𝑠𝑡𝑙−1

Proposition 2.4. The distribution morphisms satisfy the following properties:

1. 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑖1) = 𝑖1

2. 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑖2) = 𝑖2

3. [𝜋1, 𝜋1] ∘ 𝑑𝑠𝑡𝑙 = 𝜋1

4. (𝜋2 + 𝜋2) ∘ 𝑑𝑠𝑡𝑙 = 𝜋2

5. 𝑑𝑠𝑡𝑙 ∘ 𝑠𝑤𝑎𝑝 = (𝑠𝑤𝑎𝑝 + 𝑠𝑤𝑎𝑝) ∘ 𝑑𝑠𝑡𝑟
6. 𝑑𝑠𝑡𝑟 ∘ (𝑖1 × 𝑖𝑑) = 𝑖1

7. 𝑑𝑠𝑡𝑟 ∘ (𝑖2 × 𝑖𝑑) = 𝑖2

8. (𝜋1 + 𝜋1) ∘ 𝑑𝑠𝑡𝑟 = 𝜋1

9. [𝜋2, 𝜋2] ∘ 𝑑𝑠𝑡𝑟 = 𝜋2

12

10. 𝑑𝑠𝑡𝑟 ∘ 𝑠𝑤𝑎𝑝 = (𝑠𝑤𝑎𝑝 + 𝑠𝑤𝑎𝑝) ∘ 𝑑𝑠𝑡𝑙

Proof. Let us verify the five properties concerning 𝑑𝑠𝑡𝑙, the ones concerning 𝑑𝑠𝑡𝑟 follow sym-
metrically:

1.

𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑖1)
= 𝑑𝑠𝑡𝑙 ∘ [𝑖𝑑 × 𝑖1, 𝑖𝑑 × 𝑖2] ∘ 𝑖1
= 𝑑𝑠𝑡𝑙 ∘ 𝑑𝑠𝑡𝑙−1 ∘ 𝑖1
= 𝑖1

2.

𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑖2)
= 𝑑𝑠𝑡𝑙 ∘ [𝑖𝑑 × 𝑖1, 𝑖𝑑 × 𝑖2] ∘ 𝑖2
= 𝑑𝑠𝑡𝑙 ∘ 𝑑𝑠𝑡𝑙−1 ∘ 𝑖2
= 𝑖2

3.

𝜋1
= 𝜋1 ∘ 𝑑𝑠𝑡𝑙−1 ∘ 𝑑𝑠𝑡𝑙
= [𝜋1 ∘ (𝑖𝑑 × 𝑖1), 𝜋1 ∘ (𝑖𝑑 × 𝑖2)] ∘ 𝑑𝑠𝑡𝑙
= [𝜋1, 𝜋1] ∘ 𝑑𝑠𝑡𝑙

4.

𝜋2
= 𝜋2 ∘ 𝑑𝑠𝑡𝑙−1 ∘ 𝑑𝑠𝑡𝑙
= [𝜋2 ∘ (𝑖𝑑 × 𝑖1), 𝜋2 ∘ (𝑖𝑑 × 𝑖2)] ∘ 𝑑𝑠𝑡𝑙
= (𝜋2 + 𝜋2) ∘ 𝑑𝑠𝑡𝑙

5.

𝑑𝑠𝑡𝑙 ∘ 𝑠𝑤𝑎𝑝
= 𝑑𝑠𝑡𝑙 ∘ 𝑠𝑤𝑎𝑝 ∘ 𝑑𝑠𝑡𝑟−1 ∘ 𝑑𝑠𝑡𝑟
= 𝑑𝑠𝑡𝑙 ∘ [𝑠𝑤𝑎𝑝 ∘ (𝑖1 × 𝑖𝑑), 𝑠𝑤𝑎𝑝 ∘ (𝑖2 × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑟
= 𝑑𝑠𝑡𝑙 ∘ [(𝑖𝑑 × 𝑖1) ∘ 𝑠𝑤𝑎𝑝, (𝑖𝑑 × 𝑖2) ∘ 𝑠𝑤𝑎𝑝] ∘ 𝑑𝑠𝑡𝑟
= 𝑑𝑠𝑡𝑙 ∘ [𝑖𝑑 × 𝑖1, 𝑖𝑑 × 𝑖2] ∘ (𝑠𝑤𝑎𝑝 + 𝑠𝑤𝑎𝑝) ∘ 𝑑𝑠𝑡𝑟
= 𝑑𝑠𝑡𝑙 ∘ 𝑑𝑠𝑡𝑙−1 ∘ (𝑠𝑤𝑎𝑝 + 𝑠𝑤𝑎𝑝) ∘ 𝑑𝑠𝑡𝑟
= (𝑠𝑤𝑎𝑝 + 𝑠𝑤𝑎𝑝) ∘ 𝑑𝑠𝑡𝑟

Definition 2.5 (Exponential Object). Let C be a Cartesian category and 𝑋, 𝑌 ∈ |C |. An
object 𝑋𝑌 is called an exponential object (of 𝑋 and 𝑌) if there exists an evaluation morphism
𝑒𝑣𝑎𝑙 ∶ 𝑋𝑌 × 𝑌 → 𝑋 and for any 𝑓 ∶ 𝑋 × 𝑌 → 𝑍 there exists a morphism 𝑐𝑢𝑟𝑟𝑦 𝑓 ∶ 𝑋 → 𝑍𝑌

13

that is unique with respect to the following diagram:

𝑍 × 𝑌 𝑋𝑌 × 𝑌

𝑋

𝑒𝑣𝑎𝑙

𝑐𝑢𝑟𝑟𝑦 𝑓×𝑖𝑑

𝑓

Proposition 2.6. Every exponential object 𝑋𝑌 satisfies the following properties:

1. The mapping 𝑐𝑢𝑟𝑟𝑦 ∶ C (𝑋 × 𝑌 , 𝑍) → C (𝑋 → 𝑍𝑌) is injective,

2. 𝑐𝑢𝑟𝑟𝑦(𝑒𝑣𝑎𝑙 ∘ (𝑓 × 𝑖𝑑)) = 𝑓 for any 𝑓 ∶ 𝑋 × 𝑌 → 𝑍,

3. 𝑐𝑢𝑟𝑟𝑦 𝑓 ∘ 𝑔 = 𝑐𝑢𝑟𝑟𝑦(𝑓 ∘ (𝑔 × 𝑖𝑑)) for any 𝑓 ∶ 𝑋 × 𝑌 → 𝑍, 𝑔 ∶ 𝐴 → 𝑋.

Proof. 1. Let 𝑓, 𝑔 ∶ 𝑋 × 𝑌 → 𝑍 and 𝑐𝑢𝑟𝑟𝑦 𝑓 = 𝑐𝑢𝑟𝑟𝑦 𝑔, then indeed

𝑓 = 𝑒𝑣𝑎𝑙 ∘ (𝑐𝑢𝑟𝑟𝑦 𝑓 × 𝑖𝑑) = 𝑒𝑣𝑎𝑙 ∘ (𝑐𝑢𝑟𝑟𝑦 𝑔 × 𝑖𝑑) = 𝑔.

2. 𝑐𝑢𝑟𝑟𝑦(𝑒𝑣𝑎𝑙 ∘ (𝑓 × 𝑖𝑑)) = 𝑓 follows instantly by uniqueness of 𝑐𝑢𝑟𝑟𝑦(𝑒𝑣𝑎𝑙 ∘ (𝑓 × 𝑖𝑑)).
3. Note that 𝑒𝑣𝑎𝑙 ∘ (𝑐𝑢𝑟𝑟𝑦 𝑓 ∘ 𝑔 × 𝑖𝑑) = 𝑒𝑣𝑎𝑙 ∘ (𝑐𝑢𝑟𝑟𝑦 𝑓 × 𝑖𝑑) ∘ (𝑔 × 𝑖𝑑) = 𝑓 ∘ (𝑔 × 𝑖𝑑), thus we

are done by uniqueness of 𝑐𝑢𝑟𝑟𝑦(𝑓 ∘ (𝑔 × 𝑖𝑑)).

A Cartesian closed category is a Cartesian category C that also has an exponential object 𝑋𝑌

for any 𝑋, 𝑌 ∈ |C |. The internal logic of Cartesian closed categories is the simply typed 𝜆-
calculus, which makes them a suitable environment for interpreting programming languages.
For the rest of this thesis we will work in an ambient distributive category C , that however
need not be Cartesian closed as to be more general.

2.2 F-Coalgebras

Let 𝐹 ∶ C → C be an endofunctor. Recall that F-algebras are tuples (𝑋, 𝛼 ∶ 𝐹𝑋 → 𝑋)
consisting of an object of C and a morphism out of the functor. Initial F-algebras have been
studied extensively as a means of modeling inductive data types together with induction and
recursion principles [7]. For this thesis we will be more interested in the dual concept namely
terminal coalgebras; let us formally introduce them now.

Definition 2.7 (F-Coalgebra). A tuple (𝑋 ∈ |C |, 𝛼 ∶ 𝑋 → 𝐹𝑋) is called an F-coalgebra
(hereafter referred to as just coalgebra).

Definition 2.8 (Coalgebra Morphisms). Let (𝑋, 𝛼 ∶ 𝑋 → 𝐹𝑋) and (𝑌 , 𝛽 ∶ 𝑌 → 𝐹𝑌) be two
coalgebras. A morphism between these coalgebras is a morphism 𝑓 ∶ 𝑋 → 𝑌 such that the
following diagram commutes:

𝑋 𝐹𝑋

𝑌 𝐹𝑌𝛽

𝛼

𝑓 𝐹𝑓

Coalgebras on a given functor together with their morphisms form a category that we call
Coalgs(𝐹).

14

Proposition 2.9. Coalgs(𝐹) is a category.

Proof. Let (𝑋, 𝛼 ∶ 𝑋 → 𝐹𝑋) be a coalgebra. The identity morphism on (𝑋, 𝛼) is the identity
morphism of C that trivially satisfies 𝛼 ∘ 𝑖𝑑 = 𝐹𝑖𝑑 ∘ 𝛼.
Let (𝑋, 𝛼 ∶ 𝑋 → 𝐹𝑋), (𝑌 , 𝛽 ∶ 𝑌 → 𝐹𝑌) and (𝑍, 𝛾 ∶ 𝑍 → 𝐹𝑍) be coalgebras. Composition of
𝑓 ∶ (𝑋, 𝛼) → (𝑌 , 𝛽) and 𝑔 ∶ (𝑌 , 𝛽) → (𝑍, 𝛾) is composition of the underlying morphisms in C
where:

𝛾 ∘ 𝑔 ∘ 𝑓
= 𝐹𝑔 ∘ 𝛽 ∘ 𝑓
= 𝐹𝑔 ∘ 𝐹𝑓 ∘ 𝛼
= 𝐹(𝑔 ∘ 𝑓) ∘ 𝛼

The terminal object of Coalgs(𝐹) is sometimes called final coalgebra, we will however call it
the terminal coalgebra for consistency with initial F-algebras. Similarly to initial F-algebras,
the final coalgebra can be used for modeling the semantics of coinductive data types where
terminality of the coalgebra yields corecursion as a definitional principle and coinduction as a
proof principle. Let us make the universal property of terminal coalgebras concrete.

Definition 2.10 (Terminal Coalgebra). A coalgebra (𝑇 , 𝑡 ∶ 𝑇 → 𝐹𝑇) is called a terminal
coalgebra if for any other coalgebra (𝑋, 𝛼 ∶ 𝑋 → 𝐹𝑋) there exists a unique morphism 〖𝛼〗 ∶
𝑋 → 𝑇 satisfying:

𝑋 𝐹𝑋

𝑇 𝐹𝑇

𝛼

𝑡

〖𝛼〗 𝐹〖𝛼〗

We use the common notation 𝜈𝐹 to denote the terminal coalgebra for 𝐹 (if it exists).

We will discuss the concrete form that induction and coinduction take in a type theory in
Chapter 3. Let us now reiterate a famous Lemma concerning terminal F-coalgebras.

Lemma 2.11 (Lambek’s Lemma [1]). Let (𝑇 , 𝑡 ∶ 𝑇 → 𝐹𝑇) be a terminal coalgebra. Then 𝑡 is
an isomorphism.

2.3 Monads

Monads are widely known in functional programming as a means for modeling effects in “pure”
languages and are also central to this thesis. Let us recall the basic definitions[2][5].

Definition 2.12 (Monad). A monad T on a category C is a triple (𝑇 , 𝜂, 𝜇), where 𝑇 ∶ C → C
is an endofunctor and 𝜂 ∶ 𝐼𝑑 → 𝑇 , 𝜇 ∶ 𝑇 𝑇 → 𝑇 are natural transformations, satisfying the
following laws:

𝜇𝑋 ∘ 𝜇𝑇 𝑋 = 𝜇𝑋 ∘ 𝑇 𝜇𝑋 (M1)
𝜇𝑋 ∘ 𝜂𝑇 𝑋 = 𝑖𝑑𝑇 𝑋 (M2)
𝜇𝑋 ∘ 𝑇 𝜂𝑋 = 𝑖𝑑𝑇 𝑋 (M3)

15

These laws are expressed by the following diagrams:

𝑇 𝑇 𝑇 𝑋 𝑇 𝑇 𝑋 𝑇 𝑋 𝑇 𝑇 𝑋 𝑇 𝑋

𝑇 𝑇 𝑋 𝑇 𝑋 𝑇 𝑋

𝜇

𝑇 𝜇 𝜇 𝜇

𝜂
𝑇

𝑖𝑑
𝑖𝑑

𝜇

Definition 2.13 (Monad Morphism). A morphism between monads (𝑆 ∶ C → C , 𝜂𝑆, 𝜇𝑆) and
(𝑇 ∶ C → C , 𝜂𝑇 , 𝜇𝑇) is a natural transformation 𝛼 ∶ 𝑆 → 𝑇 between the underlying functors
such that the following diagrams commute.

𝑋 𝑆𝑋 𝑆𝑆𝑋 𝑆𝑇 𝑋 𝑇 𝑇 𝑋

𝑇 𝑋 𝑆𝑋 𝑇 𝑋

𝜂𝑆

𝛼
𝜂𝑇

𝑆𝛼

𝜇𝑆

𝛼

𝛼

𝜇𝑇

This yields a category of monads on a given category C that we call Monads(C).

Proposition 2.14. Monads(C) is a category.

Proof. The identity morphism of Monads(C) is the identity natural transformation 𝐼𝑑 ∶ 𝐹 → 𝐹 ,
which trivially respects the monad unit and multiplication. Composition of monad morphisms is
composition of the underlying natural transformation, the diagrams then also follow easily.

Monads can also be specified in a second equivalent way that is better suited to describe com-
putation.

Definition 2.15 (Kleisli Triple). A Kleisli triple on a category C is a triple (𝐹 , 𝜂, (−)∗), where
𝐹 ∶ |𝐶| → |𝐶| is a mapping on objects, (𝜂𝑋 ∶ 𝑋 → 𝐹𝑋)𝑋∈|𝐶| is a family of morphisms and for
every morphism 𝑓 ∶ 𝑋 → 𝐹𝑌 there exists a morphism 𝑓∗ ∶ 𝐹𝑋 → 𝐹𝑌 called the Kleisli lifting,
where the following laws hold:

𝜂∗
𝑋 = 𝑖𝑑𝐹𝑋 (K1)

𝑓∗ ∘ 𝜂𝑋 = 𝑓 for any 𝑓 ∶ 𝑋 → 𝐹𝑌 (K2)
𝑓∗ ∘ 𝑔∗ = (𝑓∗ ∘ 𝑔)∗ for any 𝑓 ∶ 𝑌 → 𝐹𝑍, 𝑔 ∶ 𝑋 → 𝐹𝑌 (K3)

Let 𝑓 ∶ 𝑋 → 𝑇 𝑌 , 𝑔 ∶ 𝑌 → 𝑇 𝑍 be two programs, where 𝑇 is a Kleisli triple. These programs
can be composed by taking: 𝑓∗ ∘ 𝑔 ∶ 𝑋 → 𝑇 𝑍, which is called Kleisli composition. Haskell’s
do-notation is a useful tool for writing Kleisli composition in a legible way. We will sometimes
express (𝑓∗ ∘ 𝑔)𝑥 equivalently as

do y <- g x
f y

This yields the category of programs for a Kleisli triple that is called the Kleisli category.

Definition 2.16 (Kleisli Category). Given a monad 𝑇 on a category C , the Kleisli category
C 𝑇 is defined as:

• |C 𝑇 | = |𝐶|

16

• C 𝑇 (𝑋, 𝑌) = C (𝑋, 𝑇 𝑌)
• Composition of programs is Kleisli composition.

• The identity morphisms are the unit morphisms of 𝑇 , 𝑖𝑑𝑋 = 𝜂𝑋 ∶ 𝑋 → 𝑇 𝑋
The laws of categories then follow from the Kleisli triple laws.

Proposition 2.17 ([4]). The notions of Kleisli triple and monad are equivalent.

Proof. The crux of this proof is defining the triples, the proofs of the corresponding laws (func-
toriality, naturality, monad and Kleisli triple laws) are left out.

“⇒”: Given a Kleisli triple (𝐹 , 𝜂, (−)∗), we obtain a monad (𝐹 , 𝜂, 𝜇) where 𝐹 is the object
mapping of the Kleisli triple together with the functor action 𝐹(𝑓 ∶ 𝑋 → 𝑌) = (𝜂𝑌 ∘ 𝑓)∗, 𝜂 is
the morphism family of the Kleisli triple where naturality is easy to show and 𝜇 is a natural
transformation defined as 𝜇𝑋 = 𝑖𝑑∗

𝐹𝑋

“⇐”:
Given a monad (𝐹 , 𝜂, 𝜇), we obtain a Kleisli triple (𝐹 , 𝜂, (−)∗) by restricting the functor 𝐹 on
objects, taking the underlying mapping of 𝜂 and defining 𝑓∗ = 𝜇𝑌 ∘𝐹𝑓 for any 𝑓 ∶ 𝑋 → 𝐹𝑌 .

For the rest of this thesis we will use both equivalent notions interchangeably to make definitions
easier.

2.4 Strong and Commutative Monads

Consider the following program in do-notation

do y <- g x
f (x , y)

where 𝑔 ∶ 𝑋 → 𝑇 𝑌 and 𝑓 ∶ 𝑋 × 𝑌 → 𝑇 𝑍 are programs and T is a monad. Kleisli composition
does not suffice for interpreting this program, we will get stuck at

𝑋
⟨𝑖𝑑,𝑔⟩
⟶ 𝑋 × 𝑇 𝑌 ?⟶ 𝑇 (𝑋 × 𝑌)

𝑓∗

⟶ 𝑇 𝑍.

Instead, one needs the following stronger notion of monad.

Definition 2.18 (Strong Monad). A monad (𝑇 , 𝜂, 𝜇) on a Cartesian category C is called strong
if there exists a natural transformation 𝜏𝑋,𝑌 ∶ 𝑋 × 𝑇 𝑌 → 𝑇 (𝑋 × 𝑌) that satisfies the following
conditions:

𝑇 𝜋2 ∘ 𝜏1,𝑋 = 𝜋2 (S1)
𝜏𝑋,𝑌 ∘ (𝑖𝑑𝑋 × 𝜂𝑌) = 𝜂𝑋×𝑌 (S2)
𝜏𝑋,𝑌 ∘ (𝑖𝑑𝑋 × 𝜇𝑌) = 𝜇𝑋×𝑌 ∘ 𝑇 𝜏𝑋,𝑌 ∘ 𝜏𝑋,𝑇 𝑌 (S3)
𝑀𝛼𝑋,𝑌 ,𝑍 ∘ 𝜏𝑋×𝑌 ,𝑍 = 𝜏𝑋,𝑌 ×𝑍 ∘ (𝑖𝑑𝑋 × 𝜏𝑌 ,𝑍) ∘ 𝛼𝑋,𝑌 ,𝑇 𝑍 (S4)

where 𝛼𝑋,𝑌 ,𝑍 = ⟨⟨𝜋1, 𝜋1 ∘𝜋2⟩, 𝜋2 ∘𝜋2⟩ ∶ 𝑋 ×(𝑌 ×𝑍) → (𝑋 ×𝑌)×𝑍 is the associativity morphism
on products.

17

Definition 2.19 (Strong Monad Morphism). A morphism between two strong monads (𝑆 ∶
C → C , 𝜂𝑆, 𝜇𝑆, 𝜏𝑆) and (𝑇 ∶ C → C , 𝜂𝑇 , 𝜇𝑇 , 𝜏𝑇) is a morphism between monads as in Defini-
tion 2.13 where additionally the following diagram commutes.

𝑋 × 𝑆𝑌 𝑋 × 𝑇 𝑌

𝑆(𝑋 × 𝑌) 𝑇 (𝑋 × 𝑌)

𝜏𝑆

𝛼

𝑖𝑑×𝛼

𝜏𝑇

As with monads this yields a category of strong monads on C that we call StrongMonads(C).
Let us now consider the following two programs

do x <- p
y <- q
return (x, y)

do y <- q
x <- p
return (x, y)

Where 𝑝 ∶ 𝑇 𝑋 and 𝑞 ∶ 𝑇 𝑌 are computations of some monad 𝑇 . A monad where these programs
are equal, is called commutative.

Definition 2.20 (Commutative Monad). A strong monad T is called commutative if the (right)
strength 𝜏 commutes with the induced left strength

𝜎𝑋,𝑌 = 𝑇 𝑠𝑤𝑎𝑝 ∘ 𝜏𝑌 ,𝑋 ∘ 𝑠𝑤𝑎𝑝 ∶ 𝑇 𝑋 × 𝑌 → 𝑇 (𝑋 × 𝑌)

that satisfies symmetrical conditions to the ones 𝜏 satisfies. Concretely, T is called commutative
if the following diagram commutes:

𝑇 𝑋 × 𝑇 𝑌 𝑇 (𝑇 𝑋 × 𝑌)

𝑇 (𝑋 × 𝑇 𝑌) 𝑇 (𝑋 × 𝑌)

𝜏

𝜎

𝜏∗

𝜎∗

2.5 Free Objects

Free objects, roughly speaking, are constructions for instantiating structure declarations in a
minimal way. We will rely on free structures in Chapter 5 to define a monad in a general setting.
We recall the definition to establish some notation and then describe how to obtain a monad
via existence of free objects.

Definition 2.21 (Free Object). Let C , D be categories and 𝑈 ∶ C → D be a forgetful functor
(whose construction usually is obvious). A free object on some object 𝑋 ∈ |D | is an object
𝐹𝑋 ∈ |C | together with a morphism 𝜂 ∶ 𝑋 → 𝑈𝐹𝑋 such that for any 𝑌 ∈ |C | and 𝑓 ∶ 𝑋 → 𝑈𝑌
there exists a unique morphism 𝑓⋆ ∶ 𝐹𝑋 → 𝑌 satisfying:

𝑋 𝑈𝑌

𝑈𝐹𝑋

𝑓

𝜂
𝑈𝑓⋆

18

Proposition 2.22. Let 𝑈 ∶ C → D be a forgetful functor. If for every 𝑋 ∈ |D | a free object
𝐹𝑋 ∈ |𝐶| exists then (𝑋 ↦ 𝑈𝐹𝑋, 𝜂 ∶ 𝑋 → 𝑈𝐹𝑋, (𝑓 ∶ 𝑋 → 𝑈𝐹𝑌)⋆ ∶ 𝑈𝐹𝑋 → 𝑈𝐹𝑌) is a
Kleisli triple on D .

Proof. We are left to check the laws of Kleisli triples.

(K1) 𝜂⋆ = 𝑖𝑑
By uniqueness of 𝜂⋆ it suffices to show that 𝑖𝑑 ∘ 𝜂 = 𝜂 which holds trivially.

(K2) 𝑓⋆ ∘ 𝜂 = 𝑓 for any 𝑓 ∶ 𝑋 → 𝑈𝐹𝑌
This is the universal property concerning 𝑓⋆.

(K3) 𝑓⋆ ∘ 𝑔⋆ = (𝑓⋆ ∘ 𝑔)⋆ for any 𝑓 ∶ 𝑌 → 𝑈𝐹𝑍, 𝑔 ∶ 𝑋 → 𝑈𝐹𝑌
By uniqueness of (𝑓⋆ ∘ 𝑔)⋆ we are left to show 𝑓⋆ ∘𝑔⋆ ∘𝜂 = 𝑓⋆ ∘𝑔 which again follows directly
by the universal property of 𝑔⋆.

19

3 Implementing Category Theory in Agda

There are many formalizations of category theory in proof assistants like Coq or Agda. The
benefits of such a formalization are clear: having a usable formalization allows one to reason
about categorical notions in a type checked environment that makes errors less likely. Ideally
such a development will bring researchers together and enable them to work in a unified setting
that enables efficient communication of ideas and concepts. In this thesis we will work with the
dependently typed programming language Agda [24] and the agda-categories [20] library that
serves as an extensive foundation of categorical definitions. This chapter shall serve as a quick
introduction to the relevant parts of Agda’s type theory, the agda-categories library, and the
formalization of this thesis.

3.1 The Underlying Type Theory

Agda implements a Martin-Löf style dependent type theory with inductive and coinductive types
as well as an infinite hierarchy of universes Set₀, Set₁, …, where usually Set₀ is abbreviated
as Set. Recall that inductive types usually come with a principle for defining functions from
inductive types, called recursion and a principle for proving facts about the inhabitants of
inductive types, called induction. These are standard notions and need no further introduction.
Coinductive types come with dual principles that are however lesser known. Dually to inductive
types that are defined by their constructors, coinductive types are defined by their destructors
or their observational behavior. Take the type of streams over a type A, for example. In Agda
one would define this type as a coinductive record like so:

1 record Stream (A : Set) : Set where
2 coinductive
3 field
4 head : A
5 tail : Stream A

i.e. the type of streams over A is defined by the two destructors head : Stream A → A and
tail : Stream A → Stream A that return the head and the tail of the stream respectively.
Now, corecursion is a principle for defining functions into coinductive types by specifying how
results of the function may be observed. Take for example the following function which defines
an infinite stream repeating the same argument and is defined by use of Agda’s copatterns.

