
FUSIONCLOCK: Energy-Optimal Clock-Tree
Reconfigurations for Energy-Constrained
Real-Time Systems

12th July 2023

Eva Dengler, Phillip Raffeck, Simon Schuster, Peter Wägemann

Friedrich-Alexander-Universität Erlangen-Nürnberg
Supported by the DFG under the grant WA 5186/1-1 (Watwa)

Lehrstuhl für Verteilte Systeme
und Betriebssysteme

Application Scenarios

embedded real-time systems: worst-case execution time (WCET),
worst-case energy consumption (WCEC)
devices massively influence timing and energy behaviour
⇒ reduce energy consumption for longer battery life

FUSIONCLOCK 1

examples for energy constrained rts

tracking device for bats, pacemaker

common: both have real-time constraints, but additionally limited energy resources

address both WCET and WCEC

WCET for tasks

WCEC bc battery discharges / not always there

ener. cons. depends on active devices

for longer battery, reduce wcec

by controlling the active devices on our system

battery lasts longer

1:30

our notion of devices on next slide

Application Scenarios

embedded real-time systems: worst-case execution time (WCET),
worst-case energy consumption (WCEC)

devices massively influence timing and energy behaviour
⇒ reduce energy consumption for longer battery life

FUSIONCLOCK 1

examples for energy constrained rts

tracking device for bats, pacemaker

common: both have real-time constraints, but additionally limited energy resources

address both WCET and WCEC

WCET for tasks

WCEC bc battery discharges / not always there

ener. cons. depends on active devices

for longer battery, reduce wcec

by controlling the active devices on our system

battery lasts longer

1:30

our notion of devices on next slide

Application Scenarios

embedded real-time systems: worst-case execution time (WCET),
worst-case energy consumption (WCEC)
devices massively influence timing and energy behaviour

⇒ reduce energy consumption for longer battery life

FUSIONCLOCK 1

examples for energy constrained rts

tracking device for bats, pacemaker

common: both have real-time constraints, but additionally limited energy resources

address both WCET and WCEC

WCET for tasks

WCEC bc battery discharges / not always there

ener. cons. depends on active devices

for longer battery, reduce wcec

by controlling the active devices on our system

battery lasts longer

1:30

our notion of devices on next slide

Application Scenarios

embedded real-time systems: worst-case execution time (WCET),
worst-case energy consumption (WCEC)
devices massively influence timing and energy behaviour
⇒ reduce energy consumption for longer battery life

FUSIONCLOCK 1

examples for energy constrained rts

tracking device for bats, pacemaker

common: both have real-time constraints, but additionally limited energy resources

address both WCET and WCEC

WCET for tasks

WCEC bc battery discharges / not always there

ener. cons. depends on active devices

for longer battery, reduce wcec

by controlling the active devices on our system

battery lasts longer

1:30

our notion of devices on next slide

Devices on Embedded Systems

FUSIONCLOCK 2

electrical operations on chip = power, influenced by clock, how can i influence these

embedded system is shown in the middle, it can has numerous devices

CPU is a device, can control its influence on energy consumption

increase or decrease the cpu clock frequency, visualized with light switches

use a rotary switch, scale brightness of a lamp - or CPU, the device under investigation

do the same for all other devices

turn a device on or off, change input clock signal or even turn them off completely

by this: control their energy consumption

done via the clock tree, heart of such embedded systems.

03:00

Devices on Embedded Systems

FUSIONCLOCK 2

electrical operations on chip = power, influenced by clock, how can i influence these

embedded system is shown in the middle, it can has numerous devices

CPU is a device, can control its influence on energy consumption

increase or decrease the cpu clock frequency, visualized with light switches

use a rotary switch, scale brightness of a lamp - or CPU, the device under investigation

do the same for all other devices

turn a device on or off, change input clock signal or even turn them off completely

by this: control their energy consumption

done via the clock tree, heart of such embedded systems.