1 repeat : {A : Set} (a : A) → Stream A
2 head (repeat a) = a
3 tail (repeat a) = repeat a

Let us introduce the usual notion of stream bisimilarity. Given two streams, they are bisimilar
if their heads are equal and their tails are bisimilar.

1 record _≈_ {A} (s : Stream A) (t : Stream A) : Set where
2 coinductive

21

3 field
4 head : head s ≡ head t
5 tail : tail s ≈ tail t

In this definition _≡_ is the built-in propositional equality in Agda with the single constructor
refl. We can now use coinduction as a proof principle to proof a fact about streams.

1 repeat-eq : ∀ {A} (a : A) → repeat a ≈ tail (repeat a)
2 head (repeat-eq {A} a) = refl
3 tail (repeat-eq {A} a) = repeat-eq a

Where in the coinductive step we were able to assume that repeat a ≈ tail(repeat a) already
holds and showed that thus tail(repeat a) ≈ tail(tail(repeat a)) holds.

Streams are always infinite and thus this representation of coinductive types as coinductive
records is well suited for them. However, consider the type of possibly infinite lists, that we will
call coList. In pseudo notation this type can be defined as

1 codata coList (A : Set) : Set where
2 nil : coList A
3 _∷_ : A → coList A → coList A

That is, the coinductive type coList is defined by the constructors nil and _∷_. Agda does
implement a second way of defining coinductive types that allows exactly such definitions,
however the use of these sometimes called positive coinductive types is discouraged, since it
is known to break subject reduction [22][23]. Instead, sticking to coinductive records, we can
define coList as two mutual types, one inductive and the other coinductive:

1 mutual
2 data coList (A : Set) : Set where
3 nil : coList A
4 _∷_ : A → coList′ A → coList A
5 record coList′ (A : Set) : Set where
6 coinductive
7 field force : coList A

Unfortunately, this does add the overhead of having to define functions on coList as mutual
recursive functions, e.g. the repeat function from before can be defined as

1 mutual
2 repeat : {A : Set} (a : A) → coList A
3 repeat′ : {A : Set} (a : A) → coList′ A
4 repeat a = a ∷ repeat′ a
5 force (repeat′ a) = repeat a

or more succinctly using a 𝜆-function

1 repeat : {A : Set} (a : A) → coList A
2 repeat a = a ∷ λ { .force → repeat a }

22

In Chapter 6 we will work with such a coinductive type that is defined by constructors, hence
to avoid the overhead of defining every data type twice and using mutual function definitions
in the thesis, we will work in a type theory that does offer coinductive types with constructors
and their respective corecursion and coinduction principles. However, in the formalization we
stick to using coinductive records as to implement best practices. The translation between the
two styles is straightforward, as illustrated by the previous example.

3.2 Setoid Enriched Categories

Let us now consider how to implement category theory in Agda. The usual textbook definition
of a category glosses over some design decisions that have to be made when implementing it in
type theory. One would usually see something like this:

Definition 3.1 (Category). A category consists of

• A collection of objects

• A collection of morphisms between objects

• For every two morphisms 𝑓 ∶ 𝑋 → 𝑌 , 𝑔 ∶ 𝑌 → 𝑍 another morphism 𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑍 called
the composition

• For every object 𝑋 a morphism 𝑖𝑑𝑋 ∶ 𝑋 → 𝑋 called the identity

where the composition is associative, and the identity morphisms are identities with respect to
the composition.

Here collection refers to something that behaves set-like, which is not a set and is needed to
prevent size issues (there is no set of all sets, otherwise we would obtain Russel’s paradox,
but there is a collection of all sets), it is not immediately clear how to translate this to type
theory. Furthermore, in mathematical textbooks equality between morphisms is usually taken
for granted, i.e. there is some global notion of equality that is clear to everyone. In type theory
we need to be more thorough as there is no global notion of equality, eligible for all purposes,
e.g. the standard notion of propositional equality has issues when dealing with functions in that
it requires extra axioms like functional extensionality.

The definition of category that we will work with can be seen in Listing 1 (unnecessary infor-
mation has been stripped). The key differences to the definition above are firstly that instead
of talking about collections, Agda’s infinite Set hierarchy is utilized to prevent size issues. This
notion of category is thus parametrized by 3 universe levels, one for objects, one for morphisms
and one for equalities. A consequence is that the category does not contain a type of all mor-
phisms, instead it contains a type of morphisms for any pair of objects. Furthermore, the types
of morphisms are equipped with an equivalence relation _≈_, making them setoids. This ad-
dresses the aforementioned issue of how to implement equality between morphisms: the notion
of equality is just added to the definition of a category. This version of the notion of category
is also called a setoid-enriched category.

As a consequence of using a custom equality relation, proofs like ∘-resp-≈ are needed throughout
the library to make sure that operations on morphisms respect the equivalence relation. In the
thesis we will omit such proofs, but they are contained in our formalization. Lastly, the designers
of agda-categories also include symmetric proofs like sym-assoc to definitions, in this case to
guarantee that the opposite category of the opposite category is equal to the original category,
and a similar reason for requiring identity², we won’t address the need for these proofs and
just accept the requirement as given for the rest of the thesis.

23

1 record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where
2 field
3 Obj : Set o
4 _⇒_ : Obj → Obj → Set ℓ
5 _≈_ : ∀ {A B : Obj } → (A ⇒ B) → (A ⇒ B) → Set e
6

7 id : ∀ {A : Obj} → (A ⇒ A)
8 _∘_ : ∀ {A B C : Obj} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
9

10 assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D}
11 → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f)
12 sym-assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D}
13 → h ∘ (g ∘ f) ≈ (h ∘ g) ∘ f
14 identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f
15 identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f
16 identity² : ∀ {A} → id ∘ id {A} ≈ id {A}
17 equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B})
18 ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B}
19 → f ≈ h
20 → g ≈ i
21 → f ∘ g ≈ h ∘ i

Listing 1: Definition of Category [20]

From this it should be clear how other basic notions like functors or natural transformations
look in the library.

3.3 The formalization

Every result and used fact (except for Proposition 4.4) in this thesis has been proven either
in our own formalization1 or in the agda-categories library [20]. The formalization is meant to
be used as a reference alongside this thesis, where concrete details of proofs can be looked up
and verified. The preferred format for viewing the formalization is as automatically generated
clickable HTML code2, where multiple annotations explaining the structure have been added
in Markdown, however concrete explanations of the proofs and their main ideas are mostly just
contained in this thesis.

In the future this formalization may be adapted into a separate library that uses the agda-
categories library as a basis but is more focussed on the study of partiality monads and iteration
theories. As such the formalization has been structured similar to the agda-categories library,
where key concepts such as monads correspond to separate top-level folders, which contain the
core definitions as well as folders for sub-concepts and their properties.

1https://git8.cs.fau.de/theses/bsc-leon-vatthauer
2https://wwwcip.cs.fau.de/ hy84coky/bsc-thesis/

24

https://git8.cs.fau.de/theses/bsc-leon-vatthauer
https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/

4 Partiality Monads

Moggi’s categorical semantics [5] describe a way to interpret an effectful programming language
in a category. For this one needs a (strong) monad 𝑇 capturing the desired effects, then we can
take the elements of 𝑇 𝐴 as denotations for programs of type 𝐴. The Kleisli category of 𝑇 can
be viewed as the category of programs, which gives us a way of composing programs (Kleisli
composition).

For this thesis we will restrict ourselves to monads for modeling partiality, the goal of this chapter
is to capture what it means to be a partiality monad and look at two common examples.

4.1 Properties of Partiality Monads

We will now look at how to express the following non-controversial properties of a minimal
partiality monad categorically:

1. Irrelevance of execution order

2. Partiality of programs

3. No other effect besides some form of non-termination

The first property of course holds for any commutative monad, the other two are more inter-
esting.

To ensure that programs are partial, we recall the following notion by Cockett and Lack [9],
that axiomatizes the notion of partiality in a category:

Definition 4.1 (Restriction Structure). A restriction structure on a category C is a mapping
𝑑𝑜𝑚 ∶ C (𝑋, 𝑌) → C (𝑋, 𝑋) with the following properties:

𝑓 ∘ (dom 𝑓) = 𝑓
(dom 𝑓) ∘ (dom 𝑔) = (dom 𝑔) ∘ (dom 𝑓)
dom (𝑔 ∘ (dom 𝑓)) = (dom 𝑔) ∘ (dom 𝑓)

(dom ℎ) ∘ 𝑓 = 𝑓 ∘ dom (ℎ ∘ 𝑓)

for any 𝑋, 𝑌 , 𝑍 ∈ |C |, 𝑓 ∶ 𝑋 → 𝑌 , 𝑔 ∶ 𝑋 → 𝑍, ℎ ∶ 𝑌 → 𝑍.

The morphism dom 𝑓 ∶ 𝑋 → 𝑋 represents the domain of definiteness of 𝑓 ∶ 𝑋 → 𝑌 . In the
category of partial functions this takes the following form:

(dom 𝑓)(𝑥) = {𝑥 if 𝑓(𝑥) is defined
undefined else

That is, dom 𝑓 is only defined on values where 𝑓 is defined and for those values it behaves like
the identity function.

25

Definition 4.2 (Restriction Category). Every category has a trivial restriction structure by
taking 𝑑𝑜𝑚(𝑓 ∶ 𝑋 → 𝑌) = 𝑖𝑑𝑋. We call categories with a non-trivial restriction structure
restriction categories.

For a suitable defined partiality monad 𝑇 the Kleisli category C 𝑇 should be a restriction cate-
gory.

Lastly, we also recall the following notion by Bucalo et al. [11] which captures what it means
for a monad to have no other side effect besides some sort of non-termination:

Definition 4.3 (Equational Lifting Monad). A commutative monad 𝑇 is called an equational
lifting monad if the following diagram commutes:

𝑇 𝑋 𝑇 𝑋 × 𝑇 𝑋

𝑇 (𝑇 𝑋 × 𝑋)

Δ

𝜏
𝑇 ⟨𝜂,𝑖𝑑⟩

where Δ𝑋 ∶ 𝑋 → 𝑋 × 𝑋 is the diagonal morphism.

To make the equational lifting property more comprehensible we can alternatively state it using
do-notation. The equational lifting property states that the following programs must be equal:

do x <- p
return (x , p)

do x <- p
return (x , return x)

That is, if some computation 𝑝 ∶ 𝑇 𝑋 terminates with the result 𝑥 ∶ 𝑋, then 𝑝 = 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 must
hold afterwards. This of course implies that running 𝑝 multiple times yields the same result as
running 𝑝 once.

Proposition 4.4 ([11]). If 𝑇 is an equational lifting monad the Kleisli category C 𝑇 is a
restriction category.

Definition 4.3 combines all three properties stated at the beginning of the section, so when
studying partiality monads in this thesis, we ideally expect them to be equational lifting monads.
For the rest of this chapter we will use these definitions to compare two monads that are
commonly used to model partiality.

4.2 The Maybe Monad

The endofunctor 𝑀𝑋 = 𝑋 + 1 extends to a monad by taking 𝜂𝑋 = 𝑖1 ∶ 𝑋 → 𝑋 + 1 and
𝜇𝑋 = [𝑖𝑑, 𝑖2] ∶ (𝑋 + 1) + 1 → 𝑋 + 1. The monad laws follow easily. This is generally known as
the maybe monad and can be viewed as the canonical example of an equational lifting monad.

Theorem 4.5. M is an equational lifting monad.

Proof. We define strength as

𝜏𝑋,𝑌 ∶= 𝑋 × (𝑌 + 1) 𝑑𝑠𝑡𝑙⟶ (𝑋 × 𝑌) + (𝑋 × 1) 𝑖𝑑+!⟶ (𝑋 × 𝑌) + 1.

26

Naturality of 𝜏 follows by naturality of 𝑑𝑠𝑡𝑙

(𝑖𝑑+!) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × (𝑓 + 𝑖𝑑))
= (𝑖𝑑+!) ∘ ((𝑖𝑑 × 𝑓) + (𝑖𝑑 × 𝑖𝑑)) ∘ 𝑑𝑠𝑡𝑙
= ((𝑖𝑑 × 𝑓)+!) ∘ 𝑑𝑠𝑡𝑙
= ((𝑖𝑑 × 𝑓) + 𝑖𝑑) ∘ (𝑖𝑑+!) ∘ 𝑑𝑠𝑡𝑙.

The other strength laws and commutativity can be proven by using simple properties of dis-
tributive categories, we added these proofs to the formalization for completeness.

We are thus left to check the equational lifting law:

𝑋 + 1 (𝑋 + 1) × (𝑋 + 1)

((𝑋 + 1) × 𝑋) + ((𝑋 + 1) × 1)

((𝑋 + 1) × 𝑋) + 1

Δ

𝑑𝑠𝑡𝑙

𝑖𝑑+ !

⟨𝑖1,𝑖𝑑⟩+ !

This is easily proven by pre-composing with 𝑖1 and 𝑖2, indeed

(𝑖𝑑 + !) ∘ 𝑑𝑠𝑡𝑙 ∘ ⟨𝑖1, 𝑖1⟩
= (𝑖𝑑 + !) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑖1) ∘ ⟨𝑖1, 𝑖𝑑⟩
= (𝑖𝑑 + !) ∘ 𝑖1 ∘ ⟨𝑖1, 𝑖𝑑⟩
= 𝑖1 ∘ ⟨𝑖1, 𝑖𝑑⟩,

and

(𝑖𝑑 + !) ∘ 𝑑𝑠𝑡𝑙 ∘ ⟨𝑖2, 𝑖2⟩
= (𝑖𝑑 + !) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑖2) ∘ ⟨𝑖2, 𝑖𝑑⟩
= (𝑖𝑑 + !) ∘ 𝑖2 ∘ ⟨𝑖2, 𝑖𝑑⟩
= 𝑖2 ∘ ! ∘ ⟨𝑖2, 𝑖𝑑⟩
= 𝑖2 ∘ !.

In the setting of classical mathematics this monad is therefore sufficient for modeling partiality,
but in general it will not be useful for modeling non-termination as a side effect, since one would
need to know beforehand whether a program terminates or not. For the purpose of modeling
possibly non-terminating computations another monad has been introduced by Capretta [12].

4.3 The Delay Monad

Capretta’s delay monad [12] is a coinductive datatype whose inhabitants can be viewed as
suspended computations. This datatype is usually defined by the two coinductive constructors
𝑛𝑜𝑤 ∶ 𝑋 → 𝐷𝑋 and 𝑙𝑎𝑡𝑒𝑟 ∶ 𝐷𝑋 → 𝐷𝑋, where 𝑛𝑜𝑤 lifts a value inside a computation and

27

𝑙𝑎𝑡𝑒𝑟 intuitively delays a computation by one time unit. See Chapter 6 for a type theoretical
study of this monad. Categorically we obtain the delay monad by the terminal coalgebras
𝐷𝑋 = 𝜈𝐴.𝑋 + 𝐴, which we assume to exist. In this section we will show that these terminal
coalgebras indeed yield a monad that is strong and commutative.

Since 𝐷𝑋 is defined as a terminal coalgebra, we can define morphisms via corecursion and prove
theorems by coinduction. By Lemma 2.11 the coalgebra structure 𝑜𝑢𝑡 ∶ 𝐷𝑋 → 𝑋 + 𝐷𝑋 is an
isomorphism, whose inverse can be decomposed into the two constructors mentioned before:
𝑜𝑢𝑡−1 = [𝑛𝑜𝑤, 𝑙𝑎𝑡𝑒𝑟] ∶ 𝑋 + 𝐷𝑋 → 𝐷𝑋.

Lemma 4.6. The following conditions hold:

• 𝑛𝑜𝑤 ∶ 𝑋 → 𝐷𝑋 and 𝑙𝑎𝑡𝑒𝑟 ∶ 𝐷𝑋 → 𝐷𝑋 satisfy:

𝑜𝑢𝑡 ∘ 𝑛𝑜𝑤 = 𝑖1 𝑜𝑢𝑡 ∘ 𝑙𝑎𝑡𝑒𝑟 = 𝑖2 (D1)

• For any 𝑓 ∶ 𝑋 → 𝐷𝑌 there exists a unique morphism 𝑓∗ ∶ 𝐷𝑋 → 𝐷𝑌 such that the
following commutes.

𝐷𝑋 𝑋 + 𝐷𝑋

𝐷𝑌 𝑌 + 𝐷𝑌

𝑜𝑢𝑡

𝑓∗

𝑜𝑢𝑡
[𝑜𝑢𝑡∘𝑓,𝑖2∘𝑓∗] (D2)

• There exists a unique morphism 𝜏 ∶ 𝑋 × 𝐷𝑌 → 𝐷(𝑋 × 𝑌) such that:

𝑋 × 𝐷𝑌 𝑋 × (𝑌 + 𝐷𝑌) 𝑋 × 𝑌 + 𝑋 × 𝐷𝑌

𝐷(𝑋 × 𝑌) 𝑋 × 𝑌 + 𝐷(𝑋 × 𝑌)
𝜏

𝑖𝑑×𝑜𝑢𝑡 𝑑𝑠𝑡𝑙

𝑖𝑑+𝜏
𝑜𝑢𝑡

(D3)

Proof. We will make use of the fact that every 𝐷𝑋 is a terminal coalgebra:

(D1) These follow by definition of 𝑛𝑜𝑤 and 𝑙𝑎𝑡𝑒𝑟:

𝑜𝑢𝑡 ∘ 𝑛𝑜𝑤 = 𝑜𝑢𝑡 ∘ 𝑜𝑢𝑡−1 ∘ 𝑖1= 𝑖1
𝑜𝑢𝑡 ∘ 𝑙𝑎𝑡𝑒𝑟 = 𝑜𝑢𝑡 ∘ 𝑜𝑢𝑡−1 ∘ 𝑖2= 𝑖2

(D2) We define 𝑓∗ = 〖𝛼〗 ∘ 𝑖1, where 〖𝛼〗 is the unique coalgebra morphism in this diagram:

𝐷𝑋

𝐷𝑋 + 𝐷𝑌 𝑌 + (𝐷𝑋 + 𝐷𝑌)

𝐷𝑌 𝑌 + 𝐷𝑌

𝛼∶=[[[𝑖1,𝑖2∘𝑖2]∘(𝑜𝑢𝑡∘𝑓),𝑖2∘𝑖1]∘𝑜𝑢𝑡,(𝑖𝑑+𝑖2)∘𝑜𝑢𝑡]
𝑖1

〖𝛼〗
𝑜𝑢𝑡

𝑖𝑑+〖𝛼〗

Note that 〖𝛼〗 ∘ 𝑖2 = 𝑖𝑑 ∶ (𝐷𝑌 , 𝑜𝑢𝑡) → (𝐷𝑌 , 𝑜𝑢𝑡), by uniqueness of the identity morphism
and the fact that 〖𝛼〗 ∘ 𝑖2 is a coalgebra morphism, since

𝑜𝑢𝑡 ∘ 〖𝛼〗 ∘ 𝑖2
= (𝑖𝑑 + 〖𝛼〗) ∘ 𝛼 ∘ 𝑖2
= (𝑖𝑑 + 〖𝛼〗) ∘ (𝑖𝑑 + 𝑖2) ∘ 𝑜𝑢𝑡
= (𝑖𝑑 + 〖𝛼〗 ∘ 𝑖2) ∘ 𝑜𝑢𝑡

28

Let us verify that 𝑓∗ indeed satisfies the requisite property:

𝑜𝑢𝑡 ∘ 〖𝛼〗 ∘ 𝑖1
= (𝑖𝑑 + 〖𝛼〗) ∘ 𝛼 ∘ 𝑖1
= (𝑖𝑑 + 〖𝛼〗) ∘ [[𝑖1, 𝑖2 ∘ 𝑖2] ∘ 𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑖1] ∘ 𝑜𝑢𝑡
= [[(𝑖𝑑 + 〖𝛼〗) ∘ 𝑖1, (𝑖𝑑 + 〖𝛼〗) ∘ 𝑖2 ∘ 𝑖2] ∘ 𝑜𝑢𝑡 ∘ 𝑓, (𝑖𝑑 + 〖𝛼〗) ∘ 𝑖2 ∘ 𝑖1] ∘ 𝑜𝑢𝑡
= [[𝑖1, 𝑖2 ∘ 〖𝛼〗 ∘ 𝑖2] ∘ 𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 〖𝛼〗 ∘ 𝑖1] ∘ 𝑜𝑢𝑡
= [𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑓∗] ∘ 𝑜𝑢𝑡.

We are left to check uniqueness of 𝑓∗. Let 𝑔 ∶ 𝐷𝑋 → 𝐷𝑌 and 𝑜𝑢𝑡 ∘ 𝑔 = [𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑔] ∘ 𝑜𝑢𝑡.
Note that [𝑔, 𝑖𝑑] ∶ 𝐷𝑋 + 𝐷𝑌 → 𝐷𝑌 is a coalgebra morphism, since

𝑜𝑢𝑡 ∘ [𝑔, 𝑖𝑑]
= [𝑜𝑢𝑡 ∘ 𝑔, 𝑜𝑢𝑡]
= [[𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑔] ∘ 𝑜𝑢𝑡, 𝑜𝑢𝑡]
= [[[𝑖1, 𝑖2] ∘ 𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑔] ∘ 𝑜𝑢𝑡, (𝑖𝑑 + 𝑖𝑑) ∘ 𝑜𝑢𝑡]
= [[[𝑖1, 𝑖2 ∘ [𝑔, 𝑖𝑑] ∘ 𝑖2] ∘ 𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ [𝑔, 𝑖𝑑] ∘ 𝑖1] ∘ 𝑜𝑢𝑡, (𝑖𝑑 + [𝑔, 𝑖𝑑] ∘ 𝑖2) ∘ 𝑜𝑢𝑡]
= [[[(𝑖𝑑 + [𝑔, 𝑖𝑑]) ∘ 𝑖1, (𝑖𝑑 + [𝑔, 𝑖𝑑]) ∘ 𝑖2 ∘ 𝑖2] ∘ 𝑜𝑢𝑡 ∘ 𝑓, (𝑖𝑑 + [𝑔, 𝑖𝑑]) ∘ 𝑖2 ∘ 𝑖1] ∘ 𝑜𝑢𝑡

, (𝑖𝑑 + [𝑔, 𝑖𝑑]) ∘ (𝑖𝑑 + 𝑖2) ∘ 𝑜𝑢𝑡]
= (𝑖𝑑 + [𝑔, 𝑖𝑑]) ∘ [[[𝑖1, 𝑖2 ∘ 𝑖2] ∘ 𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑖1] ∘ 𝑜𝑢𝑡, (𝑖𝑑 + 𝑖2) ∘ 𝑜𝑢𝑡].

Thus, [𝑔, 𝑖𝑑] = 〖𝛼〗 by uniqueness of 〖𝛼〗. It follows that indeed
𝑔 = [𝑔, 𝑖𝑑] ∘ 𝑖1 = 〖𝛼〗 ∘ 𝑖1 = 𝑓∗.

(D3) Take 𝜏 ∶= 〖𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑜𝑢𝑡)〗 ∶ 𝑋 × 𝐷𝑌 → 𝐷(𝑋 × 𝑌), the requisite property then follows
by definition.

Lemma 4.7. The following properties of D hold:

1. 𝑜𝑢𝑡 ∘ 𝐷𝑓 = (𝑓 + 𝐷𝑓) ∘ 𝑜𝑢𝑡
2. 𝑓∗ = [𝑓, (𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓)∗] ∘ 𝑜𝑢𝑡
3. 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓∗ = (𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓)∗ = 𝑓∗ ∘ 𝑙𝑎𝑡𝑒𝑟

Proof. These identities follow by use of Lemma 4.6:

1. Note that definitionally: 𝐷𝑓 = (𝑛𝑜𝑤 ∘ 𝑓)∗ for any 𝑓 ∶ 𝑋 → 𝑇 𝑌 . The statement is then
simply a consequence of (D1) and (D2):

𝑜𝑢𝑡 ∘ 𝐷𝑓
= 𝑜𝑢𝑡 ∘ (𝑛𝑜𝑤 ∘ 𝑓)∗

= [𝑜𝑢𝑡 ∘ 𝑛𝑜𝑤 ∘ 𝑓, 𝑖2 ∘ (𝑛𝑜𝑤 ∘ 𝑓)∗] ∘ 𝑜𝑢𝑡 (D2)
= (𝑓 + 𝐷𝑓) ∘ 𝑜𝑢𝑡. (D1)

2. By uniqueness of 𝑓∗ it suffices to show:

𝑜𝑢𝑡 ∘ [𝑓, (𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓)∗] ∘ 𝑜𝑢𝑡
= [𝑜𝑢𝑡 ∘ 𝑓, 𝑜𝑢𝑡 ∘ (𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓)∗] ∘ 𝑜𝑢𝑡
= [𝑜𝑢𝑡 ∘ 𝑓, [𝑜𝑢𝑡 ∘ 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓, 𝑖2 ∘ (𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓)∗] ∘ 𝑜𝑢𝑡] ∘ 𝑜𝑢𝑡 (D2)
= [𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ [𝑓, (𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓)∗] ∘ 𝑜𝑢𝑡] ∘ 𝑜𝑢𝑡. (D1)

29

3. This equational chain follows by monicity of 𝑜𝑢𝑡:
𝑜𝑢𝑡 ∘ (𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓)∗

= [𝑜𝑢𝑡 ∘ 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓, 𝑖2 ∘ (𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓)∗] ∘ 𝑜𝑢𝑡 (D2)
= 𝑖2 ∘ [𝑓, (𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓)∗] ∘ 𝑜𝑢𝑡 (D1)
= 𝑖2 ∘ 𝑓∗

= 𝑜𝑢𝑡 ∘ 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓∗ (D1)
= 𝑖2 ∘ 𝑓∗ (D1)
= [𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑓∗] ∘ 𝑖2
= [𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑓∗] ∘ 𝑜𝑢𝑡 ∘ 𝑙𝑎𝑡𝑒𝑟 (D1)
= 𝑜𝑢𝑡 ∘ 𝑓∗ ∘ 𝑙𝑎𝑡𝑒𝑟. (D2)

Thus, the postulated properties have been proven.

Lemma 4.8. D ∶= (𝐷, 𝑛𝑜𝑤, (−)∗) is a Kleisli triple.

Proof. We will now use the properties proven in Lemma 4.6 to prove the Kleisli triple laws:

(K1) By uniqueness of 𝑛𝑜𝑤∗ it suffices to show that 𝑜𝑢𝑡 ∘ 𝑖𝑑 = [𝑜𝑢𝑡 ∘ 𝑛𝑜𝑤, 𝑖2 ∘ 𝑖𝑑] ∘ 𝑜𝑢𝑡 which
instantly follows by (D1).

(K2) Let 𝑓 ∶ 𝑋 → 𝐷𝑌 . We proceed by monicity of 𝑜𝑢𝑡:
𝑜𝑢𝑡 ∘ 𝑓∗ ∘ 𝑛𝑜𝑤

= [𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑓∗] ∘ 𝑜𝑢𝑡 ∘ 𝑛𝑜𝑤 (D2)
= [𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑓∗] ∘ 𝑖1 (D1)
= 𝑜𝑢𝑡 ∘ 𝑓.

(K3) Let 𝑓 ∶ 𝑌 → 𝑍, 𝑔 ∶ 𝑋 → 𝑍 to show 𝑓∗ ∘ 𝑔∗ = (𝑓∗ ∘ 𝑔)∗ by uniqueness of (𝑓∗ ∘ 𝑔)∗ it suffices
to show:

𝑜𝑢𝑡 ∘ 𝑓∗ ∘ 𝑔∗

= [𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑓∗] ∘ 𝑜𝑢𝑡 ∘ 𝑔∗ (D2)
= [𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑓∗] ∘ [𝑜𝑢𝑡 ∘ 𝑔, 𝑖2 ∘ 𝑔∗] ∘ 𝑜𝑢𝑡 (D2)
= [[𝑜𝑢𝑡 ∘ 𝑓, 𝑖2 ∘ 𝑓∗] ∘ 𝑜𝑢𝑡 ∘ 𝑔, 𝑖2 ∘ 𝑓∗ ∘ 𝑔∗] ∘ 𝑜𝑢𝑡
= [𝑜𝑢𝑡 ∘ 𝑓∗ ∘ 𝑔, 𝑖2 ∘ 𝑓∗ ∘ 𝑔∗] ∘ 𝑜𝑢𝑡. (D2)

This concludes the proof.

Terminality of the coalgebras (𝐷𝑋, 𝑜𝑢𝑡 ∶ 𝐷𝑋 → 𝑋 + 𝐷𝑋)𝑋∈|C | yields the following proof prin-
ciple.

Remark 4.9 (Proof by coinduction). Given two morphisms 𝑓, 𝑔 ∶ 𝑋 → 𝐷𝑌 . To show that
𝑓 = 𝑔 it suffices to show that there exists a coalgebra structure 𝛼 ∶ 𝑋 → 𝑌 + 𝑋 such that the
following diagrams commute:

𝑋 𝑌 + 𝑋 𝑋 𝑌 + 𝑋

𝐷𝑌 𝑌 + 𝐷𝑌 𝐷𝑌 𝑌 + 𝐷𝑌𝑜𝑢𝑡

𝛼

𝑓 𝑖𝑑+𝑓

𝛼

𝑔 𝑖𝑑+𝑔
𝑜𝑢𝑡

Uniqueness of the coalgebra morphism 〖𝛼〗 ∶ (𝑋, 𝛼) → (𝐷𝑌 , 𝑜𝑢𝑡) then results in 𝑓 = 𝑔.

30

Lemma 4.10. D is a strong monad.

Proof. Most of the following proofs are done via coinduction (Remark 4.9). We will only give
the requisite coalgebra structure. The proofs that the diagrams commute can be looked up in
the Agda formalization.

First we need to show naturality of 𝜏 , i.e. we need to show that

𝜏 ∘ (𝑓 × (𝑛𝑜𝑤 ∘ 𝑔)∗) = (𝑛𝑜𝑤 ∘ (𝑓 × 𝑔))∗ ∘ 𝜏

The coalgebra for coinduction is:

𝑋 × 𝐷𝑌 𝑋 × (𝑌 + 𝐷𝑌) 𝑋 × 𝑌 + 𝑋 × 𝐷𝑌 𝐴 × 𝐵 + 𝑋 × 𝐷𝑌

𝐷(𝐴 × 𝐵) 𝐴 × 𝐵 + 𝐷(𝐴 × 𝐵)𝑜𝑢𝑡

𝑖𝑑×𝑜𝑢𝑡 𝑑𝑠𝑡𝑙

〖-〗

𝑓×𝑔+𝑖𝑑

𝑖𝑑+〖-〗

We write 〖-〗 to abbreviate the used coalgebra, i.e. in the previous diagram

〖-〗 = 〖(𝑓 × 𝑔 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑜𝑢𝑡)〗.

Next we check the strength laws:

(S1) To show that (𝑛𝑜𝑤 ∘ 𝜋2)∗ ∘ 𝜏 = 𝜋2 we do coinduction using the following coalgebra:

1 × 𝐷𝑋 1 × 𝑋 + 𝐷𝑋 1 × 𝑋 + 1 × 𝐷𝑋 𝑋 + 1 × 𝐷𝑋

𝐷𝑋 𝑋 + 𝐷𝑋𝑜𝑢𝑡
〖-〗 𝑖𝑑+〖-〗

𝑖𝑑×𝑜𝑢𝑡 𝑑𝑠𝑡𝑙 𝜋2+𝑖𝑑

(S2) We don’t need coinduction to show 𝜏 ∘(𝑖𝑑×𝑛𝑜𝑤) = 𝑛𝑜𝑤, but we will first need to establish

𝜏 ∘ (𝑖𝑑 × 𝑜𝑢𝑡−1) = 𝑜𝑢𝑡−1 ∘ (𝑖𝑑 + 𝜏) ∘ 𝑑𝑠𝑡𝑙, (∗)

which is a direct consequence of (D3). With this we are done by

𝜏 ∘ (𝑖𝑑 × 𝑛𝑜𝑤)
= 𝜏 ∘ (𝑖𝑑 × 𝑜𝑢𝑡−1) ∘ (𝑖𝑑 × 𝑖1)
= 𝑜𝑢𝑡−1 ∘ (𝑖𝑑 + 𝜏) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑖1) (∗)
= 𝑛𝑜𝑤.

(S3) We need to check 𝜏∗ ∘ 𝜏 = 𝜏 ∘ (𝑖𝑑 × 𝑖𝑑∗), the coalgebra for coinduction is:

𝑋 × 𝐷𝐷𝑌 𝑋 × (𝐷𝑌 + 𝐷𝐷𝑌) 𝑋 × 𝐷𝑌 + 𝑋 × 𝐷𝐷𝑌

𝑋 × 𝑌 + 𝑋 × 𝐷𝐷𝑌

𝐷(𝑋 × 𝑌) 𝑋 × 𝑌 + 𝐷(𝑋 × 𝑌)

〖-〗

𝑖𝑑×𝑜𝑢𝑡 𝑑𝑠𝑡𝑙

𝑜𝑢𝑡
𝑖𝑑+〖-〗

[(𝑖𝑑+(𝑖𝑑×𝑛𝑜𝑤))∘𝑑𝑠𝑡𝑙∘(𝑖𝑑×𝑜𝑢𝑡),𝑖2]

31

(S4) To show 𝐷𝛼 ∘ 𝜏 = 𝜏 ∘ (𝑖𝑑 × 𝜏) ∘ 𝛼 by coinduction we take the coalgebra:

(𝑋 × 𝑌) × 𝐷𝑍 (𝑋 × 𝑌) × (𝑍 + 𝐷𝑍) (𝑋 × 𝑌) × 𝑍 + (𝑋 × 𝑌) × 𝐷𝑍

𝑋 × 𝑌 × 𝑍 + (𝑋 × 𝑌) × 𝐷𝑍

𝐷(𝑋 × 𝑌 × 𝑍) 𝑋 × 𝑌 × 𝑍 + 𝐷(𝑋 × 𝑌 × 𝑍)

〖-〗

𝑜𝑢𝑡
𝑖𝑑+〖-〗

𝑖𝑑×𝑜𝑢𝑡 𝑑𝑠𝑡𝑙

⟨𝜋1∘𝜋1,⟨𝜋2∘𝜋1,𝜋2⟩⟩+𝑖𝑑

Thus, it has been shown that D is a strong monad.

To prove that D is commutative we will use another proof principle previously called the Solution
Theorem [10] or Parametric Corecursion [8]. In our setting this takes the following form.

Definition 4.11. We call a morphism 𝑔 ∶ 𝑋 → 𝐷(𝑌 + 𝑋) guarded if there exists a morphism
ℎ ∶ 𝑋 → 𝑌 + 𝐷(𝑌 + 𝑋) such that the following diagram commutes:

𝑋 𝐷(𝑌 + 𝑋)

𝑌 + 𝐷(𝑌 + 𝑋) (𝑌 + 𝑋) + 𝐷(𝑌 + 𝑋)

𝑔

𝑜𝑢𝑡

𝑖1+𝑖𝑑

ℎ

Corollary 4.12 (Solution Theorem). Let 𝑔 ∶ 𝑋 → 𝐷(𝑌 + 𝑋) be guarded. Solutions of g are
unique, i.e. given two morphisms 𝑓, 𝑖 ∶ 𝑋 → 𝐷𝑌 then 𝑓 = [𝑛𝑜𝑤, 𝑓]∗ ∘ 𝑔 and 𝑖 = [𝑛𝑜𝑤, 𝑖]∗ ∘ 𝑔
already implies 𝑓 = 𝑖.

Proof. Let 𝑔 ∶ 𝑋 → 𝐷(𝑌 + 𝑋) be guarded by ℎ ∶ 𝑋 → 𝑌 + 𝐷(𝑌 + 𝑋) and 𝑓, 𝑖 ∶ 𝑋 → 𝐷𝑌 be
solutions of g. It suffices to show [𝑛𝑜𝑤, 𝑓]∗ = [𝑛𝑜𝑤, 𝑖]∗, because then follows that

𝑓 = [𝑛𝑜𝑤, 𝑓]∗ ∘ 𝑔 = [𝑛𝑜𝑤, 𝑖]∗ ∘ 𝑔 = 𝑖.

This is proven by coinduction using

𝐷(𝑌 + 𝑋) (𝑌 + 𝑋) + 𝐷(𝑌 + 𝑋) 𝑌 + 𝐷(𝑌 + 𝑋)

𝐷𝑌 𝑌 + 𝐷𝑌𝑜𝑢𝑡

𝑜𝑢𝑡 [[𝑖1,ℎ],𝑖2]

𝑖𝑑+〖-〗〖-〗

which concludes the proof.

Let us record some facts that we will use to prove commutativity of D:

Corollary 4.13. These properties of 𝜏 and 𝜎 hold:

𝑜𝑢𝑡 ∘ 𝜏 = (𝑖𝑑 + 𝜏) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑜𝑢𝑡) (𝜏1)
𝑜𝑢𝑡 ∘ 𝜎 = (𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑜𝑢𝑡 × 𝑖𝑑) (𝜎1)
𝜏 ∘ (𝑖𝑑 × 𝑜𝑢𝑡−1) = 𝑜𝑢𝑡−1 ∘ (𝑖𝑑 + 𝜏) ∘ 𝑑𝑠𝑡𝑙 (𝜏2)
𝜎 ∘ (𝑜𝑢𝑡−1 × 𝑖𝑑) = 𝑜𝑢𝑡−1 ∘ (𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟 (𝜎2)

Proof. (𝜏1) This is just (D3) restated.

32

(𝜎1) Indeed, by use of (𝜏1)

𝑜𝑢𝑡 ∘ 𝜎
= 𝑜𝑢𝑡 ∘ 𝐷𝑠𝑤𝑎𝑝 ∘ 𝜏 ∘ 𝑠𝑤𝑎𝑝
= (𝑠𝑤𝑎𝑝 + 𝐷𝑠𝑤𝑎𝑝) ∘ 𝑜𝑢𝑡 ∘ 𝜏 ∘ 𝑠𝑤𝑎𝑝
= (𝑠𝑤𝑎𝑝 + 𝐷𝑠𝑤𝑎𝑝) ∘ (𝑖𝑑 + 𝜏) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑜𝑢𝑡) ∘ 𝑠𝑤𝑎𝑝 (𝜏1)
= (𝑠𝑤𝑎𝑝 + 𝐷𝑠𝑤𝑎𝑝) ∘ (𝑖𝑑 + 𝜏) ∘ 𝑑𝑠𝑡𝑙 ∘ 𝑠𝑤𝑎𝑝 ∘ (𝑜𝑢𝑡 × 𝑖𝑑)
= (𝑠𝑤𝑎𝑝 + 𝐷𝑠𝑤𝑎𝑝) ∘ (𝑖𝑑 + 𝜏) ∘ (𝑠𝑤𝑎𝑝 + 𝑠𝑤𝑎𝑝) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑜𝑢𝑡 × 𝑖𝑑)
= (𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑜𝑢𝑡 × 𝑖𝑑).

(𝜏2) By monicity of 𝑜𝑢𝑡:

𝑜𝑢𝑡 ∘ 𝜏 ∘ (𝑖𝑑 × 𝑜𝑢𝑡−1)
= (𝑖𝑑 + 𝜏) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑜𝑢𝑡) ∘ (𝑖𝑑 × 𝑜𝑢𝑡−1) (𝜏1)
= (𝑖𝑑 + 𝜏) ∘ 𝑑𝑠𝑡𝑙.

(𝜎2) Again, by monicity of 𝑜𝑢𝑡:

𝑜𝑢𝑡 ∘ 𝜎 ∘ (𝑜𝑢𝑡−1 × 𝑖𝑑)
= (𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑜𝑢𝑡 × 𝑖𝑑) ∘ (𝑜𝑢𝑡−1 × 𝑖𝑑) (𝜎1)
= (𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟.

Theorem 4.14. D is commutative.

Proof. Using Corollary 4.12 it suffices to show that both 𝜏∗ ∘ 𝜎 and 𝜎∗ ∘ 𝜏 are solutions of some
guarded morphism 𝑔.
Let 𝑤 ∶= (𝑑𝑠𝑡𝑟 + 𝑑𝑠𝑡𝑟) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑜𝑢𝑡 × 𝑜𝑢𝑡) and take

𝑔 ∶= 𝑜𝑢𝑡−1 ∘ [𝑖1 + 𝐷𝑖1 ∘ 𝜎, 𝑖2 ∘ [𝐷𝑖1 ∘ 𝜏, 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑛𝑜𝑤 ∘ 𝑖2]] ∘ 𝑤.

Note that 𝑔 is trivially guarded by [𝑖𝑑 + 𝐷𝑖1 ∘ 𝜎, 𝑖2 ∘ [𝐷𝑖1 ∘ 𝜏, 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑛𝑜𝑤 ∘ 𝑖2]] ∘ 𝑤. It thus suffices
to show that both 𝜏∗ ∘ 𝜎 and 𝜎∗ ∘ 𝜏 are solutions of 𝑔. Consider

𝜏∗ ∘ 𝜎 = 𝑜𝑢𝑡−1 ∘ [𝑖𝑑 + 𝜎, 𝑖2 ∘ [𝜏 , 𝑙𝑎𝑡𝑒𝑟 ∘ 𝜏∗ ∘ 𝜎]] ∘ 𝑤 = [𝑛𝑜𝑤, 𝜏∗ ∘ 𝜎]∗ ∘ 𝑔,
and

𝜎∗ ∘ 𝜏 = 𝑜𝑢𝑡−1 ∘ [𝑖𝑑 + 𝜎, 𝑖2 ∘ [𝜏 , 𝑙𝑎𝑡𝑒𝑟 ∘ 𝜎∗ ∘ 𝜏]] ∘ 𝑤 = [𝑛𝑜𝑤, 𝜎∗ ∘ 𝜏]∗ ∘ 𝑔.

The last step in both equations can be proven generally for any 𝑓 ∶ 𝐷𝑋 × 𝐷𝑌 → 𝐷(𝑋 × 𝑌)
using monicity of 𝑜𝑢𝑡:

𝑜𝑢𝑡 ∘ [𝑛𝑜𝑤, 𝑓]∗ ∘ 𝑜𝑢𝑡−1 ∘ [𝑖1 + 𝐷𝑖1 ∘ 𝜎, 𝑖2 ∘ [𝐷𝑖1 ∘ 𝜏, 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑛𝑜𝑤 ∘ 𝑖2]] ∘ 𝑤
= [𝑜𝑢𝑡 ∘ [𝑛𝑜𝑤, 𝑓], 𝑖2 ∘ [𝑛𝑜𝑤, 𝑓]∗] ∘ [𝑖1 + 𝐷𝑖1 ∘ 𝜎, 𝑖2 ∘ [𝐷𝑖1 ∘ 𝜏, 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑛𝑜𝑤 ∘ 𝑖2]] ∘ 𝑤 (D2)
= [𝑖𝑑 + 𝜎, 𝑖2 ∘ [𝑛𝑜𝑤, 𝑓]∗ ∘ [𝐷𝑖1 ∘ 𝜏, 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑛𝑜𝑤 ∘ 𝑖2]] ∘ 𝑤 (D1)
= [𝑖𝑑 + 𝜎, 𝑖2 ∘ [𝜏 , [𝑛𝑜𝑤, 𝑓]∗ ∘ 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑛𝑜𝑤 ∘ 𝑖2]] ∘ 𝑤
= [𝑖𝑑 + 𝜎, 𝑖2 ∘ [𝜏 , [𝑙𝑎𝑡𝑒𝑟 ∘ 𝑛𝑜𝑤, 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓]∗ ∘ 𝑛𝑜𝑤 ∘ 𝑖2]] ∘ 𝑤
= [𝑖𝑑 + 𝜎, 𝑖2 ∘ [𝜏 , 𝑙𝑎𝑡𝑒𝑟 ∘ 𝑓]] ∘ 𝑤.

33

Let us now check the first step in the equation for 𝜎∗ ∘ 𝜏 , the same step for 𝜏∗ ∘ 𝜎 is then
symmetric. Again, we proceed by monicity of 𝑜𝑢𝑡, which yields

𝑜𝑢𝑡 ∘ 𝜎∗ ∘ 𝜏
= [𝑜𝑢𝑡 ∘ 𝜎, 𝑖2 ∘ 𝜎∗] ∘ 𝑜𝑢𝑡 ∘ 𝜏 (D2)
= [𝑜𝑢𝑡 ∘ 𝜎, 𝑖2 ∘ 𝜎∗] ∘ (𝑖𝑑 + 𝜏) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑜𝑢𝑡) (D3)
= [(𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑜𝑢𝑡 × 𝑖𝑑), 𝑖2 ∘ 𝜎∗ ∘ 𝜏] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑜𝑢𝑡) (𝜎1)
= [(𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑜𝑢𝑡 × 𝑖𝑑), 𝑖2 ∘ 𝜎∗ ∘ 𝜏] ∘ ((𝑜𝑢𝑡−1 × 𝑖𝑑) + (𝑜𝑢𝑡−1 × 𝑖𝑑)) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑜𝑢𝑡 × 𝑜𝑢𝑡)
= [(𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟, 𝑖2 ∘ 𝜎∗ ∘ 𝜏 ∘ (𝑜𝑢𝑡−1 × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑜𝑢𝑡 × 𝑜𝑢𝑡)
= [(𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟, 𝑖2 ∘ 𝜎∗ ∘ 𝐷(𝑜𝑢𝑡−1 × 𝑖𝑑) ∘ 𝜏] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑜𝑢𝑡 × 𝑜𝑢𝑡)
= [(𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟, 𝑖2 ∘ (𝜎 × (𝑜𝑢𝑡−1 × 𝑖𝑑))∗ ∘ 𝜏] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑜𝑢𝑡 × 𝑜𝑢𝑡)
= [(𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟, 𝑖2 ∘ (𝑜𝑢𝑡−1 ∘ (𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟)∗ ∘ 𝜏] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑜𝑢𝑡 × 𝑜𝑢𝑡) (𝜎2)
= [(𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟, 𝑖2 ∘ (𝑜𝑢𝑡−1 ∘ (𝑖𝑑 + 𝜎))∗ ∘ 𝐷𝑑𝑠𝑡𝑟 ∘ 𝜏] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑜𝑢𝑡 × 𝑜𝑢𝑡)
= [(𝑖𝑑 + 𝜎) ∘ 𝑑𝑠𝑡𝑟, 𝑖2 ∘ (𝑜𝑢𝑡−1 ∘ (𝑖𝑑 + 𝜎))∗ ∘ [𝐷𝑖1 ∘ 𝜏, 𝐷𝑖2 ∘ 𝜏] ∘ 𝑑𝑠𝑡𝑟] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑜𝑢𝑡 × 𝑜𝑢𝑡) (*)
= [(𝑖𝑑 + 𝜎), 𝑖2 ∘ (𝑜𝑢𝑡−1 ∘ (𝑖𝑑 + 𝜎))∗ ∘ [𝐷𝑖1 ∘ 𝜏, 𝐷𝑖2 ∘ 𝜏]] ∘ (𝑑𝑠𝑡𝑟 + 𝑑𝑠𝑡𝑟) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑜𝑢𝑡 × 𝑜𝑢𝑡)
= [(𝑖𝑑 + 𝜎), 𝑖2 ∘ [(𝑜𝑢𝑡−1 ∘ 𝑖1)∗ ∘ 𝜏, (𝑜𝑢𝑡−1 ∘ 𝑖2 ∘ 𝜎)∗ ∘ 𝜏]] ∘ 𝑤
= [(𝑖𝑑 + 𝜎), 𝑖2 ∘ [𝜏 , (𝑙𝑎𝑡𝑒𝑟 ∘ 𝜎)∗ ∘ 𝜏]] ∘ 𝑤 (K1)
= [(𝑖𝑑 + 𝜎), 𝑖2 ∘ [𝜏 , 𝑙𝑎𝑡𝑒𝑟 ∘ 𝜎∗ ∘ 𝜏]] ∘ 𝑤,

where
𝐷𝑑𝑠𝑡𝑟 ∘ 𝜏 = [𝐷𝑖1 ∘ 𝜏, 𝐷𝑖2 ∘ 𝜏] ∘ 𝑑𝑠𝑡𝑟 (*)

indeed follows by epicness of 𝑑𝑠𝑡𝑟−1:

𝐷𝑑𝑠𝑡𝑟 ∘ 𝜏 ∘ 𝑑𝑠𝑡𝑟−1

= [𝐷𝑑𝑠𝑡𝑟 ∘ 𝜏 ∘ (𝑖1 × 𝑖𝑑), 𝐷𝑑𝑠𝑡𝑟 ∘ 𝜏 ∘ (𝑖2 × 𝑖𝑑)]
= [𝐷𝑑𝑠𝑡𝑟 ∘ 𝐷(𝑖1 × 𝑖𝑑) ∘ 𝜏, 𝐷𝑑𝑠𝑡𝑟 ∘ 𝐷(𝑖2 × 𝑖𝑑) ∘ 𝜏]
= [𝐷𝑖1 ∘ 𝜏, 𝐷𝑖2 ∘ 𝜏].

We have now seen that D is strong and commutative, however it is not an equational lifting
monad, since besides modeling non-termination, the delay monad also counts the execution
time of a computation. This is a result of the too intensional notion of equality that this monad
comes with.

In Chapter 6 we will see a way to remedy this: taking the quotient of the delay monad where
execution time is ignored. This will then yield an equational lifting monad on the category
of setoids. However, in a general setting it is generally believed to be impossible to define a
monad structure on this quotient. Chapman et al. [16] have identified the axiom of countable
choice (which crucially holds in the category of setoids) as a sufficient requirement for defining
a monad structure on the quotient of D.

34

5 Iteration Algebras and Monads

In this chapter we will draw on the inherent connection between partiality and iteration to
establish a partiality monad in a general setting without axioms by utilizing previous research
on iteration theories.

5.1 Elgot Algebras

Recall the following notion from [13], previously called complete Elgot algebra.

Definition 5.1 (Guarded Elgot Algebra). Given a functor 𝐻 ∶ C → C , a (H-)guarded Elgot
algebra consists of:

• An object 𝐴 ∈ |C |,
• a H-algebra structure 𝑎 ∶ 𝐻 𝐴 → 𝐴,

• and for every 𝑓 ∶ 𝑋 → 𝐴 + 𝐻𝑋 an iteration 𝑓 ♯ ∶ 𝑋 → 𝐴, satisfying the following axioms:

– Fixpoint: 𝑓 ♯ = [𝑖𝑑, 𝑎 ∘ 𝐻(𝑓 ♯)] ∘ 𝑓
for any 𝑓 ∶ 𝑋 → 𝐴 + 𝐻𝑋,

– Uniformity: (𝑖𝑑 + 𝐻ℎ) ∘ 𝑓 = 𝑔 ∘ ℎ implies 𝑓 ♯ = 𝑔♯ ∘ ℎ
for any 𝑓 ∶ 𝑋 → 𝐴 + 𝐻𝑋, 𝑔 ∶ 𝑌 → 𝐴 + 𝐻𝑌 , ℎ ∶ 𝑋 → 𝑌 ,

– Compositionality: ((𝑓 ♯ + 𝑖𝑑) ∘ ℎ)♯ = ([(𝑖𝑑 + 𝐻𝑖1) ∘ 𝑓, 𝑖2 ∘ 𝐻𝑖2] ∘ [𝑖1, ℎ])♯ ∘ 𝑖2
for any 𝑓 ∶ 𝑋 → 𝐴 + 𝐻𝑋, ℎ ∶ 𝑌 → 𝑋 + 𝐻𝑌 .