03:00

Devices on Embedded Systems

FUSIONCLOCK 2

electrical operations on chip = power, influenced by clock, how can i influence these

embedded system is shown in the middle, it can has numerous devices

CPU is a device, can control its influence on energy consumption

increase or decrease the cpu clock frequency, visualized with light switches

use a rotary switch, scale brightness of a lamp - or CPU, the device under investigation

do the same for all other devices

turn a device on or off, change input clock signal or even turn them off completely

by this: control their energy consumption

done via the clock tree, heart of such embedded systems.

03:00

Devices on Embedded Systems

FUSIONCLOCK 2

electrical operations on chip = power, influenced by clock, how can i influence these

embedded system is shown in the middle, it can has numerous devices

CPU is a device, can control its influence on energy consumption

increase or decrease the cpu clock frequency, visualized with light switches

use a rotary switch, scale brightness of a lamp - or CPU, the device under investigation

do the same for all other devices

turn a device on or off, change input clock signal or even turn them off completely

by this: control their energy consumption

done via the clock tree, heart of such embedded systems.

03:00

Devices on Embedded Systems

FUSIONCLOCK 2

electrical operations on chip = power, influenced by clock, how can i influence these

embedded system is shown in the middle, it can has numerous devices

CPU is a device, can control its influence on energy consumption

increase or decrease the cpu clock frequency, visualized with light switches

use a rotary switch, scale brightness of a lamp - or CPU, the device under investigation

do the same for all other devices

turn a device on or off, change input clock signal or even turn them off completely

by this: control their energy consumption

done via the clock tree, heart of such embedded systems.

03:00

Devices on Embedded Systems

FUSIONCLOCK 2

electrical operations on chip = power, influenced by clock, how can i influence these

embedded system is shown in the middle, it can has numerous devices

CPU is a device, can control its influence on energy consumption

increase or decrease the cpu clock frequency, visualized with light switches

use a rotary switch, scale brightness of a lamp - or CPU, the device under investigation

do the same for all other devices

turn a device on or off, change input clock signal or even turn them off completely

by this: control their energy consumption

done via the clock tree, heart of such embedded systems.

03:00

Devices on Embedded Systems

FUSIONCLOCK 2

electrical operations on chip = power, influenced by clock, how can i influence these

embedded system is shown in the middle, it can has numerous devices

CPU is a device, can control its influence on energy consumption

increase or decrease the cpu clock frequency, visualized with light switches

use a rotary switch, scale brightness of a lamp - or CPU, the device under investigation

do the same for all other devices

turn a device on or off, change input clock signal or even turn them off completely

by this: control their energy consumption

done via the clock tree, heart of such embedded systems.

03:00

Devices on Embedded Systems

FUSIONCLOCK 2

electrical operations on chip = power, influenced by clock, how can i influence these

embedded system is shown in the middle, it can has numerous devices

CPU is a device, can control its influence on energy consumption

increase or decrease the cpu clock frequency, visualized with light switches

use a rotary switch, scale brightness of a lamp - or CPU, the device under investigation

do the same for all other devices

turn a device on or off, change input clock signal or even turn them off completely

by this: control their energy consumption

done via the clock tree, heart of such embedded systems.

03:00

Devices on Embedded Systems

FUSIONCLOCK 2

electrical operations on chip = power, influenced by clock, how can i influence these

embedded system is shown in the middle, it can has numerous devices

CPU is a device, can control its influence on energy consumption

increase or decrease the cpu clock frequency, visualized with light switches

use a rotary switch, scale brightness of a lamp - or CPU, the device under investigation

do the same for all other devices

turn a device on or off, change input clock signal or even turn them off completely

by this: control their energy consumption

done via the clock tree, heart of such embedded systems.

03:00

Devices on Embedded Systems

FUSIONCLOCK 2

electrical operations on chip = power, influenced by clock, how can i influence these

embedded system is shown in the middle, it can has numerous devices

CPU is a device, can control its influence on energy consumption

increase or decrease the cpu clock frequency, visualized with light switches

use a rotary switch, scale brightness of a lamp - or CPU, the device under investigation

do the same for all other devices

turn a device on or off, change input clock signal or even turn them off completely

by this: control their energy consumption

done via the clock tree, heart of such embedded systems.

03:00

The Clock Tree

PLL

RC

OSC

input

PLL_DIV

FOSC_DIV

MU
X1 DIV

MU
X2 CPU_CLK

MU
X3 GATE WIFI

BLE

output

Po
we
r

Time

Po
we
r

Time
v.s.

FUSIONCLOCK 3

example of such a clock tree, on left: input clock signals

Phase-Locked-Loop clock, an RC clock and oszillator

different characteristics regarding energy consumption, precision and speed.

signals are routed through clock tree to output clock signals, which control devices

devices have different demands for clock -> WiFi

devices and their demands on clock signal controlled by nodes: scalers, multiplexers, gates

in this case, turn wifi and bluetooth off by switching gate - 04:00

Different clock tree configurations = different energy consumptions.

For this configuration: PLL as input signal, all three devices active, results in this power curve

another configuration: RC oscillator clock used as input signal, a lower power consumption, but radio devices disabled

reconf takes time + energy -> consider when optimizing for a lower energy consumption

how can we manage the clock tree to achieve the minimal power consumption, while still giving timing guarantees? 05:00

The Clock Tree

PLL

RC

OSC

input

PLL_DIV

FOSC_DIV

MU
X1 DIV

MU
X2 CPU_CLK

MU
X3 GATE WIFI

BLE

output

Po
we
r

Time

Po
we
r

Time
v.s.

FUSIONCLOCK 3

example of such a clock tree, on left: input clock signals

Phase-Locked-Loop clock, an RC clock and oszillator

different characteristics regarding energy consumption, precision and speed.

signals are routed through clock tree to output clock signals, which control devices

devices have different demands for clock -> WiFi

devices and their demands on clock signal controlled by nodes: scalers, multiplexers, gates

in this case, turn wifi and bluetooth off by switching gate - 04:00

Different clock tree configurations = different energy consumptions.

For this configuration: PLL as input signal, all three devices active, results in this power curve

another configuration: RC oscillator clock used as input signal, a lower power consumption, but radio devices disabled

reconf takes time + energy -> consider when optimizing for a lower energy consumption

how can we manage the clock tree to achieve the minimal power consumption, while still giving timing guarantees? 05:00

The Clock Tree

PLL

RC

OSC

input

PLL_DIV

FOSC_DIV

MU
X1 DIV

MU
X2 CPU_CLK

MU
X3 GATE WIFI

BLE

output

Po
we
r

Time

Po
we
r

Time
v.s.

FUSIONCLOCK 3

example of such a clock tree, on left: input clock signals

Phase-Locked-Loop clock, an RC clock and oszillator

different characteristics regarding energy consumption, precision and speed.

signals are routed through clock tree to output clock signals, which control devices

devices have different demands for clock -> WiFi

devices and their demands on clock signal controlled by nodes: scalers, multiplexers, gates

in this case, turn wifi and bluetooth off by switching gate - 04:00

Different clock tree configurations = different energy consumptions.

For this configuration: PLL as input signal, all three devices active, results in this power curve

another configuration: RC oscillator clock used as input signal, a lower power consumption, but radio devices disabled

reconf takes time + energy -> consider when optimizing for a lower energy consumption

how can we manage the clock tree to achieve the minimal power consumption, while still giving timing guarantees? 05:00

Problem Description

System Model / Requirements for FUSIONCLOCK

single-core platforms

- configurable via clock tree
static and sound model of the system for WCET/WCEC analyses
- including the devices of the system
strictly periodic, cyclic task model
- time-triggered schedule

FUSIONCLOCK 4

But first, I present our system model and the requirements for our approach:

focus on single-core platforms, configurable via their clock tree

To be able to analyze the timing and energy behaviour, we need a static and sound model of the system

for both WCET and WCEC analysis

As the devices massively influence the energy consumption, this model has to include the devices of the system.