Consider an Elgot algebra over the identity functor 𝐼𝑑 ∶ C → C together with the trivial Id-
algebra structure 𝑖𝑑 ∶ 𝐴 → 𝐴. Morphisms of the form 𝑓 ∶ 𝑋 → 𝐴 + 𝑋 can then be viewed as
modeling one iteration of a loop, where 𝑋 ∈ |C | is the state space and 𝐴 ∈ |C | the object of
values. Intuitively, in such a setting the iteration operator (−)♯ runs such a morphism in a loop
until it terminates (or diverges), thus assigning it a solution. This is what the Fixpoint axiom
guarantees. On the other hand the Uniformity axiom states how to handle loop invariants and
finally, the Compositionality axiom is the most sophisticated one, stating that compatible
iterations can be combined into a single iteration with a merged state space.

The previous intuition gives rise to the following simpler definition that has been introduced
in [19].

Definition 5.2 (Elgot Algebra). A (unguarded) Elgot Algebra [19] consists of:

• An object 𝐴 ∈ |C |,
• and for every 𝑓 ∶ 𝑋 → 𝐴 + 𝑋 an iteration 𝑓 ♯ ∶ 𝑋 → 𝐴, satisfying the following axioms:

– Fixpoint: 𝑓 ♯ = [𝑖𝑑, 𝑓 ♯] ∘ 𝑓
for any 𝑓 ∶ 𝑋 → 𝐴 + 𝑋,

– Uniformity: (𝑖𝑑 + ℎ) ∘ 𝑓 = 𝑔 ∘ ℎ implies 𝑓 ♯ = 𝑔♯ ∘ ℎ
for any 𝑓 ∶ 𝑋 → 𝐴 + 𝑋, 𝑔 ∶ 𝑌 → 𝐴 + 𝑌 , ℎ ∶ 𝑋 → 𝑌 ,

35

– Folding: ((𝑓 ♯ + 𝑖𝑑) ∘ ℎ)♯ = [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯
for any 𝑓 ∶ 𝑋 → 𝐴 + 𝑋, ℎ ∶ 𝑌 → 𝑋 + 𝑌 .

Note that the Uniformity axiom requires an identity to be proven, before it can be applied.
However, we will omit these proofs in most parts of the thesis, since they mostly follow by simple
rewriting on (co)products, the full proofs can be looked up in the accompanying formalization.

Now, in this setting the simpler Folding axiom replaces the sophisticated Compositionality
axiom. Indeed, for 𝐼𝑑-guarded Elgot algebras with a trivial algebra structure, the Folding
and Compositionality axioms are equivalent [19], which is partly illustrated by the following
Lemma.

Lemma 5.3. Every Elgot algebra (𝐴, (−)♯) satisfies the following additional axioms

• Compositionality: ((𝑓 ♯ + 𝑖𝑑) ∘ ℎ)♯ = ([(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ 𝑖2] ∘ [𝑖1, ℎ])♯ ∘ 𝑖2
for any 𝑓 ∶ 𝑋 → 𝐴 + 𝑋, ℎ ∶ 𝑌 → 𝑋 + 𝑌 ,

• Stutter: (([ℎ, ℎ] + 𝑖𝑑) ∘ 𝑓)♯ = (𝑖1 ∘ ℎ, [ℎ + 𝑖1, 𝑖2 ∘ 𝑖2])♯ ∘ 𝑖𝑛𝑟
for any 𝑓 ∶ 𝑋 → (𝑌 + 𝑌) + 𝑋, ℎ ∶ 𝑌 → 𝐴,

• Diamond: ((𝑖𝑑 + Δ) ∘ 𝑓)♯ = ([𝑖1, ((𝑖𝑑 + Δ) ∘ 𝑓)♯ + 𝑖𝑑] ∘ 𝑓)
♯

for any 𝑓 ∶ 𝑋 → 𝐴 + (𝑋 + 𝑋).

Proof. The proofs of the axioms build upon each other, we prove them one by one.

• Compositionality: First, note that Folding can equivalently be reformulated as

((𝑓 ♯ + 𝑖𝑑) ∘ ℎ)♯ = [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯ ∘ 𝑖2, (Folding’)

since

((𝑓 ♯ + 𝑖𝑑) ∘ ℎ)♯

= (𝑓 ♯ + ℎ)♯ ∘ ℎ (Uniformity)

= [𝑓 ♯, (𝑓 ♯ + ℎ)♯ ∘ ℎ] ∘ 𝑖2

= [𝑖𝑑, (𝑓 ♯ + ℎ)♯] ∘ (𝑓 ♯ + ℎ) ∘ 𝑖2

= (𝑓 ♯ + ℎ)♯ ∘ 𝑖2 (Fixpoint)

= [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯ ∘ 𝑖2. (Folding)

Using Folding’, it suffices to show that

[(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯ ∘ 𝑖2 = ([(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ 𝑖2] ∘ [𝑖1, ℎ])♯ ∘ 𝑖2.

Indeed,

[(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯ ∘ 𝑖2

= [𝑖𝑑, [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯] ∘ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ] ∘ 𝑖2 (Fixpoint)

= [𝑖𝑑, [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯]𝑖2 ∘ ℎ
= [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯ ∘ ℎ
= [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯[𝑖1, ℎ] ∘ 𝑖2

= ([(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ 𝑖2] ∘ [𝑖1, ℎ])♯ ∘ 𝑖2. (Uniformity)

36

• Stutter: Let us first establish

[ℎ, ℎ] = (ℎ + 𝑖1)♯, (*)

which follows by

(ℎ + 𝑖1)♯

= [𝑖𝑑, (ℎ + 𝑖1)♯] ∘ (ℎ + 𝑖1) (Fixpoint)

= [ℎ, (ℎ + 𝑖1)♯ ∘ 𝑖1]
= [ℎ, [𝑖𝑑, (ℎ + 𝑖1)♯] ∘ (ℎ + 𝑖1) ∘ 𝑖1] (Fixpoint)
= [ℎ, ℎ].

Now we are done by

([ℎ, ℎ] + 𝑖𝑑) ∘ 𝑓 ♯

= ((ℎ + 𝑖1)♯ + 𝑖𝑑) ∘ 𝑓
♯

(*)

= ([(𝑖𝑑 + 𝑖1) ∘ (ℎ + 𝑖1), 𝑖2 ∘ 𝑖2] ∘ [𝑖1, 𝑓])♯ ∘ 𝑖2 (Compositionality)

= ([ℎ + 𝑖1 ∘ 𝑖1, 𝑖2 ∘ 𝑖2] ∘ [𝑖1, 𝑓])♯ ∘ (𝑖1 + 𝑖𝑑) ∘ 𝑖2

= [𝑖1 ∘ ℎ, [ℎ + 𝑖1, 𝑖2 ∘ 𝑖2] ∘ 𝑓]♯ ∘ 𝑖2. (Uniformity)

• Diamond: Let ℎ = [𝑖1 ∘ 𝑖1, 𝑖2 + 𝑖𝑑] ∘ 𝑓 and 𝑔 = (𝑖𝑑 + Δ) ∘ 𝑓 .
First, note that

[𝑖𝑑, 𝑔♯] = [𝑖1, (𝑖𝑑 + 𝑖2) ∘ 𝑔]♯, (∗)

by Fixpoint and Uniformity:

[𝑖𝑑, 𝑔♯]
= [𝑖𝑑, [𝑖𝑑, 𝑔♯] ∘ 𝑔] (Fixpoint)

= [𝑖𝑑, [𝑖𝑑, [𝑖1, (𝑖𝑑 + 𝑖2) ∘ 𝑔]♯ ∘ 𝑖2] ∘ 𝑔] (Uniformity)

= [𝑖𝑑, [𝑖1, (𝑖𝑑 + 𝑖2) ∘ 𝑔]♯] ∘ [𝑖1, (𝑖𝑑 + 𝑖2) ∘ 𝑔]
= [𝑖1, (𝑖𝑑 + 𝑖2) ∘ 𝑔]♯. (Fixpoint)

It thus suffices to show that,

𝑔♯

= [(𝑖𝑑 + 𝑖1) ∘ [𝑖1, (𝑖𝑑 + 𝑖2) ∘ 𝑔], 𝑖2 ∘ ℎ]♯ ∘ 𝑖2

= ([𝑖1, (𝑖𝑑 + 𝑖2) ∘ 𝑔]♯ + ℎ)
♯
∘ 𝑖2 (Folding)

= ([𝑖1, 𝑔♯ + 𝑖𝑑] ∘ 𝑓)♯.

37

Indeed,

𝑔♯

= 𝑔♯ ∘ [𝑖𝑑, 𝑖𝑑] ∘ 𝑖2

= [(𝑖𝑑 + 𝑖2) ∘ 𝑔, 𝑓]♯ ∘ 𝑖2 (Uniformity)

= (([𝑖𝑑, 𝑖𝑑] + 𝑖𝑑) ∘ [(𝑖1 + 𝑖1) ∘ 𝑔, (𝑖2 + 𝑖𝑑) ∘ 𝑓])♯ ∘ 𝑖2

= [𝑖1, [𝑖𝑑 + 𝑖1, 𝑖2 ∘ 𝑖2] ∘ [(𝑖1 + 𝑖1) ∘ 𝑔, (𝑖2 + 𝑖𝑑) ∘ 𝑓]]♯ ∘ 𝑖2 ∘ 𝑖2 (Stutter)

= [𝑖1, [[𝑖1, 𝑖2 ∘ 𝑖2 ∘ 𝑖1] ∘ 𝑔, [𝑖2 ∘ 𝑖1, 𝑖2 ∘ 𝑖2] ∘ 𝑓]]♯ ∘ 𝑖2 ∘ 𝑖2

= [𝑖1, [(𝑖𝑑 + 𝑖2 ∘ 𝑖1) ∘ 𝑔, 𝑖2 ∘ ∘𝑓]]♯ ∘ 𝑖2 ∘ 𝑖2

= [[𝑖1, (𝑖𝑑 + 𝑖1 ∘ 𝑖2) ∘ 𝑔], 𝑖2 ∘ ℎ]♯ ∘ [𝑖1 ∘ 𝑖1, 𝑖2 + 𝑖𝑑] ∘ 𝑖2 ∘ 𝑖2 (Uniformity)

= [[𝑖1, (𝑖𝑑 + 𝑖1 ∘ 𝑖2) ∘ 𝑔], 𝑖2 ∘ ℎ]♯ ∘ 𝑖2

= [(𝑖𝑑 + 𝑖1) ∘ [𝑖1, (𝑖𝑑 + 𝑖2) ∘ 𝑔], 𝑖2 ∘ ℎ]♯ ∘ 𝑖2

and

([𝑖1, 𝑔♯ + 𝑖𝑑] ∘ 𝑓)♯

= ([𝑖1 ∘ [𝑖𝑑, 𝑔♯] ∘ 𝑖1, [𝑖𝑑, 𝑔♯] ∘ 𝑖2 + 𝑖𝑑] ∘ 𝑓)♯

= (([𝑖𝑑, 𝑔♯] + 𝑖𝑑) ∘ ℎ)♯

= (([[𝑖𝑑, 𝑔♯], [𝑖𝑑, 𝑔♯]] + 𝑖𝑑) ∘ (𝑖2 + 𝑖𝑑) ∘ ℎ)♯

= [𝑖1 ∘ [𝑖𝑑, 𝑔♯], [[𝑖𝑑, 𝑔♯] + 𝑖1, 𝑖2 ∘ 𝑖2] ∘ (𝑖2 + 𝑖𝑑) ∘ ℎ]♯ ∘ 𝑖2 (Stutter)

= ([𝑖𝑑, 𝑔♯] + ℎ)♯ ∘ 𝑖2

= ([𝑖1, (𝑖𝑑 + 𝑖2) ∘ 𝑔]♯ + ℎ)
♯
∘ 𝑖2, (∗)

which concludes the proof.

Note that in [19] it has been shown that the Diamond axiom implies Compositionality,
yielding another definition of Elgot algebras only requiring the Fixpoint, Uniformity and
Diamond axioms.

Let us now consider morphisms that are coherent with respect to the iteration operator. A
special case being morphisms between Elgot algebras.

Definition 5.4 (Iteration Preserving Morphisms). Let (𝐴, (−)♯𝑎), (𝐵, (−)♯𝑏) be two Elgot alge-
bras.

A morphism 𝑓 ∶ 𝑋 × 𝐴 → 𝐵 is called right iteration preserving if

𝑓 ∘ (𝑖𝑑 × ℎ♯𝑎) = ((𝑓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯𝑏

for any ℎ ∶ 𝑌 → 𝐴 + 𝑌 .

Symmetrically a morphism 𝑔 ∶ 𝐴 × 𝑋 → 𝐵 is called left iteration preserving if

𝑓 ∘ (ℎ♯𝑎 × 𝑖𝑑) = ((𝑓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (ℎ × 𝑖𝑑))♯𝑏

for any ℎ ∶ 𝑌 → 𝐴 + 𝑌 .

38

Let us also consider the special case where 𝑋 = 1. A morphism 𝑓 ∶ 𝐴 → 𝐵 is called iteration
preserving if

𝑓 ∘ ℎ♯𝑎 = ((𝑓 + 𝑖𝑑) ∘ ℎ)♯𝑏

for any ℎ ∶ 𝑌 → 𝐴 + 𝑌 .

We will now study the category of Elgot algebras and iteration preserving morphisms that we
call ElgotAlgs(C). Let us introduce notation for morphisms between Elgot algebras: we denote
an Elgot algebra morphism 𝑓 ∶ (𝐴, (−)♯𝑎) → (𝐵, (−)♯𝑏) as 𝑓 ∶ 𝐴 ↪ 𝐵, where we omit stating
the iteration operator.

Lemma 5.5. ElgotAlgs(C) is a category.

Proof. It suffices to show that the identity morphism in C is iteration preserving and the
composite of two iteration preserving morphisms is also iteration preserving.

Let 𝐴, 𝐵 and 𝐶 be Elgot algebras. The identity trivially satisfies

𝑖𝑑 ∘ 𝑓 ♯𝑎 = 𝑓 ♯𝑎 = ((𝑖𝑑 + 𝑖𝑑) ∘ 𝑓)♯𝑎

for any 𝑓 ∶ 𝑋 → 𝐴 + 𝑋. Given two iteration preserving morphisms 𝑓 ∶ 𝐵 ↪ 𝐶, 𝑔 ∶ 𝐴 ↪ 𝐵, the
composite is iteration preserving since

𝑓 ∘ 𝑔 ∘ ℎ♯𝑎

= 𝑓 ∘ ((𝑔 + 𝑖𝑑) ∘ ℎ)♯𝑏

= ((𝑓 + 𝑖𝑑) ∘ (𝑔 + 𝑖𝑑) ∘ ℎ)♯𝑐

= ((𝑓 ∘ 𝑔 + 𝑖𝑑) ∘ ℎ)♯𝑐

for any ℎ ∶ 𝑋 → 𝐴 + 𝑋.

Products and exponentials of Elgot algebras can be formed in a canonical way, which is illus-
trated by the following two Lemmas.

Lemma 5.6. If C is a Cartesian category, so is ElgotAlgs(C).

Proof. Let 1 be the terminal object of C . Given 𝑓 ∶ 𝑋 → 1 + 𝑋 we define the iteration
𝑓 ♯ = ! ∶ 𝑋 → 1 as the unique morphism into the terminal object. The Elgot algebra laws follow
instantly by uniqueness of ! and (1, !) is the terminal Elgot algebra since for every Elgot algebra
𝐴 the morphism ! ∶ 𝐴 → 1 extends to a morphism between Elgot algebras by uniqueness.

Let 𝐴, 𝐵 ∈ |ElgotAlgs(C)| and 𝐴×𝐵 be the product of 𝐴 and 𝐵 in C . Given 𝑓 ∶ 𝑋 → (𝐴×𝐵)+𝑋
we define the iteration as:

𝑓 ♯ = ⟨((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 , ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏⟩ ∶ 𝑋 → 𝐴 × 𝐵

Now, we show that 𝐴 × 𝐵 indeed constitutes an Elgot algebra:

39

• Fixpoint: Let 𝑓 ∶ 𝑋 → (𝐴 × 𝐵) + 𝑋. The requisite equation follows by the fixpoint
identities of ((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 and ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏 :

⟨((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 , ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏⟩
= ⟨[𝑖𝑑, ((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎] ∘ (𝜋1 + 𝑖𝑑) ∘ 𝑓

, [𝑖𝑑, ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏] ∘ (𝜋2 + 𝑖𝑑) ∘ 𝑓⟩ (Fixpoint)

= ⟨[𝜋1, ((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎] ∘ 𝑓, [𝜋2, ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏] ∘ 𝑓⟩
= ⟨[𝜋1, ((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎], [𝜋2, ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏]⟩ ∘ 𝑓
= [⟨𝜋1, 𝜋2⟩, ⟨((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 , ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏⟩] ∘ 𝑓
= [𝑖𝑑, ⟨((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 , ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏⟩] ∘ 𝑓

• Uniformity: Let 𝑓 ∶ 𝑋 → (𝐴 × 𝐵) + 𝑋, 𝑔 ∶ 𝑌 → (𝐴 × 𝐵) + 𝑌 , ℎ ∶ 𝑋 → 𝑌 and
(𝑖𝑑 + ℎ) ∘ 𝑓 = 𝑔 ∘ ℎ. Note that this implies:

(𝑖𝑑 + ℎ) ∘ (𝜋1 + 𝑖𝑑) ∘ 𝑓 = (𝜋1 + 𝑖𝑑) ∘ 𝑔 ∘ ℎ
(𝑖𝑑 + ℎ) ∘ (𝜋2 + 𝑖𝑑) ∘ 𝑓 = (𝜋2 + 𝑖𝑑) ∘ 𝑔 ∘ ℎ

Then, Uniformity of (−)♯𝑎 and (−)♯𝑏 with the previous two equations yields:

⟨((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 , ((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎⟩ = ((𝜋1 + 𝑖𝑑) ∘ 𝑔)♯𝑎 ∘ ℎ
⟨((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏 , ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏⟩ = ((𝜋2 + 𝑖𝑑) ∘ 𝑔)♯𝑏 ∘ ℎ

This concludes the proof of:

⟨((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 , ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏⟩ = ⟨((𝜋1 + 𝑖𝑑) ∘ 𝑔)♯𝑎 , ((𝜋2 + 𝑖𝑑) ∘ 𝑔)♯𝑏⟩ ∘ ℎ

• Folding: Let 𝑓 ∶ 𝑋 → (𝐴 × 𝐵) + 𝑋, ℎ ∶ 𝑌 → 𝑋 + 𝑌 . We need to show:

⟨((𝜋1 + 𝑖𝑑) ∘ (⟨((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 , ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏⟩ + ℎ))
♯𝑎

, ((𝜋2 + 𝑖𝑑) ∘ (⟨((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 , ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏⟩ + ℎ))
♯𝑏⟩

= ⟨(𝜋1 + 𝑖𝑑) ∘ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯𝑎 , (𝜋2 + 𝑖𝑑) ∘ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯𝑏⟩

Indeed, the folding laws for (−)♯𝑎 and (−)♯𝑏 imply

((𝜋1 + 𝑖𝑑) ∘ (⟨((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 , ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏⟩ + ℎ))
♯𝑎

= (((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 + ℎ)
♯𝑎

= [(𝑖𝑑 + 𝑖1) ∘ (𝜋1 + 𝑖𝑑) ∘ 𝑓, 𝑖2 ∘ ℎ]♯𝑎 (Folding)

= (𝜋1 + 𝑖𝑑) ∘ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯𝑎

and

((𝜋2 + 𝑖𝑑) ∘ (⟨((𝜋1 + 𝑖𝑑) ∘ 𝑓)♯𝑎 , ((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏⟩ + ℎ))
♯𝑏

= (((𝜋2 + 𝑖𝑑) ∘ 𝑓)♯𝑏 + ℎ)
♯𝑏

= [(𝑖𝑑 + 𝑖1) ∘ (𝜋2 + 𝑖𝑑) ∘ 𝑓, 𝑖2 ∘ ℎ]♯𝑏 (Folding)

= (𝜋2 + 𝑖𝑑) ∘ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯𝑏

which concludes the proof of the folding law.

40

The product diagram of 𝐴 × 𝐵 in C then also holds in ElgotAlgs(C), we just have to check that
the projections are iteration preserving, which follows instantly, and that the unique morphism
⟨𝑓, 𝑔⟩ is iteration preserving for any 𝑓 ∶ 𝐶 ↪ 𝐴, 𝑔 ∶ 𝐶 → 𝐵 where 𝐶 ∈ |ElgotAlgs(C)|.
Let ℎ ∶ 𝑋 → 𝐶 + 𝑋. We use the fact that 𝑓 and 𝑔 are iteration preserving to show:

⟨𝑓, 𝑔⟩ ∘ (ℎ♯𝑐)
= ⟨𝑓 ∘ (ℎ♯𝑐), 𝑔 ∘ (ℎ♯𝑐)⟩
= ⟨((𝑓 + 𝑖𝑑) ∘ ℎ)♯𝑎 , ((𝑔 + 𝑖𝑑) ∘ ℎ)♯𝑏⟩
= ⟨((𝜋1 + 𝑖𝑑) ∘ (⟨𝑓, 𝑔⟩ + 𝑖𝑑) ∘ ℎ)♯𝑎 , ((𝜋1 + 𝑖𝑑) ∘ (⟨𝑓, 𝑔⟩ + 𝑖𝑑) ∘ ℎ)♯𝑏⟩

Which confirms that ⟨𝑓, 𝑔⟩ is indeed iteration preserving. Thus, it follows that 𝐴 × 𝐵 extends
to a product in ElgotAlgs(C) and therefore ElgotAlgs(C) is Cartesian, if C is Cartesian.

Lemma 5.7. Given 𝑋 ∈ |C | and 𝐴 ∈ |ElgotAlgs(C)|. The exponential 𝑋𝐴 (if it exists) can be
equipped with an Elgot algebra structure.

Proof. Take 𝑓 ♯ = 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) as the iteration of some 𝑓 ∶ 𝑍 → 𝐴𝑋 +
𝑍.

• Fixpoint: Let 𝑓 ∶ 𝑌 → 𝑋𝐴 + 𝑌 . We need to show that 𝑓 ♯ = [𝑖𝑑, 𝑓 ♯] ∘ 𝑓 , which follows by
uniqueness of

𝑓 ♯ = 𝑐𝑢𝑟𝑟𝑦 (((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎)
and

𝑒𝑣𝑎𝑙 ∘ ([𝑖𝑑, 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎)] ∘ 𝑓 × 𝑖𝑑)
= 𝑒𝑣𝑎𝑙 ∘ [𝑖𝑑, 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) × 𝑖𝑑] ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑) (*)

= [𝑒𝑣𝑎𝑙, 𝑒𝑣𝑎𝑙 ∘ (𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑)
= [𝑒𝑣𝑎𝑙, ((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎] ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑)
= [𝑖𝑑, ((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎] ∘ (𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑)
= ((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎 , (Fixpoint)

where

[𝑖𝑑, 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎)] × 𝑖𝑑
= [𝑖𝑑, 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) × 𝑖𝑑] ∘ 𝑑𝑠𝑡𝑟 (*)

follows by post-composing with 𝜋1 and 𝜋2, indeed:

𝜋1 ∘ [𝑖𝑑, 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) × 𝑖𝑑] ∘ 𝑑𝑠𝑡𝑟
= [𝜋1, 𝜋1 ∘ (𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑟
= [𝜋1, 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) ∘ 𝜋1] ∘ 𝑑𝑠𝑡𝑟
= [𝑖𝑑, 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎)] ∘ (𝜋1 + 𝜋1) ∘ 𝑑𝑠𝑡𝑟
= [𝑖𝑑, 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎)] ∘ 𝜋1,

41

and

𝜋2 ∘ [𝑖𝑑, 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) × 𝑖𝑑] ∘ 𝑑𝑠𝑡𝑟
= [𝜋2, 𝜋2 ∘ (𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑟
= [𝜋2, 𝜋2] ∘ 𝑑𝑠𝑡𝑟
= 𝜋2.

• Uniformity: Let 𝑓 ∶ 𝑌 → 𝑋𝐴 + 𝑌 , 𝑔 ∶ 𝑍 → 𝑋𝐴 + 𝑍, ℎ ∶ 𝑌 → 𝑍 and (𝑖𝑑 + ℎ) ∘ 𝑓 = 𝑔 ∘ ℎ.
Again, by uniqueness of 𝑓 ♯ = 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) it suffices to show:

((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎

= ((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))♯𝑎 ∘ (ℎ × 𝑖𝑑) (Uniformity)

= 𝑒𝑣𝑎𝑙 ∘ (((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))♯𝑎 × 𝑖𝑑) ∘ (ℎ × 𝑖𝑑)
= 𝑒𝑣𝑎𝑙 ∘ (((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))♯𝑎 ∘ ℎ × 𝑖𝑑).

Note that the application of Uniformity requires:

(𝑖𝑑 + (ℎ × 𝑖𝑑)) ∘ (𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑)
= (𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ (𝑖𝑑 + (ℎ × 𝑖𝑑)) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑)
= (𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑖𝑑 × ℎ) ∘ (𝑖𝑑 × 𝑖𝑑) ∘ (𝑓 × 𝑖𝑑)
= (𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑) ∘ (ℎ × 𝑖𝑑).

• Folding: Let 𝑓 ∶ 𝑌 → 𝑋𝐴 + 𝑌 , ℎ ∶ 𝑌 → 𝑍. We need to show that

(𝑓 ♯ + ℎ)♯

= 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ ((𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) + ℎ) × 𝑖𝑑))
♯𝑎)

= 𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ ([(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ] × 𝑖𝑑))♯𝑎)
= [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯.