We also assume a strictly periodic, cyclic task model with a time-triggered schedule.

05:50

Okay. Let's start with the most basic approach to execute a given schedule

System Model / Requirements for FUSIONCLOCK

single-core platforms
- configurable via clock tree

static and sound model of the system for WCET/WCEC analyses
- including the devices of the system
strictly periodic, cyclic task model
- time-triggered schedule

FUSIONCLOCK 4

But first, I present our system model and the requirements for our approach:

focus on single-core platforms, configurable via their clock tree

To be able to analyze the timing and energy behaviour, we need a static and sound model of the system

for both WCET and WCEC analysis

As the devices massively influence the energy consumption, this model has to include the devices of the system.

We also assume a strictly periodic, cyclic task model with a time-triggered schedule.

05:50

Okay. Let's start with the most basic approach to execute a given schedule

System Model / Requirements for FUSIONCLOCK

single-core platforms
- configurable via clock tree
static and sound model of the system for WCET/WCEC analyses

- including the devices of the system
strictly periodic, cyclic task model
- time-triggered schedule

FUSIONCLOCK 4

But first, I present our system model and the requirements for our approach:

focus on single-core platforms, configurable via their clock tree

To be able to analyze the timing and energy behaviour, we need a static and sound model of the system

for both WCET and WCEC analysis

As the devices massively influence the energy consumption, this model has to include the devices of the system.

We also assume a strictly periodic, cyclic task model with a time-triggered schedule.

05:50

Okay. Let's start with the most basic approach to execute a given schedule

System Model / Requirements for FUSIONCLOCK

single-core platforms
- configurable via clock tree
static and sound model of the system for WCET/WCEC analyses
- including the devices of the system

strictly periodic, cyclic task model
- time-triggered schedule

FUSIONCLOCK 4

But first, I present our system model and the requirements for our approach:

focus on single-core platforms, configurable via their clock tree

To be able to analyze the timing and energy behaviour, we need a static and sound model of the system

for both WCET and WCEC analysis

As the devices massively influence the energy consumption, this model has to include the devices of the system.

We also assume a strictly periodic, cyclic task model with a time-triggered schedule.

05:50

Okay. Let's start with the most basic approach to execute a given schedule

System Model / Requirements for FUSIONCLOCK

single-core platforms
- configurable via clock tree
static and sound model of the system for WCET/WCEC analyses
- including the devices of the system
strictly periodic, cyclic task model
- time-triggered schedule

FUSIONCLOCK 4

But first, I present our system model and the requirements for our approach:

focus on single-core platforms, configurable via their clock tree

To be able to analyze the timing and energy behaviour, we need a static and sound model of the system

for both WCET and WCEC analysis

As the devices massively influence the energy consumption, this model has to include the devices of the system.

We also assume a strictly periodic, cyclic task model with a time-triggered schedule.

05:50

Okay. Let's start with the most basic approach to execute a given schedule

Problem Analysis All-Always-On

time

power
hyperperiod hyperperiod

t1 t1t2 t2t3 t3idle idle

all-always-on approach

FUSIONCLOCK 5

clock tree configured such that all devices are always on, and we do not reconfigure the system at any point.

This is called an all-always-on approach.

In this example, we have three tasks, and an idle section, before next hyperperiod starts.

The energy consumption of the system is power consumption over time.

Therefore, the colored area corresponds to the energy consumption, which we want to minimize.

This is not the case for the all-always-on-approach.