Indeed, we are done by

((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ ((𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) + ℎ) × 𝑖𝑑))
♯𝑎

= ((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ ((𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) × 𝑖𝑑) + (ℎ × 𝑖𝑑)) ∘ 𝑑𝑠𝑡𝑟)
♯𝑎

= ((𝑒𝑣𝑎𝑙 ∘ (𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎) × 𝑖𝑑) + (ℎ × 𝑖𝑑)) ∘ 𝑑𝑠𝑡𝑟)
♯𝑎

= ((((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎 + (ℎ × 𝑖𝑑)) ∘ 𝑑𝑠𝑡𝑟)
♯𝑎

= ((((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑))♯𝑎 + 𝑑𝑠𝑡𝑟 ∘ (ℎ × 𝑖𝑑)))
♯𝑎 ∘ 𝑑𝑠𝑡𝑟 (Uniformity)

= [(𝑖𝑑 + 𝑖1) ∘ (𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑓 × 𝑖𝑑), 𝑖2 ∘ 𝑑𝑠𝑡𝑟 ∘ (ℎ × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑟 (Folding)

= ((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ ([(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ] × 𝑖𝑑))♯𝑎 , (Uniformity)

where the identity that is required for the second application of Uniformity follows by
epicness of 𝑑𝑠𝑡𝑟−1.

42

5.2 The Initial (Strong) Pre-Elgot Monad

In this section we will study the monad that arises from existence of all free Elgot algebras. We
will show that this is an equational lifting monad and also the initial strong pre-Elgot monad.
Starting in this section we will now omit indices of the iteration operator of Elgot algebras for
the sake of readability.

Let us first recall the following notion that was introduced in [14] and reformulated in [19].

Definition 5.8 (Elgot Monad). An Elgot monad consists of

• A monad T,

• for every 𝑓 ∶ 𝑋 → 𝑇 (𝑌 + 𝑋) an iteration 𝑓† ∶ 𝑋 → 𝑇 𝑌 satisfying:

– Fixpoint: 𝑓† = [𝜂, 𝑓†]∗ ∘ 𝑓
for any 𝑓 ∶ 𝑋 → 𝑇 (𝑌 + 𝑋),

– Uniformity: 𝑓 ∘ ℎ = 𝑇 (𝑖𝑑 + ℎ) implies 𝑓† ∘ 𝑔 = 𝑔†

for any 𝑓 ∶ 𝑋 → 𝑇 (𝑌 + 𝑋), 𝑔 ∶ 𝑍 → 𝑇 (𝑌 + 𝑍), ℎ ∶ 𝑍 → 𝑋,

– Naturality: 𝑔∗ ∘ 𝑓† = ([𝑇 𝑖1 ∘ 𝑔, 𝜂 ∘ 𝑖2]∗ ∘ 𝑓)†

for any 𝑓 ∶ 𝑋 → 𝑇 (𝑌 + 𝑋), 𝑔 ∶ 𝑌 → 𝑇 𝑍,

– Codiagonal: 𝑓†† = (𝑇 [𝑖𝑑, 𝑖2] ∘ 𝑓)†

for any 𝑓 ∶ 𝑋 → 𝑇 ((𝑌 + 𝑋) + 𝑋).
If the monad T is strong with strength 𝜏 and 𝜏 ∘ (𝑖𝑑 × 𝑓†) = (𝑇 𝑑𝑠𝑡𝑙 ∘ 𝜏 ∘ (𝑖𝑑 × 𝑓))† for any
𝑓 ∶ 𝑋 → 𝑇 (𝑌 + 𝑋), then T is a strong Elgot monad.

We regard Elgot monads as minimal semantic structures for interpreting side-effecting while
loops, as has been argued in [17], [18]. The following notion has been introduced in [19] as a
weaker approximation of the notion of Elgot monad, using less sophisticated axioms.

Definition 5.9 (Pre-Elgot Monad). A monad T is called pre-Elgot if every 𝑇 𝑋 extends to an
Elgot algebra such that for every 𝑓 ∶ 𝑋 → 𝑇 𝑌 the Kleisli lifting 𝑓∗ ∶ 𝑇 𝑋 → 𝑇 𝑌 is iteration
preserving.

If the monad T is additionally strong and the strength 𝜏 is right iteration preserving we call T
strong pre-Elgot.

(Strong) pre-Elgot monads form a subcategory of Monads(C) where objects are (strong) pre-
Elgot monads and morphisms between pre-Elgot monads are natural transformations 𝛼 as in
Definition 2.13 such that additionally each 𝛼𝑋 is iteration preserving. Similarly, morphisms
between strong pre-Elgot monads are natural transformations 𝛼 as in Definition 2.19 such that
each 𝛼𝑋 is iteration preserving. We call these categories PreElgot(C) and StrongPreElgot(C)
respectively.

Lemma 5.10. PreElgot(C) and StrongPreElgot(C) are categories.

Proof. Since PreElgot(C) and StrongPreElgot(C) are subcategories of the previously defined
categories Monads(C) and StrongMonads(C) respectively, it suffices to show that the compo-
nents of the identity natural transformation are iteration preserving and that the component
wise composition of two pre-Elgot monad morphisms is iteration preserving. This has already
been shown in Lemma 5.5.

43

Assuming a form of the axiom of countable choice it has been proven in [19] that the initial
pre-Elgot monad and the initial Elgot monad coincide, thus closing the expressivity gap in such
a setting. However, it is believed to be impossible to close this gap in a general setting.

Proposition 5.11. Existence of all free Elgot algebras yields a monad that we call K.

Proof. This is a direct consequence of Proposition 2.22.

We will need a notion of stability for K to make progress, since we do not assume C to be
Cartesian closed.

Definition 5.12 (Right-Stable Free Elgot Algebra). Let 𝐾𝑌 be a free Elgot algebra on 𝑌 ∈ |C |.
We call 𝐾𝑌 right-stable if for every 𝐴 ∈ ElgotAlgs(C), 𝑋 ∈ |C |, and 𝑓 ∶ 𝑋 × 𝑌 → 𝐴 there exists
a unique right iteration preserving 𝑓▶ ∶ 𝑋 × 𝐾𝑌 → 𝐴 such that

𝑋 × 𝑌 𝐴

𝑋 × 𝐾𝑌

𝑓

𝑖𝑑×𝜂
𝑓▶

commutes.

A symmetrical variant of the previous definition is sometimes useful.

Definition 5.13 (Left-Stable Free Elgot Algebra). Let 𝐾𝑌 be a free Elgot algebra on 𝑌 ∈ |C |.
We call 𝐾𝑌 left-stable if for every 𝐴 ∈ ElgotAlgs(C), 𝑋 ∈ |C |, and 𝑓 ∶ 𝑌 × 𝑋 → 𝐴 there exists
a unique left iteration preserving 𝑓◀ ∶ 𝐾𝑌 × 𝑋 → 𝐴 such that

𝑋 × 𝑌 𝐴

𝐾𝑋 × 𝑌

𝑓

𝜂×𝑖𝑑
𝑓◀

commutes.

Lemma 5.14. Definitions 5.12 and 5.13 are equivalent in the sense that they imply each other.

Proof. Let 𝐾𝑌 be a left stable free Elgot algebra on 𝑌 ∈ |C |. Furthermore, let 𝐴 be an Elgot
algebra and 𝑋 ∈ |C |, 𝑓 ∶ 𝑌 × 𝑋 → 𝐴.

We take 𝑓▶ ∶= (𝑓 ∘ 𝑠𝑤𝑎𝑝)◀ ∘ 𝑠𝑤𝑎𝑝, which is indeed right iteration preserving, since

𝑓▶ ∘ (𝑖𝑑 × ℎ♯)
= (𝑓 ∘ 𝑠𝑤𝑎𝑝)◀ ∘ 𝑠𝑤𝑎𝑝 ∘ (𝑖𝑑 × ℎ♯)
= (𝑓 ∘ 𝑠𝑤𝑎𝑝)◀ ∘ (ℎ♯ × 𝑖𝑑) ∘ 𝑠𝑤𝑎𝑝
= (((𝑓 ∘ 𝑠𝑤𝑎𝑝)◀ + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑖𝑑 × ℎ))♯ ∘ 𝑠𝑤𝑎𝑝
= (((𝑓 ∘ 𝑠𝑤𝑎𝑝)◀ ∘ 𝑠𝑤𝑎𝑝 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ (Uniformity)

= ((𝑓▶ + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯,

44

for any 𝑍 ∈ |C |, ℎ ∶ 𝑍 → 𝐾𝑌 + 𝑍.

The requisite diagram commutes, since

𝑓▶ ∘ (𝑖𝑑 × 𝜂)
= (𝑓 ∘ 𝑠𝑤𝑎𝑝)◀ ∘ 𝑠𝑤𝑎𝑝 ∘ (𝑖𝑑 × 𝜂)
= (𝑓 ∘ 𝑠𝑤𝑎𝑝)◀ ∘ (𝜂 × 𝑖𝑑) ∘ 𝑠𝑤𝑎𝑝
= 𝑓 ∘ 𝑠𝑤𝑎𝑝 ∘ 𝑠𝑤𝑎𝑝
= 𝑓.

Finally, let us check uniqueness of 𝑓▶ = (𝑓 ∘ 𝑠𝑤𝑎𝑝)◀ ∘ 𝑠𝑤𝑎𝑝. Let 𝑔 ∶ 𝑋 × 𝐾𝑌 → 𝐴 be right
iteration preserving with 𝑔 ∘ (𝑖𝑑 × 𝜂) = 𝑓 . To show that 𝑔 = (𝑓 ∘ 𝑠𝑤𝑎𝑝)◀ ∘ 𝑠𝑤𝑎𝑝, by uniqueness
of (𝑓 ∘ 𝑠𝑤𝑎𝑝)◀ it suffices to show that 𝑔 ∘ 𝑠𝑤𝑎𝑝 satisfies 𝑔 ∘ 𝑠𝑤𝑎𝑝 ∘ (𝜂 × 𝑖𝑑) = 𝑓 ∘ 𝑠𝑤𝑎𝑝 and is left
iteration preserving.

Indeed,
𝑔 ∘ 𝑠𝑤𝑎𝑝 ∘ (𝜂 × 𝑖𝑑) = 𝑔 ∘ (𝑖𝑑 × 𝜂) ∘ 𝑠𝑤𝑎𝑝 = 𝑓 ∘ 𝑠𝑤𝑎𝑝

and

𝑔 ∘ 𝑠𝑤𝑎𝑝 ∘ (ℎ♯ × 𝑖𝑑)
= 𝑔 ∘ (𝑖𝑑 × ℎ♯) ∘ 𝑠𝑤𝑎𝑝
= ((𝑔 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ ∘ 𝑠𝑤𝑎𝑝
= ((𝑔 ∘ 𝑠𝑤𝑎𝑝 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (ℎ × 𝑖𝑑))♯, (Uniformity)

for any 𝑍 ∈ |C |, ℎ ∶ 𝑍 → 𝐾𝑌 + 𝑍.

This concludes one direction of the proof, the other direction follows symmetrically.

Lemma 5.15. In a Cartesian closed category every free Elgot algebra is stable.

Proof. Let C be Cartesian closed and let 𝐾𝑋 be a free Elgot algebra on some 𝑋 ∈ |C |.
To show left stability of 𝐾𝑋 we define 𝑓◀ ∶= 𝑒𝑣𝑎𝑙 ∘ ((𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ × 𝑖𝑑) for any 𝑋 ∈ |C |, 𝐴 ∈
|ElgotAlgs(C)|, and 𝑓 ∶ 𝑌 × 𝑋 → 𝐴. We will now verify that this does indeed satisfy the
requisite properties, i.e.

𝑒𝑣𝑎𝑙 ∘ ((𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ × 𝑖𝑑) ∘ (𝜂 × 𝑖𝑑)
= 𝑒𝑣𝑎𝑙 ∘ ((𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ ∘ 𝜂 × 𝑖𝑑)
= 𝑒𝑣𝑎𝑙 ∘ (𝑐𝑢𝑟𝑟𝑦 𝑓 × 𝑖𝑑)
= 𝑓

and for any 𝑍 ∈ |C |, ℎ ∶ 𝑍 → 𝐾𝑌 + 𝑍:

𝑒𝑣𝑎𝑙 ∘ ((𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ × 𝑖𝑑) ∘ (ℎ♯ × 𝑖𝑑)
= 𝑒𝑣𝑎𝑙 ∘ ((𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ ∘ ℎ♯ × 𝑖𝑑)
= 𝑒𝑣𝑎𝑙 ∘ (𝑐𝑢𝑟𝑟𝑦(((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ ((((𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ + 𝑖𝑑) ∘ ℎ) × 𝑖𝑑))♯) × 𝑖𝑑)
= ((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (((𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ + 𝑖𝑑) ∘ ℎ × 𝑖𝑑))♯

= ((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (((𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ + 𝑖𝑑) × 𝑖𝑑) ∘ (ℎ × 𝑖𝑑))♯

= ((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ (((𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ × 𝑖𝑑) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (ℎ × 𝑖𝑑))♯

= ((𝑒𝑣𝑎𝑙 ∘ ((𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ × 𝑖𝑑) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (ℎ × 𝑖𝑑))♯.

45

Lastly, we need to check uniqueness of 𝑓◀. Let us consider a left iteration preserving morphism
𝑔 ∶ 𝐾𝑌 × 𝑋 → 𝐴 that satisfies 𝑔 ∘ (𝜂 × 𝑖𝑑) = 𝑓 . Since 𝑐𝑢𝑟𝑟𝑦 is an injective mapping it suffices
to show that

𝑐𝑢𝑟𝑟𝑦 𝑓◀

= 𝑐𝑢𝑟𝑟𝑦(𝑒𝑣𝑎𝑙 ∘ ((𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ × 𝑖𝑑))
= (𝑐𝑢𝑟𝑟𝑦 𝑓)⋆

= 𝑐𝑢𝑟𝑟𝑦 𝑔.

Where the last step is the only non-trivial one. Since (𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ is a unique iteration preserving
morphism satisfying (𝑐𝑢𝑟𝑟𝑦 𝑓)⋆ ∘ 𝜂 = 𝑐𝑢𝑟𝑟𝑦 𝑓 , we are left to show that 𝑔 is also iteration
preserving and satisfies the same property.

Indeed,

𝑐𝑢𝑟𝑟𝑦 𝑔 ∘ ℎ♯

= 𝑐𝑢𝑟𝑟𝑦 (𝑔 ∘ (ℎ♯ × 𝑖𝑑))
= 𝑐𝑢𝑟𝑟𝑦 (((𝑔 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (ℎ × 𝑖𝑑))♯)
= 𝑐𝑢𝑟𝑟𝑦 (((𝑒𝑣𝑎𝑙 ∘ (𝑐𝑢𝑟𝑟𝑦 𝑔 × 𝑖𝑑) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (ℎ × 𝑖𝑑))♯)
= 𝑐𝑢𝑟𝑟𝑦 (((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ ((𝑐𝑢𝑟𝑟𝑦 𝑔 × 𝑖𝑑) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (ℎ × 𝑖𝑑))♯)
= 𝑐𝑢𝑟𝑟𝑦 (((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ ((𝑐𝑢𝑟𝑟𝑦 𝑔 + 𝑖𝑑) × 𝑖𝑑) ∘ (ℎ × 𝑖𝑑))♯)
= 𝑐𝑢𝑟𝑟𝑦 (((𝑒𝑣𝑎𝑙 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (((𝑐𝑢𝑟𝑟𝑦 𝑔 + 𝑖𝑑) ∘ ℎ) × 𝑖𝑑))♯)

for any 𝑍 ∈ |C |, ℎ ∶ 𝑍 → 𝐾𝑌 + 𝑍, and

𝑐𝑢𝑟𝑟𝑦 𝑔 ∘ 𝜂
= 𝑐𝑢𝑟𝑟𝑦(𝑔 ∘ (𝜂 × 𝑖𝑑))
= 𝑐𝑢𝑟𝑟𝑦 𝑓.

Which completes the proof.

For the rest of this chapter we will assume every 𝐾𝑋 to exist and be stable. Under these
assumptions we show that K is an equational lifting monad and in fact the initial strong pre-
Elgot monad. Let us first introduce a proof principle similar to the one introduced in Remark 4.9.

Remark 5.16 (Proof by right-stability). Given two morphisms 𝑔, ℎ ∶ 𝑋 × 𝐾𝑌 → 𝐴 where
𝑋, 𝑌 ∈ |C |, 𝐴 ∈ |ElgotAlgs(C)|. To show that 𝑔 = ℎ, it suffices to show that 𝑔 and ℎ are right
iteration preserving and there exists a morphism 𝑓 ∶ 𝑋 × 𝑌 → 𝐴 such that

𝑋 × 𝐾𝑌 𝐴

𝑋 × 𝑌

𝑔

ℎ

𝑓𝑖𝑑×𝜂

commutes.

Of course there is also a symmetric version of this.

46

Remark 5.17 (Proof by left-stability). Given two morphisms 𝑔, ℎ ∶ 𝐾𝑋 × 𝑌 → 𝐴 where
𝑋, 𝑌 ∈ |C |, 𝐴 ∈ |ElgotAlgs(C)|. To show that 𝑔 = ℎ, it suffices to show that 𝑔 and ℎ are left
iteration preserving and there exists a morphism 𝑓 ∶ 𝑋 × 𝑌 → 𝐴 such that

𝐾𝑋 × 𝑌 𝐴

𝑋 × 𝑌

𝑔

ℎ

𝑓𝜂×𝑖𝑑

commutes.

Lemma 5.18. K is a strong monad.

Proof. We define strength as 𝜏 = (𝜂 ∶ 𝑋 ×𝑌 → 𝐾(𝑋 ×𝑌))▶ ∶ 𝑋 ×𝐾𝑌 → 𝐾(𝑋 ×𝑌). Note that
by definition 𝜏 is right iteration preserving and 𝜏 ∘ (𝑖𝑑 × 𝜂) = 𝜂. Most of the requisite proofs
will be done by right-stability using Remark 5.16, i.e. to prove an identity we need to give a
unifying morphism such that the requisite diagram commutes, and we need to show that both
sides of the identity are right iteration preserving. The proofs of commutativity follow by easy
rewriting and are thus deferred to the formalization. The proofs of right iteration preservation
follow in most cases instantly since the morphisms are composed of (right) iteration preserving
morphisms but in non-trivial cases we will give the full proof.

Naturality of 𝜏 follows by:

𝐴 × 𝐾𝐵 𝑋 × 𝐾𝑌

𝐾(𝐴 × 𝐵) 𝐾(𝑋 × 𝑌)

𝐴 × 𝐵

𝑖𝑑×𝜂
𝜏

𝐾(𝑓×𝑔)

𝑓×𝐾𝑔

𝜏

𝜂∘(𝑓×𝑔)

Notably, 𝜏 ∘ (𝑓 × 𝐾𝑔) is right iteration preserving, since for any 𝑍 ∈ |C | and ℎ ∶ 𝑍 → 𝐾𝑌 + 𝑍:

𝜏 ∘ (𝑓 × 𝐾𝑔) ∘ (𝑖𝑑 × ℎ♯)
= 𝜏 ∘ (𝑓 × ((𝐾𝑔 + 𝑖𝑑) ∘ ℎ)♯)
= ((𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ((𝐾𝑔 + 𝑖𝑑) ∘ ℎ)))♯ ∘ (𝑓 × 𝑖𝑑)
= (((𝜏 ∘ (𝑓 × 𝐾𝑔)) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯. (Uniformity)

Let us now check the strength laws.

(S1) Note that for K, the identity 𝐾𝜋2 ∘𝜏 = 𝜋2 holds more generally for any 𝑋, 𝑌 ∈ |C | instead
of just for 𝑋 = 1, which is proven by right-stability, using:

𝑋 × 𝐾𝑌 𝐾(𝑋 × 𝑌)

𝑋 × 𝑌 𝐾𝑌

𝜏

𝐾𝜋2𝜋2
𝑖𝑑×𝜂

𝜂∘𝜋2

47

(S2) As already mentioned, 𝜏 ∘ (𝑖𝑑 × 𝜂) = 𝜂 follows by definition of 𝜏 .
(S3) To show that 𝜏 ∘ (𝑖𝑑 × 𝜇) = 𝜏∗ ∘ 𝜏 , we will proceed by right-stability using:

𝑋 × 𝐾𝐾𝑌 𝑋 × 𝐾𝑌

𝐾(𝑋 × 𝐾𝑌) 𝐾(𝑋 × 𝑌)

𝑋 × 𝐾𝑌

𝑖𝑑×𝜇

𝜏𝜏

𝜏∗

𝑖𝑑×𝜂

𝜏

(S4) Lastly, consider the following diagram for the proof by right-stability:

(𝑋 × 𝑌) × 𝐾𝑍 𝐾((𝑋 × 𝑌) × 𝑍)

𝑋 × 𝑌 × 𝐾𝑌 𝑋 × 𝐾(𝑌 × 𝑍) 𝐾(𝑋 × 𝑌 × 𝑍)

(𝑋 × 𝑌) × 𝑍

𝛼 𝐾𝛼

𝜏

𝑖𝑑×𝜏 𝜏

𝑖𝑑×𝜂

𝜂∘𝛼

where 𝜏 ∘(𝑖𝑑×𝜏)∘𝛼 is right iteration preserving, since for any 𝑍 ∈ |C | and ℎ ∶ 𝑍 → 𝐾𝑋+𝑍:

𝜏 ∘ (𝑖𝑑 × 𝜏) ∘ 𝛼 ∘ (𝑖𝑑 × ℎ♯)
= 𝜏 ∘ ⟨𝜋1 ∘ 𝜋1, 𝜏 ∘ ⟨𝜋2 ∘ 𝜋1, 𝜋2⟩⟩ ∘ (𝑖𝑑 × ℎ♯)
= 𝜏 ∘ ⟨𝜋1 ∘ 𝜋1, 𝜏 ∘ ⟨𝜋2 ∘ 𝜋1, ℎ♯ ∘ 𝜋2⟩⟩
= 𝜏 ∘ ⟨𝜋1 ∘ 𝜋1, 𝜏 ∘ (𝑖𝑑 × ℎ♯) ∘ ⟨𝜋2 ∘ 𝜋1, 𝜋2⟩⟩
= 𝜏 ∘ ⟨𝜋1 ∘ 𝜋1, ((𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ ∘ ⟨𝜋2 ∘ 𝜋1, 𝜋2⟩⟩
= 𝜏 ∘ (𝑖𝑑 × ((𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯) ∘ 𝛼
= ((𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ((𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))))♯ ∘ 𝛼
= (((𝜏 ∘ (𝑖𝑑 × 𝜏) ∘ 𝛼) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯. (Uniformity)

Thus, strength of K has been proven.

As we did when proving commutativity of D, let us record some facts about 𝜏 and the induced
𝜎, before proving commutativity of K.

Corollary 5.19. 𝜎 is left iteration preserving and satisfies 𝜎 ∘ (𝜂 × 𝑖𝑑) = 𝜂 and the following
properties of 𝜏 and 𝜎 hold.

𝜏 ∘ (𝑓∗ × 𝑔∗) = (𝜏 ∘ (𝑖𝑑 × 𝑔))∗ ∘ 𝜏 ∘ (𝑓∗ × 𝑖𝑑) (𝜏1)
𝜎 ∘ (𝑓∗ × 𝑔∗) = (𝜎 ∘ (𝑓 × 𝑖𝑑))∗ ∘ 𝜎 ∘ (𝑖𝑑 × 𝑔∗) (𝜎1)

Proof. Note that the first part of the proof amounts to showing that 𝜎 = 𝜂◀ using uniqueness

48

of 𝜂◀. Indeed,

𝜎 ∘ (𝜂 × 𝑖𝑑)
= 𝐾𝑠𝑤𝑎𝑝 ∘ 𝜏 ∘ 𝑠𝑤𝑎𝑝 ∘ (𝜂 × 𝑖𝑑)
= 𝐾𝑠𝑤𝑎𝑝 ∘ 𝜏 ∘ (𝑖𝑑 × 𝜂) ∘ 𝑠𝑤𝑎𝑝
= 𝐾𝑠𝑤𝑎𝑝 ∘ 𝜂 ∘ 𝑠𝑤𝑎𝑝
= 𝜂 ∘ 𝑠𝑤𝑎𝑝 ∘ 𝑠𝑤𝑎𝑝
= 𝜂

and for any ℎ ∶ 𝑍 → 𝐾𝑋 + 𝑍

𝜎 ∘ (ℎ♯ × 𝑖𝑑)
= 𝐾𝑠𝑤𝑎𝑝 ∘ 𝜏 ∘ 𝑠𝑤𝑎𝑝 ∘ (ℎ♯ × 𝑖𝑑)
= 𝐾𝑠𝑤𝑎𝑝 ∘ 𝜏 ∘ (𝑖𝑑 × ℎ♯) ∘ 𝑠𝑤𝑎𝑝
= 𝐾𝑠𝑤𝑎𝑝 ∘ ((𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ ∘ 𝑠𝑤𝑎𝑝
= (((𝐾𝑠𝑤𝑎𝑝 ∘ 𝜏) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ ∘ 𝑠𝑤𝑎𝑝
= ((𝜎 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (ℎ × 𝑖𝑑))♯. (Uniformity)

Let us now proceed with the properties of 𝜏 and 𝜎.
(𝜏1)

(𝜏 ∘ (𝑖𝑑 × 𝑔))∗ ∘ 𝜏 ∘ (𝑓∗ × 𝑖𝑑)
= 𝜏∗ ∘ 𝐾(𝑖𝑑 × 𝑔) ∘ 𝜏 ∘ (𝑓∗ × 𝑖𝑑)
= 𝜏∗ ∘ 𝜏 ∘ (𝑖𝑑 × 𝐾𝑔) ∘ (𝑓∗ × 𝑖𝑑)
= 𝜏 ∘ (𝑖𝑑 × 𝜇) ∘ (𝑖𝑑 × 𝐾𝑔) ∘ (𝑓∗ × 𝑖𝑑)
= 𝜏 ∘ (𝑖𝑑 × 𝑔∗) ∘ (𝑓∗ × 𝑖𝑑)
= 𝜏 ∘ (𝑓∗ × 𝑔∗)

(𝜎1)

(𝜎 ∘ (𝑓 × 𝑖𝑑))∗ ∘ 𝜎 ∘ (𝑖𝑑 × 𝑔∗)
= 𝜎∗ ∘ 𝐾(𝑓 × 𝑖𝑑) ∘ 𝜎 ∘ (𝑖𝑑 × 𝑔∗)
= 𝜎∗ ∘ 𝜎 ∘ (𝐾𝑓 × 𝑖𝑑) ∘ (𝑖𝑑 × 𝑔∗)
= 𝜎 ∘ (𝜇 × 𝑖𝑑) ∘ (𝐾𝑓 × 𝑖𝑑) ∘ (𝑖𝑑 × 𝑔∗)
= 𝜎 ∘ (𝑓∗ × 𝑖𝑑) ∘ (𝑖𝑑 × 𝑔∗)
= 𝜎 ∘ (𝑓∗ × 𝑔∗)

Thus, the proof has been concluded.