07:10

Problem Analysis All-Always-On

time

power
hyperperiod hyperperiod

t1 t1t2 t2t3 t3idle idle

all-always-on approach

× minimzation of energy consumption

FUSIONCLOCK 5

clock tree configured such that all devices are always on, and we do not reconfigure the system at any point.

This is called an all-always-on approach.

In this example, we have three tasks, and an idle section, before next hyperperiod starts.

The energy consumption of the system is power consumption over time.

Therefore, the colored area corresponds to the energy consumption, which we want to minimize.

This is not the case for the all-always-on-approach.

07:10

Problem Analysis Feedback-Based Approach

time

power
hyperperiod hyperperiod

t1 t2 t3
idle t1 t2

t3

deadline
violation

feedback-based approach: reconfigurations during execution

• minimzation of energy consumption
× real-time guarantees

FUSIONCLOCK 6

There are other approaches, such as feedback-based approaches.

During execution, the system dynamically decides when to reconfigure the system to save energy.

In this case, this could lead to the following example:

in the first hyperperiod, the system uses energy-hungry configurations,

but already opting for configurations with lower energy consumptions for t1 and the idle phase.

In the next iteration, it decides to use slower configurations which use less power.

If this is done too aggresively, it can lead to deadline violations.

Additionally, as this approach acts dynamically during runtime, it does not provide real-time guarantees.

08:15

Problem Analysis Static Approach

time

power
hyperperiod hyperperiod

t1 t2
t3 idle

t1 t2
t3 idle

static approach: analysis before execution

• minimzation of energy consumption
• real-time guarantees

FUSIONCLOCK 7

An improvement to be able to provide these guarantees is to use a static analysis before execution,

which includes the WCET and the WCEC of each configuration for each task.

In our example, this could give us the following graph, where t2 needs the configuration with a high power consumption, but all other tasks are optimized, especially the idle

Now, we remember that changing the clock-tree configuration brings penalties.

08:40

Problem Analysis Static Approach

time

power
hyperperiod hyperperiod

t1 t2
t3 idle

t1 t2
t3

deadline
violation

static approach without reconfiguration penalties

• minimzation of energy consumption
× real-time guarantees
× consideration of reconfiguration costs

FUSIONCLOCK 8

If we include those reconfiguration penalties, this can lead to a deadline violation.

The added reconfiguration times shifts the tasks to the right, where t3 finishes after its deadline.

09:00

Problems

1. CPU-only approaches...
neglect energy consumption of devices
ignore dependencies of devices and clock-tree configurations

2. no guarantees of feedback-based approaches
3. missing reconfiguration penalties

FUSIONCLOCK 9

So, we face the following problems with current approaches:

First, approaches like the all-always-on-approach are CPU-only and neglect the energy consumption of devices,

in addition to ignoring the dependencies of devices and the clock-tree configurations.

Second, feedback-based approaches cannot give runtime guarantees - which are indispensable for our target systems.

And finally, the reconfiguration penalties, especially when interacting with devices.

10:00

Concept of FUSIONCLOCK

time

power
hyperperiod hyperperiod

t1
t2

t3 idle t1
t2

t3 idle

static approach with reconfiguration penalties

X minimzation of energy consumption
X real-time guarantees
X consideration of reconfiguration costs

FUSIONCLOCK 10

In our approach, FusionClock, we use a static approach, which includes the reconfiguration penalties,

and therefore solve all the problems introduced before: (1) (2) (3)

10:15

The FUSIONCLOCK Approach

Overview over the FUSIONCLOCK Approach

clock-tree model
+ device
constraints

resource-
consumption

model

timing
constraints

clock-tree
reconfiguration

graph

formalization:
quadratic-programming

model

tailored application binary

FUSIONCLOCK 11

First, I want to give an overview over our approach.

We start with the clock-tree model, the device constraints, together with the resource-consumption model,

from which we derive the clock-tree reconfiguration graph.