The following Lemma is central to the proof of commutativity.

Lemma 5.20. Given 𝑓 ∶ 𝑋 → 𝐾𝑌 + 𝑋, 𝑔 ∶ 𝑍 → 𝐾𝐴 + 𝑍,

𝜏∗ ∘ 𝜎 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑓)♯ × ((𝜂 + 𝑖𝑑) ∘ 𝑔)♯) = 𝜎∗ ∘ 𝜏 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑓)♯ × ((𝜂 + 𝑖𝑑) ∘ 𝑔)♯).

Proof. Let us abbreviate ̂𝑓 ∶= (𝜂 + 𝑖𝑑) ∘ 𝑓 and ̂𝑔 ∶= (𝜂 + 𝑖𝑑) ∘ 𝑔. It suffices to find a

𝑤 ∶ 𝑋 × 𝑍 → 𝐾(𝑋 × 𝐾𝐴 + 𝐾𝑌 × 𝑍) + 𝑋 × 𝑍

49

such that ̂𝑓 ♯ ∘ 𝜋1 = [̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1]
∗

∘ 𝑤♯ and ̂𝑔♯ ∘ 𝜋2 = [̂𝑔♯ ∘ 𝜋2, 𝜂 ∘ 𝜋2]∗ ∘ 𝑤♯, because then

𝜏∗ ∘ 𝜎 ∘ (̂𝑓 ♯ × ̂𝑔♯)
= 𝜏∗ ∘ 𝜎 ∘ ([̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1]

∗
× [̂𝑔♯ ∘ 𝜋2, 𝜂 ∘ 𝜋2]∗) ∘ (𝑤♯ × 𝑤♯)

= 𝜏∗ ∘ (𝜎 ∘ ([̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1] × 𝑖𝑑))
∗

∘ 𝜎 ∘ (𝑖𝑑 × [̂𝑔♯ ∘ 𝜋2, 𝜂 ∘ 𝜋2]∗) ∘ (𝑤♯ × 𝑤♯)
= 𝜏∗ ∘ (𝜎 ∘ ([̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1] × 𝑖𝑑))

∗
∘ 𝐾(𝑖𝑑 × [̂𝑔♯ ∘ 𝜋2, 𝜂 ∘ 𝜋2]∗) ∘ 𝜎 ∘ (𝑤♯ × 𝑤♯)

= 𝜏∗ ∘ (𝜎 ∘ ([̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1] × 𝑖𝑑))
∗

∘ 𝐾(𝑖𝑑 × [̂𝑔♯ ∘ 𝜋2, 𝜂 ∘ 𝜋2]∗) ∘ 𝐾𝑠𝑤𝑎𝑝 ∘ 𝜏 ∘ Δ ∘ 𝑤♯

= 𝜏∗ ∘ (𝜎 ∘ ([̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1] × 𝑖𝑑))
∗

∘ 𝐾(𝑖𝑑 × [̂𝑔♯ ∘ 𝜋2, 𝜂 ∘ 𝜋2]∗) ∘ 𝐾𝑠𝑤𝑎𝑝 ∘ 𝐾⟨𝜂, 𝑖𝑑⟩ ∘ 𝑤♯ (Theorem 5.22)

= 𝜏∗ ∘ (𝜎 ∘ ([̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1] × 𝑖𝑑))
∗

∘ 𝐾(𝑖𝑑 × [̂𝑔♯ ∘ 𝜋2, 𝜂 ∘ 𝜋2]∗) ∘ 𝐾⟨𝑖𝑑, 𝜂⟩ ∘ 𝑤♯

= 𝜏∗ ∘ (𝜎 ∘ ([̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1] × 𝑖𝑑))
∗

∘ 𝐾⟨𝑖𝑑, [̂𝑔♯ ∘ 𝜋2, 𝜂 ∘ 𝜋2]⟩ ∘ 𝑤♯

= 𝜏∗ ∘ (𝜎 ∘ ⟨[̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1], [̂𝑔♯ ∘ 𝜋2, 𝜂 ∘ 𝜋2]⟩)
∗

∘ 𝑤♯

= 𝜏∗ ∘ (𝜎 ∘ [⟨ ̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋2⟩, ⟨𝜂 ∘ 𝜋1, ̂𝑔♯ ∘ 𝜋2⟩])
∗

∘ 𝑤♯

= (𝜏∗ ∘ 𝜎 ∘ [̂𝑓 ♯ × 𝜂, 𝜂 × ̂𝑔♯])
∗

∘ 𝑤♯

= ([𝜏∗ ∘ 𝜎 ∘ (̂𝑓 ♯ × 𝜂), 𝜏∗ ∘ 𝜎 ∘ (𝜂 × ̂𝑔♯)])
∗

∘ 𝑤♯

= ([𝜏∗ ∘ 𝐾(𝑖𝑑 × 𝜂) ∘ 𝜎 ∘ (̂𝑓 ♯ × 𝑖𝑑), 𝜏∗ ∘ 𝜂 ∘ (𝑖𝑑 × ̂𝑔♯)])
∗

∘ 𝑤♯

= ([𝜎 ∘ (̂𝑓 ♯ × 𝑖𝑑), 𝜏 ∘ (𝑖𝑑 × ̂𝑔♯)])
∗

∘ 𝑤♯,

and by a symmetric argument also

𝜎∗ ∘ 𝜏 ∘ (̂𝑓 ♯ × ̂𝑔♯) = ([𝜎 ∘ (̂𝑓 ♯ × 𝑖𝑑), 𝜏 ∘ (𝑖𝑑 × ̂𝑔♯)])
∗

∘ 𝑤♯.

Note that we are referencing the equational lifting law established in Theorem 5.22 even though
for a monad to be an equational lifting monad it has to be commutative first. However, since
we are merely referencing the equational law, which can (and does in this case) hold without
depending on commutativity, this does not pose a problem.

We are thus left to find such a 𝑤, consider

𝑤 ∶= [𝑖1 ∘ 𝐾𝑖1 ∘ 𝜏, ((𝐾𝑖2 ∘ 𝜎) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ̂𝑔).

𝑤 indeed satisfies the requisite properties, let us check the first property, the second one follows
by a symmetric argument. We need to show that

[̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1]
∗

∘ 𝑤♯ = ([𝑖1 ∘ 𝜋1, (̂𝑓 ♯ ∘ 𝜋1 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙] ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑔))
♯

= ̂𝑓 ♯ ∘ 𝜋1.

50

Indeed,

[̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1]
∗

∘ 𝑤♯

= (([̂𝑓 ♯ ∘ 𝜋1, 𝜂 ∘ 𝜋1]
∗

+ 𝑖𝑑) ∘ 𝑤)
♯

= ([𝑖1 ∘ (̂𝑓 ♯ ∘ 𝜋1)
∗

∘ 𝜏, ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ̂𝑔))
♯

= ([𝑖1 ∘ (̂𝑓 ♯ ∘ 𝜋1)
∗

∘ 𝜏, ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × (𝜂 + 𝑖𝑑)) ∘ (𝑖𝑑 × 𝑔))
♯

= ([𝑖1 ∘ (̂𝑓 ♯ ∘ 𝜋1)
∗

∘ 𝜏, ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)] ∘ ((𝑖𝑑 × 𝜂) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑔))
♯

= ([𝑖1 ∘ (̂𝑓 ♯ ∘ 𝜋1)
∗

∘ 𝜏 ∘ (𝑖𝑑 × 𝜂), ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑔))
♯

= ([𝑖1 ∘ ̂𝑓 ♯ ∘ 𝜋1, ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑔))
♯

= ([𝑖1 ∘ [𝑖𝑑, ̂𝑓 ♯] ∘ ̂𝑓 ∘ 𝜋1, ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑔))
♯

(Fixpoint)

= ([𝑖1 ∘ [𝑖𝑑, ̂𝑓 ♯] ∘ 𝜋1 ∘ (̂𝑓 × 𝑖𝑑), ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)] ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑔))
♯

= ([𝑖1 ∘ [𝑖𝑑, ̂𝑓 ♯] ∘ 𝜋1, ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟] ∘ ((̂𝑓 × 𝑖𝑑) + (̂𝑓 × 𝑖𝑑)) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑔))
♯

= ([𝑖1 ∘ [𝑖𝑑, ̂𝑓 ♯] ∘ 𝜋1, ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟] ∘ 𝑑𝑠𝑡𝑙 ∘ (̂𝑓 × 𝑔))
♯

= ([𝑖1 ∘ [𝑖𝑑, ̂𝑓 ♯] ∘ (𝜋1 + 𝜋1) ∘ 𝑑𝑠𝑡𝑟, ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟] ∘ 𝑑𝑠𝑡𝑙 ∘ (̂𝑓 × 𝑔))
♯

= ([𝑖1 ∘ [𝑖𝑑, ̂𝑓 ♯] ∘ (𝜋1 + 𝜋1), ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑)] ∘ (𝑑𝑠𝑡𝑟 + 𝑑𝑠𝑡𝑟) ∘ 𝑑𝑠𝑡𝑙 ∘ (̂𝑓 × 𝑔))
♯

= ([𝑖1 ∘ [𝑖𝑑, ̂𝑓 ♯] ∘ (𝜋1 + 𝜋1), ((𝐾𝜋1 ∘ 𝜎) + 𝑖𝑑)] ∘ [𝑖1 + 𝑖1, 𝑖2 + 𝑖2] ∘ (𝑑𝑠𝑡𝑙 + 𝑑𝑠𝑡𝑙) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑔))
♯

= ([[𝑖1 ∘ [𝑖𝑑, ̂𝑓 ♯] ∘ 𝑖1 ∘ 𝜋1, 𝑖1 ∘ 𝐾𝜋1 ∘ 𝜎], [𝑖1 ∘ [𝑖𝑑, ̂𝑓 ♯] ∘ 𝑖2 ∘ 𝜋1, 𝑖2]] ∘ (𝑑𝑠𝑡𝑙 + 𝑑𝑠𝑡𝑙) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑔))
♯

= ([[𝑖1 ∘ 𝜋1, 𝑖1 ∘ 𝜋1], [𝑖1 ∘ ̂𝑓 ♯ ∘ 𝜋1, 𝑖2]] ∘ (𝑑𝑠𝑡𝑙 + 𝑑𝑠𝑡𝑙) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑔))
♯

= ([𝑖1 ∘ [𝜋1, 𝜋1], (̂𝑓 ♯ ∘ 𝜋1 + 𝑖𝑑)] ∘ (𝑑𝑠𝑡𝑙 + 𝑑𝑠𝑡𝑙) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑔))
♯

= ([𝑖1 ∘ 𝜋1, (̂𝑓 ♯ ∘ 𝜋1 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙] ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑔))
♯

and

̂𝑓 ♯ ∘ 𝜋1

= ((𝑖𝑑 + Δ) ∘ ℎ)♯ (Uniformity)

= ([𝑖1, ((𝑖𝑑 + Δ) ∘ ℎ)♯ + 𝑖𝑑] ∘ ℎ)
♯

(Diamond)

= ([𝑖1, (̂𝑓 ♯ ∘ 𝜋1) + 𝑖𝑑] ∘ ℎ)
♯

(Uniformity)

= ([𝑖1 ∘ 𝜋1, ((̂𝑓 ∘ 𝜋1 ∘ 𝜋1) + (𝜋1 × 𝑖𝑑)) ∘ 𝑑𝑠𝑡𝑙 ∘ ⟨𝑖𝑑, 𝑔 ∘ 𝜋2⟩] ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑))
♯

= ([𝑖1 ∘ 𝜋1, ((̂𝑓 ∘ 𝜋1) + 𝑖𝑑) ∘ ((𝜋1 × 𝑖𝑑) + (𝜋1 × 𝑖𝑑)) ∘ 𝑑𝑠𝑡𝑙 ∘ ⟨𝑖𝑑, 𝑔 ∘ 𝜋2⟩] ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑))
♯

= ([𝑖1 ∘ 𝜋1, ((̂𝑓 ∘ 𝜋1) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ ⟨𝜋1, 𝑔 ∘ 𝜋2⟩] ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑))
♯

= ([𝑖1 ∘ 𝜋1 ∘ (𝑖𝑑 × 𝑔), ((̂𝑓 ∘ 𝜋1) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑔)] ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑))
♯

= ([𝑖1 ∘ 𝜋1, ((̂𝑓 ∘ 𝜋1) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙] ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑔))
♯
,

where ℎ = (𝜋1 + (𝜋1 + (𝜋1 × 𝑖𝑑)) ∘ 𝑑𝑠𝑡𝑙 ∘ ⟨𝑖𝑑, 𝑔 ∘ 𝜋2⟩) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑) and the application of

51

Uniformity is justified, since

(𝑖𝑑 + 𝜋1) ∘ (𝑖𝑑 + Δ) ∘ ℎ
= (𝜋1 + ((𝜋1 ∘ [𝜋1, 𝜋1 × 𝑖𝑑]) ∘ 𝑑𝑠𝑡𝑙 ∘ ⟨𝑖𝑑, 𝑔 ∘ 𝜋2⟩)) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)
= (𝜋1 + ([𝜋1 ∘ 𝜋1, 𝜋1 ∘ 𝜋1] ∘ 𝑑𝑠𝑡𝑙 ∘ ⟨𝑖𝑑, 𝑔 ∘ 𝜋2⟩)) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)
= (𝜋1 + (𝜋1 ∘ 𝜋1 ∘ ⟨𝑖𝑑, 𝑔 ∘ 𝜋2⟩)) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)
= (𝜋1 + 𝜋1) ∘ 𝑑𝑠𝑡𝑟 ∘ (̂𝑓 × 𝑖𝑑)
= 𝜋1 ∘ (̂𝑓 × 𝑖𝑑)
= ̂𝑓 ∘ 𝜋1.

This concludes the proof.

Lemma 5.21. K is a commutative monad.

Proof. We need to show that 𝜏∗ ∘ 𝜎 = 𝜎∗ ∘ 𝜏 ∶ 𝐾𝑋 × 𝐾𝑌 → 𝐾(𝑋 × 𝑌). Let us proceed by right
stability, consider the following diagram.

𝐾𝑋 × 𝐾𝑌 𝐾(𝐾𝑋 × 𝑌)

𝐾(𝑋 × 𝐾𝑌) 𝐾(𝑋 × 𝑌)

𝐾𝑋 × 𝑌

𝜏

𝜎 𝜎∗

𝜏∗

𝑖𝑑×𝜂

𝜎

The diagram commutes since

𝜎∗ ∘ 𝜏 ∘ (𝑖𝑑 × 𝜂) = 𝜎∗ ∘ 𝜂 = 𝜎

and
𝜏∗ ∘ 𝜎 ∘ (𝑖𝑑 × 𝜂) = 𝜏∗ ∘ 𝐾(𝑖𝑑 × 𝜂) ∘ 𝜎 = (𝜏 ∘ (𝑖𝑑 × 𝜂))∗ ∘ 𝜎 = 𝜎.

We are left to show that both 𝜎∗∘𝜏 and 𝜏∗∘𝜎 are right iteration preserving. Let ℎ ∶ 𝑍 → 𝐾𝑌 +𝑍,
indeed

𝜎∗ ∘ 𝜏 ∘ (𝑖𝑑 × ℎ♯) = 𝜎∗((𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ = (((𝜎∗ ∘ 𝜏) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯.

Let 𝜓 ∶= 𝜏∗ ∘ 𝜎 and let us proceed by left stability to show that 𝜓 is right iteration preserving,
consider the following diagram

𝐾𝑋 × 𝐾𝑌

𝐾𝑋 × 𝑍 𝐾(𝑋 × 𝑌)

𝑋 × 𝑍

𝜓𝑖𝑑×ℎ♯

((𝜓+𝑖𝑑)∘𝑑𝑠𝑡𝑙∘(𝑖𝑑×ℎ))♯

𝜂×𝑖𝑑
𝜏∘(𝑖𝑑×ℎ♯)

52

which commutes, since

𝜓 ∘ (𝑖𝑑 × ℎ♯) ∘ (𝜂 × 𝑖𝑑)
= 𝜓 ∘ (𝜂 × 𝑖𝑑) ∘ (𝑖𝑑 × ℎ♯)
= 𝜏∗ ∘ 𝜂 ∘ (𝑖𝑑 × ℎ♯)
= 𝜏 ∘ (𝑖𝑑 × ℎ♯)
= ((𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯

= ((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ ∘ (𝜂 × 𝑖𝑑). (Uniformity)

We are left to show that both 𝜓 ∘ (𝑖𝑑 × ℎ♯) and ((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ are left iteration
preserving. Let 𝑔 ∶ 𝐴 → 𝐾𝑋 + 𝐴, then 𝜓 ∘ (𝑖𝑑 × ℎ♯) is left iteration preserving, since

𝜓 ∘ (𝑖𝑑 × ℎ♯) ∘ (𝑔♯ × 𝑖𝑑)
= 𝜓 ∘ (𝑔♯ × 𝑖𝑑) ∘ (𝑖𝑑 × ℎ♯)
= 𝜏∗ ∘ ((𝜎 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))♯ ∘ (𝑖𝑑 × ℎ♯)
= ((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))♯ ∘ (𝑖𝑑 × ℎ♯)
= (((𝜓 ∘ (𝑖𝑑 × ℎ♯)) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))♯. (Uniformity)

Lastly, we need to show that

((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ ∘ (𝑔♯ × 𝑖𝑑) = ((((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))
♯
.

Note that by Uniformity the left-hand side can be rewritten as

((((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))♯ + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))
♯
.

Consider now, that

((((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))
♯

= (((((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯)
∗

+ 𝑖𝑑) ∘ (𝜂 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))
♯

= (((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯)
∗

∘ ((𝜂 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))♯

= (((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯)
∗

∘ (((𝜎 ∘ (𝜂 × 𝑖𝑑)) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))♯

= (((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯)
∗

∘ 𝜎 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × 𝑖𝑑)
= (((𝜓∗ + 𝑖𝑑) ∘ (𝜂 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯)

∗
∘ 𝜎 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × 𝑖𝑑)

= 𝜓∗ ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯)
∗

∘ 𝜎 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × 𝑖𝑑)
= 𝜓∗ ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯)

∗
∘ 𝜎 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × 𝑖𝑑)

= 𝜓∗ ∘ ((((𝜏 ∘ (𝑖𝑑 × 𝜂)) + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯)
∗

∘ 𝜎 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × 𝑖𝑑)
= 𝜓∗ ∘ (((𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ((𝜂 + 𝑖𝑑) ∘ ℎ)))♯)

∗
∘ 𝜎 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × 𝑖𝑑)

= 𝜓∗ ∘ (𝜏 ∘ (𝑖𝑑 × ((𝜂 + 𝑖𝑑) ∘ ℎ)♯))
∗

∘ 𝜎 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × 𝑖𝑑)
= 𝜓∗ ∘ 𝜏∗ ∘ 𝐾(𝑖𝑑 × ((𝜂 + 𝑖𝑑) ∘ ℎ)♯) ∘ 𝜎 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × 𝑖𝑑)
= 𝜓∗ ∘ 𝜏∗ ∘ 𝜎 ∘ (𝑖𝑑 × ((𝜂 + 𝑖𝑑) ∘ ℎ)♯) ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × 𝑖𝑑)
= 𝜓∗ ∘ 𝜏∗ ∘ 𝜎 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × ((𝜂 + 𝑖𝑑) ∘ ℎ)♯),

53

and by a symmetric argument

((((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))♯ + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))
♯

= 𝜓∗ ∘ 𝜎∗ ∘ 𝜏 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × ((𝜂 + 𝑖𝑑) ∘ ℎ)♯).

We are thus done by

((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ ∘ (𝑔♯ × 𝑖𝑑)

= ((((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))♯ + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))
♯

(Uniformity)

= 𝜓∗ ∘ 𝜎∗ ∘ 𝜏 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × ((𝜂 + 𝑖𝑑) ∘ ℎ)♯)
= 𝜓∗ ∘ 𝜏∗ ∘ 𝜎 ∘ (((𝜂 + 𝑖𝑑) ∘ 𝑔)♯ × ((𝜂 + 𝑖𝑑) ∘ ℎ)♯) (Lemma 5.20)

= ((((𝜓 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × ℎ))♯ + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑟 ∘ (𝑔 × 𝑖𝑑))
♯
.

Theorem 5.22. K is an equational lifting monad.

Proof. Since we have already shown commutativity, we are left to show that 𝜏 ∘ Δ = 𝐾⟨𝜂, 𝑖𝑑⟩.
Note that 𝐾⟨𝜂, 𝑖𝑑⟩ = (𝜂 ∘ ⟨𝜂, 𝑖𝑑⟩)⋆, which is the unique Elgot algebra morphism satisfying
𝐾⟨𝜂, 𝑖𝑑⟩ ∘ 𝜂 = 𝜂 ∘ ⟨𝜂, 𝑖𝑑⟩. It thus suffices to show that 𝜏 ∘ Δ satisfies the same identity and is
iteration preserving.

The identity follows easily:

𝜏 ∘ Δ ∘ 𝜂
= 𝜏 ∘ ⟨𝜂, 𝜂⟩
= 𝜏 ∘ (𝑖𝑑 × 𝜂) ∘ ⟨𝜂, 𝑖𝑑⟩
= 𝜂 ∘ ⟨𝜂, 𝑖𝑑⟩.

For iteration preservation of 𝜏 ∘ Δ consider 𝑍 ∈ |C | and ℎ ∶ 𝑍 → 𝐾𝑋 + 𝑍, then

𝜏 ∘ Δ ∘ ℎ♯

= 𝜏 ∘ ⟨ℎ♯, ℎ♯⟩
= 𝜏 ∘ (𝑖𝑑 × ℎ♯) ∘ ⟨ℎ♯, 𝑖𝑑⟩
= ((𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑓))♯ ∘ ⟨ℎ♯, 𝑖𝑑⟩
= (((𝜏 ∘ Δ) + 𝑖𝑑) ∘ 𝑓)♯. (Uniformity)

Note that by monicity of 𝑑𝑠𝑡𝑙−1 and by Fixpoint

(Δ + ⟨𝑓 ♯, 𝑖𝑑⟩) ∘ 𝑓 = 𝑑𝑠𝑡𝑙 ∘ ⟨𝑓 ♯, 𝑓⟩. (*)

The application of Uniformity is then justified by

(𝑖𝑑 + ⟨𝑓 ♯, 𝑖𝑑⟩) ∘ ((𝜏 ∘ Δ) + 𝑖𝑑) ∘ 𝑓
= ((𝜏 ∘ Δ) + ⟨𝑓 ♯, 𝑖𝑑⟩) ∘ 𝑓
= (𝜏 + 𝑖𝑑) ∘ (Δ + ⟨𝑓 ♯, 𝑖𝑑⟩) ∘ 𝑓
= (𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ ⟨𝑓 ♯, 𝑓⟩ (*)
= (𝜏 + 𝑖𝑑) ∘ 𝑑𝑠𝑡𝑙 ∘ (𝑖𝑑 × 𝑓) ∘ ⟨𝑓 ♯, 𝑖𝑑⟩.

54

Theorem 5.23. K is the initial (strong) pre-Elgot monad.

Proof. Note that K is a pre-Elgot monad by definition and strong pre-Elgot by Lemma 5.18.
Let us first show that K is the initial pre-Elgot monad.

Given any pre-Elgot monad T, let us introduce alternative names for the monad operations of
T and K to avoid confusion:

T = (𝑇 , 𝜂𝑇 , 𝜇𝑇)
and

K = (𝐾, 𝜂𝐾, 𝜇𝑇).

For every 𝑋 ∈ |C | we define ¡ = (𝜂𝑇 ∶ 𝑋 → 𝑇 𝑋)⋆ ∶ 𝐾𝑋 → 𝑇 𝑋. Note that ¡ is per definition
the unique iteration preserving morphism that satisfies ¡ ∘ 𝜂𝐾 = 𝜂𝑇 . We are done after showing
that ¡ is natural and respects the monad multiplication.

Let 𝑓 ∶ 𝑋 → 𝑌 . For naturality of ¡ it suffices to show
¡ ∘ 𝐾𝑓 = (𝑇 𝑓 ∘ 𝜂𝑇)⋆ = 𝑇 𝑓 ∘ ¡,

where (𝑇 𝑓 ∘ 𝜂𝑇)⋆ is the unique Elgot algebra morphism satisfying (𝑇 𝑓 ∘ 𝜂𝑇)⋆ ∘ 𝜂𝐾 = 𝑇 𝑓 ∘ 𝜂𝑇 .
Note that both ¡ ∘ 𝐾𝑓 and 𝑇 𝑓 ∘ ¡ are iteration preserving since they are composed of iteration
preserving morphisms and both satisfy the requisite property, since 𝑇 𝑓 ∘ ¡ ∘ 𝜂𝐾 = 𝑇 𝑓 ∘𝜂𝑇 follows
instantly and

¡ ∘ 𝐾𝑓 ∘ 𝜂𝐾

= ¡ ∘ 𝜂𝐾 ∘ 𝑓
= 𝜂𝑇 ∘ 𝑓
= 𝑇 𝑓 ∘ 𝜂𝑇 .