Together with the timing constraints of the time-triggered schedule, we create a formalization as a quadratic programming model

Finally, we use the solution of this mathematical problem to build a tailored application binary.

I start with the clock-tree reconfiguration graph.

11:15

Overview over the FUSIONCLOCK Approach

clock-tree model
+ device
constraints

resource-
consumption

model

timing
constraints

clock-tree
reconfiguration

graph

formalization:
quadratic-programming

model

tailored application binary

FUSIONCLOCK 11

First, I want to give an overview over our approach.

We start with the clock-tree model, the device constraints, together with the resource-consumption model,

from which we derive the clock-tree reconfiguration graph.

Together with the timing constraints of the time-triggered schedule, we create a formalization as a quadratic programming model

Finally, we use the solution of this mathematical problem to build a tailored application binary.

I start with the clock-tree reconfiguration graph.

11:15

Overview over the FUSIONCLOCK Approach

clock-tree model
+ device
constraints

resource-
consumption

model

timing
constraints

clock-tree
reconfiguration

graph

formalization:
quadratic-programming

model

tailored application binary

FUSIONCLOCK 11

First, I want to give an overview over our approach.

We start with the clock-tree model, the device constraints, together with the resource-consumption model,

from which we derive the clock-tree reconfiguration graph.

Together with the timing constraints of the time-triggered schedule, we create a formalization as a quadratic programming model

Finally, we use the solution of this mathematical problem to build a tailored application binary.

I start with the clock-tree reconfiguration graph.

11:15

Overview over the FUSIONCLOCK Approach

clock-tree model
+ device
constraints

resource-
consumption

model

timing
constraints

clock-tree
reconfiguration

graph

formalization:
quadratic-programming

model

tailored application binary

FUSIONCLOCK 11

First, I want to give an overview over our approach.

We start with the clock-tree model, the device constraints, together with the resource-consumption model,

from which we derive the clock-tree reconfiguration graph.

Together with the timing constraints of the time-triggered schedule, we create a formalization as a quadratic programming model

Finally, we use the solution of this mathematical problem to build a tailored application binary.

I start with the clock-tree reconfiguration graph.

11:15

Overview over the FUSIONCLOCK Approach

clock-tree model
+ device
constraints

resource-
consumption

model

timing
constraints

clock-tree
reconfiguration

graph

formalization:
quadratic-programming

model

tailored application binary

FUSIONCLOCK 11

First, I want to give an overview over our approach.

We start with the clock-tree model, the device constraints, together with the resource-consumption model,

from which we derive the clock-tree reconfiguration graph.

Together with the timing constraints of the time-triggered schedule, we create a formalization as a quadratic programming model

Finally, we use the solution of this mathematical problem to build a tailored application binary.

I start with the clock-tree reconfiguration graph.

11:15

Overview over the FUSIONCLOCK Approach

clock-tree model
+ device
constraints

resource-
consumption

model

timing
constraints

clock-tree
reconfiguration

graph

formalization:
quadratic-programming

model

tailored application binary

FUSIONCLOCK 11

First, I want to give an overview over our approach.

We start with the clock-tree model, the device constraints, together with the resource-consumption model,

from which we derive the clock-tree reconfiguration graph.

Together with the timing constraints of the time-triggered schedule, we create a formalization as a quadratic programming model

Finally, we use the solution of this mathematical problem to build a tailored application binary.

I start with the clock-tree reconfiguration graph.

11:15

Overview over the FUSIONCLOCK Approach

clock-tree model
+ device
constraints

resource-
consumption

model

timing
constraints

clock-tree
reconfiguration

graph

formalization:
quadratic-programming

model

tailored application binary

FUSIONCLOCK 11

First, I want to give an overview over our approach.

We start with the clock-tree model, the device constraints, together with the resource-consumption model,

from which we derive the clock-tree reconfiguration graph.

Together with the timing constraints of the time-triggered schedule, we create a formalization as a quadratic programming model

Finally, we use the solution of this mathematical problem to build a tailored application binary.