Let us proceed similarly for showing that ¡ respects the monad multiplication, i.e. consider
¡ ∘ 𝜇 = ¡⋆ = 𝜇𝑇 ∘ 𝑇 ¡ ∘ ¡,

where ¡⋆ is the unique Elgot algebra morphism satisfying ¡⋆ ∘ 𝜂𝐾 = ¡. Note that again both
sides of the identity are iteration preserving, since they are composed of iteration preserving
morphisms. Consider also that ¡ ∘ 𝜇𝐾 ∘ 𝜂𝐾 = ¡ and

𝜇𝑇 ∘ 𝑇 ¡ ∘ ¡ ∘ 𝜂𝐾

= 𝜇𝑇 ∘ ¡ ∘ 𝐾¡ ∘ 𝜂𝐾

= 𝜇𝑇 ∘ ¡ ∘ 𝜂𝐾 ∘ ¡
= 𝜇𝑇 ∘ 𝜂𝑇 ∘ ¡
= ¡.

Thus, K is an initial pre-Elgot monad. To show that K is also initial strong pre-Elgot, assume
that T is strong with strength 𝜏𝑇 and let us call the strength of K 𝜏𝐾. We are left to show
that ¡ respects strength, i.e. ¡ ∘ 𝜏𝐾 = 𝜏𝑇 ∘ (𝑖𝑑 × ¡) ∶ 𝑋 × 𝐾𝑌 → 𝑇 (𝑋 × 𝑌). We proceed by
right-stability, using:

𝑋 × 𝐾𝑌 𝐾(𝑋 × 𝑌)

𝑋 × 𝑇 𝑌 𝑇 (𝑋 × 𝑌)

𝑋 × 𝑌

𝜏𝐾

¡𝑖𝑑×¡

𝜏𝑇

𝑖𝑑×𝜂

𝜂𝑇

55

The diagram commutes, since ¡ ∘ 𝜏𝐾 = 𝜂𝑇 = 𝜏𝑇 ∘ (𝑖𝑑 × 𝜂𝑇) = 𝜏𝑇 ∘ (𝑖𝑑 × ¡) ∘ (𝑖𝑑 × 𝜂𝑇). Now
we are done, since ¡ ∘ 𝜏𝐾 and 𝜏𝑇 ∘ (𝑖𝑑 × ¡) are both right iteration preserving because both are
composed of (right) iteration preserving morphisms.

56

6 A Case Study on Setoids

In Chapter 4 we have argued that the delay monad is not an equational lifting monad, because
it does not only model partiality, but it also considers computation time in its built-in notion of
equality. One way to remedy this is to take the quotient of the delay monad where computations
with the same result are identified. In this chapter we will use the quotients-as-setoid approach,
i.e. we will work in the category of setoids and show that the quotiented delay monad is an
instance of the previously defined monad K in this category.

6.1 Setoids in Type Theory

We will now introduce the category that the rest of the chapter will take place in. Let us start
with some basic definitions.

Definition 6.1 (Setoid). A setoid is a tuple (𝐴, 𝐴=) where 𝐴 (usually called the carrier) is a
type and 𝐴= is an equivalence relation on the inhabitants of 𝐴.

For brevity, we will not use the tuple notation most of the time, instead we will just say ‘Let 𝐴
be a setoid’ and implicitly call the equivalence relation 𝐴=.

Definition 6.2 (Setoid Morphism). Amorphism between setoids 𝐴 and 𝐵 constitutes a function
𝑓 ∶ 𝐴 → 𝐵 between the carriers, such that 𝑓 respects the equivalences, i.e. for any 𝑥, 𝑦 ∶ 𝐴,
𝑥 𝐴= 𝑦 implies 𝑓 𝑥 𝐵= 𝑓 𝑦. We will denote setoid morphisms as 𝐴 ⇝ 𝐵.

Let us now consider the function space setoid, which is of special interest, since it carries a
notion of equality between functions.

Definition 6.3 (Function Space Setoid). Given two setoids 𝐴 and 𝐵, the function space setoid
on these setoids is defined as (𝐴 ⇝ 𝐵, ≐) or just 𝐴 ⇝ 𝐵, where ≐ is the point wise equality on
setoid morphisms.

Setoids together with setoid morphisms form a category that we will call Setoids. Properties of
Setoids have already been examined in [15], however we will reiterate some of these properties
now to introduce notation that will be used for the rest of the chapter.

Proposition 6.4. Setoids is a distributive category.

Proof. To show that Setoids is (co)Cartesian we will give the respective data types and unique
functions. For brevity, we will omit the proofs that the functions respect the corresponding
equivalences, these are however included in the Agda standard library [21].

• Products:

57

1 record _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
2 constructor _,_
3 field
4 fst : A
5 snd : B
6

7 <_,_> : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
8 → (A → B) → (A → C) → A → (B × C)
9 < f , g > x = (f x , g x)

The product setoid is denoted (𝐴 × 𝐵, ×=) or just 𝐴 × 𝐵. Equality of products is defined
in the canonical way.

• Terminal Object:

1 record ⊤ {l} : Set l where
2 constructor tt
3

4 ! : ∀ {l} {X : Set l} → X → ⊤ {l}
5 ! _ = tt

The terminal setoid is thus (⊤, ⊤=), where ⊤ ⊤= ⊤.

• Coproducts:

1 data _+_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
2 i₁ : A → A + B
3 i₂ : B → A + B
4

5 [_,_] : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
6 → (A → C) → (B → C) → (A + B) → C
7 [f , g] (i₁ x) = f x
8 [f , g] (i₂ x) = g x

Similarly to products, the coproduct setoid is denoted (𝐴 + 𝐵, +=) or just 𝐴 + 𝐵, where
equality of coproducts is defined in the canonical way.

• Initial Object:

1 data ⊥ {l} : Set l where
2

3 ¡ : ∀ {l} {X : Set l} → ⊥ {l} → X
4 ¡ ()

The initial setoid is then (⊥, ∅), where the equivalence is the empty relation.

Lastly we need to show that the canonical distributivity function is an iso. Recall that the
canonical distributivity morphism is defined as 𝑑𝑠𝑡𝑙−1 = [𝑖𝑑 × 𝑖1, 𝑖𝑑 × 𝑖2] ∶ 𝐴 × 𝐵 + 𝐴 × 𝐶 →
𝐴 × (𝐵 + 𝐶). This is equivalent to the following definition that uses pattern matching.

1 distributeˡ⁻¹ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
2 → (A × B) + (A × C) → A × (B + C)
3 distributeˡ⁻¹ (i₁ (x , y)) = (x , i₁ y)
4 distributeˡ⁻¹ (i₂ (x , y)) = (x , i₂ y)

58

The inverse can then be defined similarly:

1 distributeˡ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
2 → A × (B + C) → (A × B) + (A × C)
3 distributeˡ (x , i₁ y) = i₁ (x , y)
4 distributeˡ (x , i₂ y) = i₂ (x , y)

Note that these functions are inverse by definition, and it follows quickly that they are setoid
morphisms.

Proposition 6.5. Setoids is Cartesian closed.

Proof. Let 𝐴 and 𝐵 be two setoids. The function space setoid 𝐴 ⇝ 𝐵 is an exponential object
of 𝐴 and 𝐵, together with the functions 𝑐𝑢𝑟𝑟𝑦 and 𝑒𝑣𝑎𝑙 defined in the following listing.

1 curry : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
2 → (C × A → B) → C → A → B
3 curry f x y = f (x , y)
4

5 eval : ∀ {a b} {A : Set a} {B : Set b} → ((A → B) × A) → B
6 eval (f , x) = f x

The universal property of exponential objects follows instantly.

6.2 Quotienting the Delay Monad

In this section we will introduce data types only using inference rules. For that we adopt the
convention that coinductive types are introduced by doubled lines while inductive types are
introduced with a single line.

Now, recall from previous chapters that Capretta’s delay monad [12] is a coinductive type
defined by the two constructors:

𝑥 ∶ 𝐴
𝑛𝑜𝑤 𝑥 ∶ 𝐷 𝐴
===========

𝑥 ∶ 𝐷 𝐴
𝑙𝑎𝑡𝑒𝑟 𝑥 ∶ 𝐷 𝐴
============

Furthermore, let us recall two different notions of bisimilarity between inhabitants of the delay
type that have been studied previously in [16]. Afterwards, we will reiterate some facts that
have been proven in [16] to then finally prove that the quotiented delay type extends to an
instance of the monad K that has been introduced in Chapter 5.

Let 𝐴 be a setoid. Lifting the equivalence 𝐴= to 𝐷 𝐴 yields another equivalence called strong
bisimilarity. This equivalence is defined by the rules

𝑥 𝐴= 𝑦
𝑥 ∼ 𝑦
=====

𝑥 ∼ 𝑦
𝑙𝑎𝑡𝑒𝑟 𝑥 ∼ 𝑙𝑎𝑡𝑒𝑟 𝑦
===============

Proposition 6.6 ([16]). (𝐷 𝐴, ∼) is a setoid and admits a monad structure.

59

Computations in (𝐷 𝐴, ∼) are only identified if they evaluate to the same result in the same
number of steps. In many contexts this behavior is too intensional. Instead, we will now
consider the quotient of this setoid, where all computations that evaluate to the same result are
identified. Let us first define a relation that states that two computations evaluate to the same
result

𝑥 𝐴= 𝑦
𝑛𝑜𝑤 𝑥 ↓ 𝑦

𝑥 ↓ 𝑐
𝑙𝑎𝑡𝑒𝑟 𝑥 ↓ 𝑐 .

Now, we call two computations 𝑝 and 𝑞 weakly bisimilar or 𝑝 ≈ 𝑞 if they evaluate to the same
result, or don’t evaluate at all, which is specified by the rules

𝑎 𝐴= 𝑏 𝑥 ↓ 𝑎 𝑦 ↓ 𝑏
𝑥 ≈ 𝑦

=======================
𝑥 ≈ 𝑦

𝑙𝑎𝑡𝑒𝑟 𝑥 ≈ 𝑙𝑎𝑡𝑒𝑟 𝑦
===============

Proposition 6.7 ([12]). (𝐷 𝐴, ≈) is a setoid and admits a monad structure.

Proof. The monad unit is the constructor 𝑛𝑜𝑤 ∶ 𝐴 → 𝐷 𝐴 and the multiplication 𝜇 ∶ 𝐷 𝐷 𝐴 →
𝐷 𝐴 can be defined as follows:

𝜇 𝑥 = {𝑧 if 𝑥 = 𝑛𝑜𝑤 𝑧
𝑙𝑎𝑡𝑒𝑟(𝜇 𝑧) if 𝑥 = 𝑙𝑎𝑡𝑒𝑟 𝑧

Given a function 𝑓 ∶ 𝐴 → 𝐵, the lifted function 𝐷𝑓 ∶ 𝐷 𝐴 → 𝐷 𝐵 is defined as

𝐷𝑓 𝑥 = {𝑛𝑜𝑤(𝑓 𝑧) if 𝑥 = 𝑛𝑜𝑤 𝑧
𝑙𝑎𝑡𝑒𝑟(𝐷𝑓 𝑧) if 𝑥 = 𝑙𝑎𝑡𝑒𝑟 𝑧

It has been shown in [12] that this indeed extends to a monad.

For the rest of this chapter we will abbreviate �̃� 𝐴 = (𝐷𝐴, ∼) and ̃�̃� 𝐴 = (𝐷𝐴, ≈).

Lemma 6.8. Every ̃�̃� 𝐴 can be equipped with an Elgot algebra structure.

Proof. We need to show that for every setoid 𝐴 the resulting setoid ̃�̃� 𝐴 extends to an Elgot
algebra.

Let 𝑋 be a setoid and 𝑓 ∶ 𝑋 ⇝ ̃�̃� 𝐴 + 𝑋 be a setoid morphism, we define 𝑓 ♯ ∶ 𝑋 ⇝ ̃�̃� 𝐴 point
wise:

𝑓 ♯ 𝑥 ∶= {𝑎 if 𝑓 𝑥 = 𝑖1(𝑎)
𝑙𝑎𝑡𝑒𝑟 (𝑓 ♯ 𝑎) if 𝑓 𝑥 = 𝑖2(𝑎)

Let us first verify that 𝑓 ♯ is indeed a setoid morphism, i.e. given 𝑥, 𝑦 ∶ 𝑋 with 𝑥 𝑋= 𝑦, we need
to show that 𝑓 ♯ 𝑥 ≈ 𝑓 ♯ 𝑦. Since 𝑓 is a setoid morphism we know that 𝑓 𝑥 += 𝑓 𝑦, which already
implies that 𝑓 ♯ 𝑥 ≈ 𝑓 ♯ 𝑦 by the definition of 𝑓 ♯. Note that by the same argument we can define
an iteration operator that respects strong bisimilarity, let us call it 𝑓 ̃♯ as we will later need to
distinguish between 𝑓 ♯ and 𝑓 ̃♯.

Next, we check the iteration laws:

60

• Fixpoint: We need to show that 𝑓 ♯ 𝑥 ≈ [𝑖𝑑, 𝑓 ♯](𝑓 𝑥) for any 𝑥 ∶ 𝑋. Let us proceed by
case distinction:

Case 1. 𝑓 𝑥 = 𝑖1 𝑎
𝑓 ♯ 𝑥 ≈ 𝑎 ≈ [𝑖𝑑, 𝑓 ♯](𝑖1 𝑎) ≈ [𝑖𝑑, 𝑓 ♯](𝑓 𝑥)

Case 2. 𝑓 𝑥 = 𝑖2 𝑎
𝑓 ♯ 𝑥 ≈ 𝑙𝑎𝑡𝑒𝑟(𝑓 ♯ 𝑎) ≈ 𝑓 ♯ 𝑎 ≈ [𝑖𝑑, 𝑓 ♯](𝑖2 𝑎) ≈ [𝑖𝑑, 𝑓 ♯](𝑓 𝑥)

• Uniformity: Let 𝑌 be a setoid and 𝑔 ∶ 𝑌 ⇝ ̃�̃� 𝐴 + 𝑌 , ℎ ∶ 𝑋 ⇝ 𝑌 be setoid morphisms,
such that (𝑖𝑑 + ℎ) ∘ 𝑓 ≐ 𝑔 ∘ ℎ. We need to show that 𝑓 ♯ 𝑥 ≈ 𝑔♯(ℎ 𝑥), for any 𝑥 ∶ 𝑋. Let
us proceed by case distinction over 𝑓 𝑥 and 𝑔(ℎ 𝑥), note that by the requisite equation
(𝑖𝑑 + ℎ) ∘ 𝑓 ≐ 𝑔 ∘ ℎ, we only need to consider two cases:

Case 1. 𝑓 𝑥 = 𝑖1 𝑎 and 𝑔(ℎ 𝑥) = 𝑖1 𝑏
Consider that (𝑖𝑑 + ℎ) ∘ 𝑓 ≐ 𝑔 ∘ ℎ on 𝑥 yields 𝑖1 𝑎 += 𝑖1 𝑏 and thus 𝑎 ≈ 𝑏. Then indeed,

𝑓 ♯ 𝑥 ≈ 𝑎 ≈ 𝑏 ≈ 𝑔♯(ℎ 𝑥)

Case 2. 𝑓 𝑥 = 𝑖2 𝑎 and 𝑔(ℎ 𝑥) = 𝑖2 𝑏
Note that (𝑖𝑑 + ℎ) ∘ 𝑓 ≐ 𝑔 ∘ ℎ on 𝑥 yields 𝑖2(ℎ 𝑎) += 𝑖2 𝑏 and thus ℎ 𝑎 𝑌= 𝑏. We are done by
coinduction, which yields

𝑓 ♯ 𝑥 ≈ 𝑙𝑎𝑡𝑒𝑟(𝑓 ♯ 𝑎) ≈ 𝑙𝑎𝑡𝑒𝑟(𝑔♯(ℎ 𝑎)) ≈ 𝑙𝑎𝑡𝑒𝑟(𝑔♯ 𝑏) ≈ 𝑔♯(ℎ 𝑥).

• Folding: Let 𝑌 be a setoid and ℎ ∶ 𝑌 ⇝ 𝑋 + 𝑌 a setoid morphism, we need to show that
(𝑓 ♯ + ℎ)♯ 𝑧 ≈ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯ 𝑧 for any 𝑧 ∶ 𝑋 + 𝑌 . Let us first establish the following
fact

𝑓 ♯ 𝑐 ≈ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯(𝑖1 𝑐) for any 𝑐 ∶ 𝑋, (*)
which follows by case distinction on 𝑓 𝑐 and coinduction:

Case 1. 𝑓 𝑐 = 𝑖1 𝑎
𝑓 ♯ 𝑐 ≈ 𝑎 ≈ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯(𝑖1 𝑐)

Case 2. 𝑓 𝑐 = 𝑖2 𝑎

𝑓 ♯ 𝑐 ≈ 𝑙𝑎𝑡𝑒𝑟(𝑓 ♯ 𝑎) ≈ 𝑙𝑎𝑡𝑒𝑟([(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯(𝑖1 𝑎)) ≈ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯(𝑖1 𝑐)

We will now proceed with the proof of Folding, by case distinction on 𝑧:
Case 1. 𝑧 = 𝑖1 𝑥
Another case distinction on 𝑓 𝑥 yields:

Subcase (i): 𝑓 𝑥 = 𝑖1 𝑎
We are done, since (𝑓 ♯ + ℎ)♯(𝑖1 𝑥) ≈ 𝑎 ≈ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯(𝑖1 𝑥)
Subcase (ii): 𝑓 𝑥 = 𝑖2 𝑎
Now, using the fact we established prior

(𝑓 ♯ + ℎ)♯(𝑖1 𝑥)
≈ 𝑙𝑎𝑡𝑒𝑟(𝑓 ♯ 𝑎)
≈ 𝑙𝑎𝑡𝑒𝑟([(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯(𝑖1 𝑎)) (*)

≈ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯(𝑖1 𝑥).

61

Case 2. 𝑧 = 𝑖2 𝑦
Let us proceed by discriminating on ℎ 𝑦.
Subcase (i): ℎ 𝑦 = 𝑖1 𝑎
Indeed by coinduction,

(𝑓 ♯ + ℎ)♯(𝑖2 𝑦)
≈ 𝑙𝑎𝑡𝑒𝑟((𝑓 ♯ + ℎ)(𝑖1 𝑎))
≈ 𝑙𝑎𝑡𝑒𝑟([(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯(𝑖1 𝑎))
≈ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯(𝑖2 𝑦)

Subcase (ii): ℎ 𝑦 = 𝑖2 𝑎
Similarly by coinduction,

(𝑓 ♯ + ℎ)♯(𝑖2 𝑦)
≈ 𝑙𝑎𝑡𝑒𝑟((𝑓 ♯ + ℎ)(𝑖2 𝑎))
≈ 𝑙𝑎𝑡𝑒𝑟([(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯(𝑖2 𝑎))
≈ [(𝑖𝑑 + 𝑖1) ∘ 𝑓, 𝑖2 ∘ ℎ]♯(𝑖2 𝑦)

This concludes the proof that every ̃�̃� 𝐴 extends to an Elgot algebra.

In the next proof a notion of discretized setoid is needed, i.e. given a setoid 𝑍, we can discretize
𝑍 by replacing the equivalence relation with propositional equality, yielding |𝑍| ∶= (𝑍, ≡). Now,
the following corollary describes how to transform an iteration on ̃�̃� 𝐴 into an iteration on �̃� 𝐴.

Corollary 6.9. Given a setoid morphism 𝑔 ∶ 𝑋 ⇝ ̃�̃� 𝐴 + 𝑋, there exists a setoid morphism
̄𝑔 ∶ |𝑋| ⇝ �̃� 𝐴 + |𝑋| such that 𝑔♯ 𝑥 ∼ ̄𝑔 ̃♯ 𝑥 for any 𝑥 ∶ 𝑋.

Proof. It is clear that propositional equality implies strong bisimilarity and thus ̄𝑔 is a setoid
morphism that behaves as 𝑔 does but with a different type profile. The requisite property
follows by case distinction on 𝑔 𝑥.
Case 1. 𝑔 𝑥 = 𝑖1 𝑎
We are done, since 𝑔♯ 𝑥 ∼ 𝑎 ∼ ̄𝑔 ̃♯ 𝑥
Case 2. 𝑔 𝑥 = 𝑖2 𝑎
By coinduction 𝑔♯ 𝑥 ∼ 𝑙𝑎𝑡𝑒𝑟(𝑔♯ 𝑎) ∼ 𝑙𝑎𝑡𝑒𝑟(̄𝑔 ̃♯ 𝑎) ∼ ̄𝑔 ̃♯ 𝑥, which concludes the proof.

Theorem 6.10. Every ̃�̃� 𝐴 can be equipped with a free Elgot algebra structure.

Proof. We build on Lemma 6.8, it thus suffices to show that for any setoid 𝐴, the Elgot algebra
(̃�̃� 𝐴, (−)♯) together with the setoid morphism 𝑛𝑜𝑤 ∶ 𝐴 ⇝ ̃�̃� 𝐴 is a free such algebra. Given an
Elgot algebra (𝐵, (−)♯𝑏) and a setoid morphism 𝑓 ∶ 𝐴 ⇝ 𝐵. We need to define an Elgot algebra
morphism 𝑓⋆ ∶ ̃�̃� 𝐴 ⇝ 𝐵. Consider 𝑔 ∶ �̃� 𝐴 ⇝ 𝐵 + �̃� 𝐴 defined by

𝑔 𝑥 = {𝑖1(𝑓 𝑎) if 𝑥 = 𝑛𝑜𝑤 𝑎
𝑖2 𝑎 if 𝑥 = 𝑙𝑎𝑡𝑒𝑟 𝑎

62

𝑔 trivially respects strong bisimilarity, thus consider 𝑔♯𝑏 ∶ �̃� 𝐴 ⇝ 𝐵. We need to show that
𝑔♯𝑏 also respects weak bisimilarity, thus yielding the requisite function 𝑓⋆ = 𝑔♯𝑏 ∶ ̃�̃� 𝐴 ⇝ 𝐵.
However, the proof turns out to be rather complex, let us postpone it to Corollary 6.13.

Instead, we will continue with the proof. Let us now show that 𝑔♯𝑏 is iteration preserving. Given
a setoid morphism ℎ ∶ 𝑋 ⇝ ̃�̃� 𝐴 + 𝑋, we need to show that 𝑔♯𝑏(ℎ♯ 𝑥) 𝐵= ((𝑔♯𝑏 + 𝑖𝑑) ∘ ℎ)♯𝑏 𝑥 for
any 𝑥 ∶ 𝑋. Using Corollary 6.9 we will proceed to show

𝑔♯𝑏(ℎ♯ 𝑥) 𝐵= ((𝑔♯𝑏 + 𝑖𝑑) ∘ ℎ̄)♯𝑏 𝑥 𝐵= ((𝑔♯𝑏 + 𝑖𝑑) ∘ ℎ)♯𝑏 𝑥.

The second step instantly follows by Uniformity, considering that the identity function easily
extends to a setoid morphism 𝑖𝑑 ∶ |𝑋| ⇝ 𝑋, and thus the second step can be reduced to
((𝑔♯𝑏 + 𝑖𝑑) ∘ ℎ̄)♯𝑏 𝑥 𝐵= ((𝑔♯𝑏 + 𝑖𝑑) ∘ ℎ)♯𝑏(𝑖𝑑 𝑥). For the first step consider

𝑔♯𝑏(ℎ♯ 𝑥)
𝐵= 𝑔♯𝑏(ℎ̄ ̃♯ 𝑥) (Corollary 6.9)
𝐵= (𝑔♯𝑏 ∘ [𝑖𝑑, ℎ̄ ̃♯])(𝑖2 𝑥)
𝐵= ([(𝑖𝑑 + 𝑖1) ∘ 𝑔, 𝑖2 ∘ 𝑖2] ∘ [𝑖1, ℎ])♯𝑏(𝑖2 𝑥) (Uniformity)
𝐵= ((𝑔♯𝑏 + 𝑖𝑑) ∘ ℎ)♯𝑏 𝑥. (Compositionality)

Thus, 𝑔♯𝑏 is an Elgot algebra morphism. We are left to check that 𝑔♯𝑏 satisfies the requisite
properties of free objects. First, note that 𝑔♯𝑏 ∘ 𝑛𝑜𝑤 ≐ [𝑖𝑑, 𝑔♯

𝑏] ∘ 𝑔 ∘ 𝑛𝑜𝑤 ≐ 𝑓 by Fixpoint and
the definition of 𝑔. Next, we need to check uniqueness of 𝑔♯𝑏 . It suffices to show that any two
Elgot algebra morphisms 𝑒, ℎ ∶ ̃�̃� 𝐴 ⇝ 𝐵 satisfying 𝑒 ∘ 𝑛𝑜𝑤 ≐ 𝑓 and ℎ ∘ 𝑛𝑜𝑤 ≐ 𝑓 are equal.

First, note that the identity function extends to the following conversion setoid morphism
𝑐𝑜𝑛𝑣 ∶ �̃� 𝐴 ⇝ ̃�̃� 𝐴, since strong bisimilarity implies weak bisimilarity. Furthermore, consider
the setoid morphism 𝑜 ∶ �̃� 𝐴 ⇝ �̃� 𝐴 + �̃� 𝐴 defined by

𝑜 𝑥 ∶= {𝑖1(𝑛𝑜𝑤 𝑧) if 𝑥 = 𝑛𝑜𝑤 𝑧
𝑖2 𝑧 if 𝑥 = 𝑙𝑎𝑡𝑒𝑟 𝑧

Now, by coinduction we can easily follow that

𝑥 ≈ ((𝑐𝑜𝑛𝑣 + 𝑖𝑑) ∘ 𝑜)♯ 𝑥 for any 𝑥 ∶ 𝐷 𝐴. (∗)

Let us now return to the proof of uniqueness. We proceed by

𝑒 𝑥
≈ 𝑒(((𝑐𝑜𝑛𝑣 + 𝑖𝑑) ∘ 𝑜)♯ 𝑥) (∗)
≈ ((𝑒 ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑) ∘ 𝑜)♯𝑏 𝑥 (Preservation)

≈ ((ℎ ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑) ∘ 𝑜)♯𝑏 𝑥
≈ ℎ(((𝑐𝑜𝑛𝑣 + 𝑖𝑑) ∘ 𝑜)♯ 𝑥) (Preservation)
≈ ℎ 𝑥. (∗)

It thus suffices to show that (𝑒 ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑)(𝑜 𝑥) ≈ (ℎ ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑)(𝑜 𝑥). Indeed, discriminating
over 𝑥 yields:

63

Case 1. 𝑥 = 𝑛𝑜𝑤 𝑧

(𝑒 ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑)(𝑜(𝑛𝑜𝑤 𝑧))
+= (𝑒 ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑)(𝑖1(𝑛𝑜𝑤 𝑧))
+= 𝑒(𝑛𝑜𝑤 𝑧)
+= 𝑓 𝑧
+= ℎ(𝑛𝑜𝑤 𝑧)
+= (ℎ ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑)(𝑖1(𝑛𝑜𝑤 𝑧))
+= (ℎ ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑)(𝑜(𝑛𝑜𝑤 𝑧))

Case 2. 𝑥 = 𝑙𝑎𝑡𝑒𝑟 𝑧

(𝑒 ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑)(𝑜(𝑙𝑎𝑡𝑒𝑟 𝑧))
+= (𝑒 ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑)(𝑖2 𝑧)
+= 𝑖2 𝑧
+= (ℎ ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑)(𝑖2 𝑧)
+= (ℎ ∘ 𝑐𝑜𝑛𝑣 + 𝑖𝑑)(𝑜(𝑙𝑎𝑡𝑒𝑟 𝑧))

It has thus been proven that every ̃�̃� 𝐴 admits a free Elgot algebra structure.

Let us now establish some functions for inspecting and manipulating the computation of ele-
ments of 𝐷 𝐴. These functions and some key facts will then be used to finish the remaining
proof needed for Theorem 6.10.

First, consider the ordering with respect to execution time on elements of 𝐷 𝐴, defined by

𝑝 ∶ 𝑥 ↓ 𝑎
𝑛𝑜𝑤≲ 𝑝 ∶ 𝑛𝑜𝑤 𝑎 ≲ 𝑥
==================

𝑝 ∶ 𝑥 ≲ 𝑦
𝑙𝑎𝑡𝑒𝑟≲ 𝑝 ∶ 𝑙𝑎𝑡𝑒𝑟 𝑥 ≲ 𝑙𝑎𝑡𝑒𝑟 𝑦
=========================

.

Note that 𝑥 ≲ 𝑦 implies 𝑥 ≈ 𝑦 for any 𝑥, 𝑦 ∶ 𝐷 𝐴, which follows easily by coinduction.

Now, consider the following function 𝑟𝑎𝑐𝑒 ∶ 𝐷 𝐴 → 𝐷 𝐴 → 𝐷 𝐴 which tries running two
computations and returns the one that finished first:

𝑟𝑎𝑐𝑒 𝑝 𝑞 ∶=
⎧{
⎨{⎩

𝑛𝑜𝑤 𝑎 if 𝑝 = 𝑛𝑜𝑤 𝑎
𝑛𝑜𝑤 𝑏 if 𝑝 = 𝑙𝑎𝑡𝑒𝑟 𝑎 and 𝑞 = 𝑛𝑜𝑤 𝑏
𝑙𝑎𝑡𝑒𝑟 (𝑟𝑎𝑐𝑒 𝑎 𝑏) if 𝑝 = 𝑙𝑎𝑡𝑒𝑟 𝑎 and 𝑞 = 𝑙𝑎𝑡𝑒𝑟 𝑏

The following Corollary, whose proof can be found in the formalization, will be needed.

Corollary 6.11. 𝑟𝑎𝑐𝑒 satisfies the following properties:

𝑥 ≈ 𝑦 implies 𝑟𝑎𝑐𝑒 𝑥 𝑦 ∼ 𝑟𝑎𝑐𝑒 𝑦 𝑥 for any 𝑥, 𝑦 ∶ 𝐷 𝐴
𝑥 ≈ 𝑦 implies 𝑟𝑎𝑐𝑒 𝑥 𝑦 ≲ 𝑦 for any 𝑥, 𝑦 ∶ 𝐷 𝐴.

64

Next, let us consider functions for counting steps of computations, first regard Δ0 ∶ (𝑥 ∶ 𝐷 𝐴) →
(𝑎 ∶ 𝐴) → (𝑥 ↓ 𝑎) → ℕ, which returns the number of steps a terminating computation has to
take and is defined by

Δ0 𝑥 𝑎 𝑝 ∶= {0 if 𝑥 = 𝑛𝑜𝑤 𝑦
(Δ0 𝑦 𝑎 𝑞) + 1 if 𝑥 = 𝑙𝑎𝑡𝑒𝑟 𝑦 and 𝑝 = 𝑙𝑎𝑡𝑒𝑟↓𝑞

Similarly, consider Δ ∶ (𝑥, 𝑦 ∶ 𝐷 𝐴) → 𝑥 ≲ 𝑦 → 𝐷(𝐴 × ℕ) defined by

Δ 𝑥 𝑦 𝑝 ∶= {𝑛𝑜𝑤(𝑎, Δ0 𝑥 𝑎 𝑞) if 𝑥 = 𝑛𝑜𝑤 𝑎 and 𝑝 = 𝑛𝑜𝑤≲𝑞
𝑙𝑎𝑡𝑒𝑟(Δ 𝑎 𝑏 𝑞) if 𝑥 = 𝑙𝑎𝑡𝑒𝑟 𝑎, 𝑦 = 𝑙𝑎𝑡𝑒𝑟 𝑏 and 𝑝 = 𝑙𝑎𝑡𝑒𝑟≲𝑞

Lastly, consider the function 𝜄 ∶ 𝐴 × ℕ → 𝐷 𝐴, which adds a number of 𝑙𝑎𝑡𝑒𝑟 constructors in
front of a value and is given by

𝜄 (𝑎, 𝑛) ∶= {𝑛𝑜𝑤 𝑥 if 𝑛 = 0
𝑙𝑎𝑡𝑒𝑟(𝜄 (𝑎, 𝑚)) if 𝑛 = 𝑚 + 1

Trivially, 𝜄 extends to a setoid morphism 𝜄 ∶ 𝐴 × ℕ ⇝ �̃� 𝐴, where the equivalence on ℕ is
propositional equality. Let us state two facts about Δ, the proofs can again be found in the
formalization.

Corollary 6.12. Δ satisfies the following properties:

𝑝 ∶ 𝑥 ≲ 𝑦 implies �̃�(𝑓𝑠𝑡(Δ 𝑥 𝑦 𝑝)) ∼ 𝑥 for any 𝑥, 𝑦 ∶ 𝐷 𝐴 (Δ1)
𝑝 ∶ 𝑥 ≲ 𝑦 implies 𝜄∗(Δ 𝑥 𝑦 𝑝) ∼ 𝑦 for any 𝑥, 𝑦 ∶ 𝐷 𝐴. (Δ2)

Let us now return to the missing Corollary of Theorem 6.10.

Corollary 6.13. The setoid morphism 𝑔♯𝑏 ∶ �̃� 𝐴 ⇝ 𝐵 defined in Theorem 6.10 respects weak
bisimilarity, thus yielding 𝑓⋆ = 𝑔♯𝑏 ∶ ̃�̃� 𝐴 ⇝ 𝐵.

Proof. Let 𝑥, 𝑦 ∶ 𝐷 𝐴 such that 𝑥 ≈ 𝑦. Recall that by Corollary 6.11 𝑥 ≈ 𝑦 implies 𝑝 ∶ 𝑟𝑎𝑐𝑒 𝑥 𝑦 ≲
𝑦 and symmetrically 𝑞 ∶ 𝑟𝑎𝑐𝑒 𝑦 𝑥 ≲ 𝑥, now, using Corollaries 6.11 and 6.12:

𝑔♯𝑏 𝑥
𝐵= 𝑔♯𝑏(𝜄∗(Δ (𝑟𝑎𝑐𝑒 𝑦 𝑥) 𝑥 𝑞)) (Δ2)
𝐵= 𝑔♯𝑏(�̃�𝑓𝑠𝑡(Δ (𝑟𝑎𝑐𝑒 𝑦 𝑥) 𝑥 𝑞)) (*)
𝐵= 𝑔♯𝑏(𝑟𝑎𝑐𝑒 𝑦 𝑥) (Δ1)
𝐵= 𝑔♯𝑏(𝑟𝑎𝑐𝑒 𝑥 𝑦) (Corollary 6.11)
𝐵= 𝑔♯𝑏(�̃�𝑓𝑠𝑡(Δ (𝑟𝑎𝑐𝑒 𝑥 𝑦) 𝑦 𝑝)) (Δ1)
𝐵= 𝑔♯𝑏(𝜄∗(Δ (𝑟𝑎𝑐𝑒 𝑥 𝑦) 𝑦 𝑝)) (*)
𝐵= 𝑔♯𝑏 𝑦. (Δ2)

We have thus reduced the proof to showing that

𝑔♯𝑏(�̃�𝑓𝑠𝑡 𝑧) 𝐵= 𝑔♯𝑏(𝜄∗ 𝑧) for any 𝑧 ∶ 𝐷(𝐴 × ℕ). (*)

65

Let us proceed as follows

𝑔♯𝑏(�̃�𝑓𝑠𝑡 𝑧)
𝐵= 𝑔♯𝑏

1 𝑧 (Uniformity)
𝐵= 𝑔♯𝑏

2 𝑧
𝐵= 𝑔♯𝑏(𝜄∗ 𝑧). (Uniformity)

Which leaves us to find suitable 𝑔1, 𝑔2 ∶ �̃�(𝐴 × ℕ) ⇝ 𝐵 + �̃�(𝐴 × ℕ). Consider,

𝑔1 𝑝 ∶=
⎧{
⎨{⎩

𝑖1(𝑓 𝑥) if 𝑝 = 𝑛𝑜𝑤 (𝑥, 𝑧𝑒𝑟𝑜)
𝑖2(�̃�𝑜(𝜄 (𝑥, 𝑛))) if 𝑝 = 𝑛𝑜𝑤 (𝑥, 𝑛 + 1)
𝑖2 𝑞 if 𝑝 = 𝑙𝑎𝑡𝑒𝑟 𝑞

and

𝑔2 𝑝 ∶= {𝑖1(𝑓 𝑥) if 𝑝 = 𝑛𝑜𝑤 (𝑥, 𝑛)
𝑖2 𝑞 if 𝑝 = 𝑙𝑎𝑡𝑒𝑟 𝑞

where 𝑜 ∶ 𝐴 ⇝ 𝐴 × ℕ is a setoid morphism that maps every 𝑧 ∶ 𝐴 to (𝑧, 0) ∶ 𝐴 × ℕ. The
applications of Uniformity are then justified by the definitions of 𝑔1 and 𝑔2 as well as the fact
that 𝜄 ∘ 𝑜 ≐ 𝑛𝑜𝑤.

We are thus done after showing that 𝑔♯𝑏
1 𝑧 𝐵= 𝑔♯𝑏

2 𝑧. Consider another setoid morphism

𝑔3 ∶ �̃�(𝐴 × ℕ) ⇝ 𝐵 + �̃�(𝐴 × ℕ) + �̃�(𝐴 × ℕ),

defined by

𝑔3 𝑝 ∶=
⎧{
⎨{⎩

𝑖1(𝑓 𝑥) if 𝑝 = 𝑛𝑜𝑤 (𝑥, 0)
𝑖2(𝑖1(�̃�𝑜(𝜄 (𝑥, 𝑛)))) if 𝑝 = 𝑛𝑜𝑤 (𝑥, 𝑛 + 1)
𝑖2(𝑖2 𝑞) if 𝑝 = 𝑙𝑎𝑡𝑒𝑟 𝑞

Let us now proceed by

𝑔♯𝑏
1 𝑧

𝐵= ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏 𝑧
𝐵= ([𝑖1, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏 + 𝑖𝑑] ∘ 𝑔3)

♯𝑏 𝑧 (Diamond)
𝐵= 𝑔♯𝑏

2 𝑧.

Where for the first step notice that 𝑔1 𝑥 += (𝑖𝑑+[𝑖𝑑, 𝑖𝑑])(𝑔3 𝑥) for any 𝑥 ∶ �̃�(𝐴×ℕ) follows simply
by case distinction on 𝑥. For the last step, it suffices to show that [𝑖1, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏 +
𝑖𝑑](𝑔3 𝑥) += 𝑔2 𝑥 for any 𝑥 ∶ �̃�(𝐴 × ℕ). We proceed by case distinction on 𝑥.
Case 1. 𝑥 = 𝑛𝑜𝑤 (𝑦, 0)
The goal reduces to

[𝑖1, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏 + 𝑖𝑑](𝑔3 𝑥)
+= [𝑖1, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏 + 𝑖𝑑](𝑖1(𝑓 𝑦))
+= 𝑖1(𝑓 𝑦)
+= 𝑔2 𝑥,

66

which indeed holds by the definitions of 𝑔2 and 𝑔3.

Case 2. 𝑥 = 𝑛𝑜𝑤 (𝑦, 𝑛 + 1)
The goal reduces to

[𝑖1, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏 + 𝑖𝑑](𝑔3 𝑥)
+= [𝑖1, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏 + 𝑖𝑑](𝑖2(𝑖1(�̃�𝑜(𝜄 (𝑦, 𝑛)))))
+= 𝑖1(((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏((�̃�𝑜(𝜄 (𝑦, 𝑛)))))
+= 𝑖1(𝑓 𝑦) (∗)
+= 𝑔2 𝑥

Where
((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏(�̃�𝑜(𝜄 (𝑦, 𝑛))) 𝐵= 𝑓 𝑦 (∗)

follows by induction on 𝑛:
Subcase (i): 𝑛 = 0
We are done by

((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏(�̃�𝑜(𝜄 (𝑦, 0)))
𝐵= ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏(�̃�𝑜(𝑛𝑜𝑤 𝑦))
𝐵= ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏(𝑛𝑜𝑤(𝑦, 0))
𝐵= ([𝑖𝑑, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏] ∘ (𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)(𝑛𝑜𝑤(𝑦, 0)) (Fixpoint)
𝐵= ([𝑖𝑑, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏] ∘ (𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]))𝑖1(𝑓 𝑦)
𝐵= [𝑖𝑑, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏]𝑖1(𝑓 𝑦)
𝐵= 𝑓 𝑦

Subcase (ii): 𝑛 = 𝑚 + 1
Assuming that ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏(�̃�𝑜(𝜄 (𝑦, 𝑚))) 𝐵= 𝑓 𝑦, we are done by

((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏(�̃�𝑜(𝜄 (𝑦, 𝑚 + 1)))
𝐵= ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏(�̃�𝑜(𝑙𝑎𝑡𝑒𝑟(𝜄 (𝑦, 𝑚))))
𝐵= ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏(𝑙𝑎𝑡𝑒𝑟(�̃�𝑜(𝜄 (𝑦, 𝑚))))
𝐵= ([𝑖𝑑, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏] ∘ (𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)(𝑙𝑎𝑡𝑒𝑟(�̃�𝑜(𝜄 (𝑦, 𝑚)))) (Fixpoint)
𝐵= ([𝑖𝑑, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏] ∘ (𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]))(𝑖2(𝑖2(�̃�𝑜(𝜄 (𝑦, 𝑚)))))
𝐵= [𝑖𝑑, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏](�̃�𝑜(𝜄 (𝑦, 𝑚)))
𝐵= 𝑓 𝑦

Case 3. 𝑥 = 𝑙𝑎𝑡𝑒𝑟 𝑝
The goal reduces to

[𝑖1, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏 + 𝑖𝑑](𝑔3 𝑥)
+= [𝑖1, ((𝑖𝑑 + [𝑖𝑑, 𝑖𝑑]) ∘ 𝑔3)♯𝑏 + 𝑖𝑑](𝑖2(𝑖2 𝑝))
+= 𝑖2 𝑝
+= 𝑔2 𝑥,

67

which instantly follows by definition.

This finishes the proof of the Corollary and thus Theorem 6.10 holds.

We have shown in Theorem 6.10 that every ̃�̃� 𝐴 extends to a free Elgot algebra. Together
with Proposition 6.5 and Lemma 5.15 this yields a description for the monad K which has been
defined in Chapter 5, in the category Setoids.

68

7 Conclusion

We have considered a novel approach to defining a monad suitable for modelling partiality from
first principles, which has first been introduced in [19]. Using the dependently typed program-
ming language Agda, we were able to formally verify important properties of this monad: it is
an equational lifting monad, i.e. a monad that offers no other side effect besides some form of
non-termination and furthermore it turns out to be the initial pre-Elgot monad. Moreover, we
have considered a concrete description of this monad in the category of setoids, where it turns
out to be a quotient of the delay monad.

With this thesis we have thus created a small Agda library that contains categorical concepts
concerning partiality and iteration theories. Future work might improve on this library by for-
malizing important results concerning partiality monads, such as the fact that every equational
lifting monad has a restriction category as its Kleisli category. Furthermore, one can continue
studying the delay monad in a categorical setting, by modeling the quotient by weak bisimilarity
of the delay monad through a certain coequalizer, as has been done in [19], and then identifying
assumptions under which this constitutes a suitable monad for modeling partiality.

69

Bibliography
[1] J. Lambek, ‘A fixpoint theorem for complete categories,’ Mathematische Zeitschrift,

vol. 103, pp. 151–161, 1968.
[2] S. M. Lane, ‘Categories for the working mathematician,’ 1971. [Online]. Available: https:

//api.semanticscholar.org/CorpusID:122892655.
[3] G. D. Plotkin, ‘Call-by-name, call-by-value and the 𝜆-calculus,’ Theoretical computer sci-

ence, vol. 1, no. 2, pp. 125–159, 1975.
[4] E. G. Manes, ‘Algebraic theories in a category,’ Algebraic Theories, pp. 161–279, 1976.
[5] E. Moggi, ‘Notions of computation and monads,’ Inf. Comput., vol. 93, no. 1, pp. 55–92,

Jul. 1991, issn: 0890-5401. doi: 10.1016/0890-5401(91)90052-4. [Online]. Available:
https://doi.org/10.1016/0890-5401(91)90052-4.

[6] D. S. Scott, ‘A type-theoretical alternative to iswim, cuch, owhy,’ Theoretical Computer
Science, vol. 121, no. 1-2, pp. 411–440, 1993.

[7] V. Vene, Categorical programming with inductive and coinductive types. Citeseer, 2000.
[8] L. S. Moss, ‘Parametric corecursion,’ Theoretical Computer Science, vol. 260, no. 1,

pp. 139–163, 2001, Coalgebraic Methods in Computer Science 1998, issn: 0304-3975. doi:
https : / / doi . org / 10 . 1016 / S0304 - 3975(00) 00126 - 2. [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/S0304397500001262.

[9] J. R. B. Cockett and S. Lack, ‘Restriction categories i: Categories of partial maps,’ Theor.
Comput. Sci., vol. 270, no. 1–2, pp. 223–259, Jan. 2002, issn: 0304-3975. doi: 10.1016/
S0304 - 3975(00) 00382 - 0. [Online]. Available: https : / / doi . org / 10 . 1016 / S0304 -
3975(00)00382-0.

[10] P. Aczel, J. Adámek, S. Milius, and J. Velebil, ‘Infinite trees and completely iterative
theories: A coalgebraic view,’ Theor. Comput. Sci., vol. 300, no. 1–3, pp. 1–45, May 2003,
issn: 0304-3975. doi: 10.1016/S0304- 3975(02)00728- 4. [Online]. Available: https:
//doi.org/10.1016/S0304-3975(02)00728-4.

[11] A. Bucalo, C. Führmann, and A. Simpson, ‘An equational notion of lifting monad,’ Theor.
Comput. Sci., vol. 294, no. 1–2, pp. 31–60, Feb. 2003, issn: 0304-3975. doi: 10.1016/
S0304 - 3975(01) 00243 - 2. [Online]. Available: https : / / doi . org / 10 . 1016 / S0304 -
3975(01)00243-2.

[12] V. Capretta, ‘General recursion via coinductive types,’ CoRR, vol. abs/cs/0505037, 2005.
arXiv: cs/0505037. [Online]. Available: http://arxiv.org/abs/cs/0505037.

[13] J. Adámek, S. Milius, and J. Velebil, ‘Elgot algebras,’ CoRR, vol. abs/cs/0609040, 2006.
arXiv: cs/0609040. [Online]. Available: http://arxiv.org/abs/cs/0609040.

[14] J. Adámek, S. Milius, and J. Velebil, ‘Elgot theories: A new perspective on the equational
properties of iteration,’ Mathematical Structures in Computer Science, vol. 21, no. 2,
pp. 417–480, 2011. doi: 10.1017/S0960129510000496.

[15] Y. Kinoshita and J. Power, ‘Category theoretic structure of setoids,’ Theoretical Com-
puter Science, vol. 546, pp. 145–163, 2014, Models of Interaction: Essays in Honour of
Glynn Winskel, issn: 0304-3975. doi: https://doi.org/10.1016/j.tcs.2014.03.
006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0304397514001819.

71

https://api.semanticscholar.org/CorpusID:122892655
https://api.semanticscholar.org/CorpusID:122892655
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00126-2
https://www.sciencedirect.com/science/article/pii/S0304397500001262
https://www.sciencedirect.com/science/article/pii/S0304397500001262
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(01)00243-2
https://doi.org/10.1016/S0304-3975(01)00243-2
https://doi.org/10.1016/S0304-3975(01)00243-2
https://doi.org/10.1016/S0304-3975(01)00243-2
https://arxiv.org/abs/cs/0505037
http://arxiv.org/abs/cs/0505037
https://arxiv.org/abs/cs/0609040
http://arxiv.org/abs/cs/0609040
https://doi.org/10.1017/S0960129510000496
https://doi.org/https://doi.org/10.1016/j.tcs.2014.03.006
https://doi.org/https://doi.org/10.1016/j.tcs.2014.03.006
https://www.sciencedirect.com/science/article/pii/S0304397514001819
https://www.sciencedirect.com/science/article/pii/S0304397514001819

[16] J. Chapman, T. Uustalu, and N. Veltri, ‘Quotienting the delay monad by weak bisimilar-
ity,’ in Proceedings of the 12th International Colloquium on Theoretical Aspects of Com-
puting - ICTAC 2015 - Volume 9399, Berlin, Heidelberg: Springer-Verlag, 2015, pp. 110–
125, isbn: 9783319251493. doi: 10.1007/978-3-319-25150-9_8. [Online]. Available:
https://doi.org/10.1007/978-3-319-25150-9_8.

[17] S. Goncharov, L. Schröder, C. Rauch, and M. Piróg, ‘Unifying guarded and unguarded
iteration,’ in Foundations of Software Science and Computation Structures: 20th Inter-
national Conference, FOSSACS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings 20, Springer, 2017, pp. 517–533.

[18] S. Goncharov, L. Schröder, C. Rauch, and J. Jakob, ‘Unguarded recursion on coinductive
resumptions,’ Logical Methods in Computer Science, vol. 14, 2018.

[19] S. Goncharov, ‘Uniform elgot iteration in foundations,’ CoRR, vol. abs/2102.11828, 2021.
arXiv: 2102.11828. [Online]. Available: https://arxiv.org/abs/2102.11828.

[20] J. Z. S. Hu and J. Carette, ‘Formalizing category theory in agda,’ in Proceedings of
the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs,
ser. CPP 2021, Virtual, Denmark: Association for Computing Machinery, 2021, pp. 327–
342, isbn: 9781450382991. doi: 10.1145/3437992.3439922. [Online]. Available: https:
//doi.org/10.1145/3437992.3439922.

[21] The Agda Community, Agda Standard Library, version 2.0, Dec. 2023. [Online]. Available:
https://github.com/agda/agda-stdlib.

[22] T. A. Team, Agda user manual, version 2.6.4.3, Mar. 2024. [Online]. Available: https:
//agda.readthedocs.io/en/v2.6.4.3/.

[23] T. C. D. Team, The coq reference manual, version 8.19.1, Mar. 2024. [Online]. Available:
https://coq.inria.fr/doc/V8.19.0/refman/.

[24] Agda Developers, Agda, version 2.6.5. [Online]. Available: https://agda.readthedocs.
io/.

72

https://doi.org/10.1007/978-3-319-25150-9_8
https://doi.org/10.1007/978-3-319-25150-9_8
https://arxiv.org/abs/2102.11828
https://arxiv.org/abs/2102.11828
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1145/3437992.3439922
https://github.com/agda/agda-stdlib
https://agda.readthedocs.io/en/v2.6.4.3/
https://agda.readthedocs.io/en/v2.6.4.3/
https://coq.inria.fr/doc/V8.19.0/refman/
https://agda.readthedocs.io/
https://agda.readthedocs.io/

	Introduction
	Preliminaries
	Distributive and Cartesian Closed Categories
	F-Coalgebras
	Monads
	Strong and Commutative Monads
	Free Objects

	Implementing Category Theory in Agda
	The Underlying Type Theory
	Setoid Enriched Categories
	The formalization

	Partiality Monads
	Properties of Partiality Monads
	The Maybe Monad
	The Delay Monad

	Iteration Algebras and Monads
	Elgot Algebras
	The Initial (Strong) Pre-Elgot Monad

	A Case Study on Setoids
	Setoids in Type Theory
	Quotienting the Delay Monad

	Conclusion
	Bibliography