I start with the clock-tree reconfiguration graph.

11:15

Clock-Tree Reconfiguration Graph

τ1

. . .
w i f i _ack ()
. . .
sp i_wr i te ()
. . .

Devices

CPU

I2C

WIFI

GPIO

ADC

SPI

Configurations

CTC1

CTC2

CTC3

CTC4

CTC5
...

J1,1@CTC1
22µJ

J1,1@CTC3
11µJ

CTC1
→ CTC1
0µJ

CTC1
→ CTC4
3µJ

CTC1
→ CTC5
8µJ

CTC3
→ CTC1
12µJ

...

J2,1@CTC1
24µJ

J2,1@CTC4
17µJ

J2,1@CTC5
13µJ

· · ·

· · ·

· · ·

minimum-cost flow problem

FUSIONCLOCK 12

On our system: variety of devices. Depending on CTC: usable or not

task: dependency on devices: in this example...

CPU: all configurations, wifi and spi: only limited set. 2 CTCs remain -> 2 nodes in CTRG

Similarily all other tasks

connect nodes of CTRG: CTC changes introduce reconf costs - perhaps.

annotate edges with additional costs

for all job instances -> clock-tree reconfiguratino graph.

minimum-cost flow problem.

13:10

Clock-Tree Reconfiguration Graph

τ1

. . .
w i f i _ack ()
. . .
sp i_wr i te ()
. . .

Devices

CPU

I2C

WIFI

GPIO

ADC

SPI

Configurations

CTC1

CTC2

CTC3

CTC4

CTC5
...

J1,1@CTC1
22µJ

J1,1@CTC3
11µJ

CTC1
→ CTC1
0µJ

CTC1
→ CTC4
3µJ

CTC1
→ CTC5
8µJ

CTC3
→ CTC1
12µJ

...

J2,1@CTC1
24µJ

J2,1@CTC4
17µJ

J2,1@CTC5
13µJ

· · ·

· · ·

· · ·

minimum-cost flow problem

FUSIONCLOCK 12

On our system: variety of devices. Depending on CTC: usable or not

task: dependency on devices: in this example...

CPU: all configurations, wifi and spi: only limited set. 2 CTCs remain -> 2 nodes in CTRG

Similarily all other tasks

connect nodes of CTRG: CTC changes introduce reconf costs - perhaps.

annotate edges with additional costs

for all job instances -> clock-tree reconfiguratino graph.

minimum-cost flow problem.

13:10

Clock-Tree Reconfiguration Graph

τ1

. . .
w i f i _ack ()
. . .
sp i_wr i te ()
. . .

Devices

CPU

I2C

WIFI

GPIO

ADC

SPI

Configurations

CTC1

CTC2

CTC3

CTC4

CTC5
...

J1,1@CTC1
22µJ

J1,1@CTC3
11µJ

CTC1
→ CTC1
0µJ

CTC1
→ CTC4
3µJ

CTC1
→ CTC5
8µJ

CTC3
→ CTC1
12µJ

...

J2,1@CTC1
24µJ

J2,1@CTC4
17µJ

J2,1@CTC5
13µJ

· · ·

· · ·

· · ·

minimum-cost flow problem

FUSIONCLOCK 12

On our system: variety of devices. Depending on CTC: usable or not

task: dependency on devices: in this example...

CPU: all configurations, wifi and spi: only limited set. 2 CTCs remain -> 2 nodes in CTRG

Similarily all other tasks

connect nodes of CTRG: CTC changes introduce reconf costs - perhaps.

annotate edges with additional costs

for all job instances -> clock-tree reconfiguratino graph.

minimum-cost flow problem.

13:10

Clock-Tree Reconfiguration Graph

τ1

. . .
w i f i _ack ()
. . .
sp i_wr i te ()
. . .

Devices

CPU

I2C

WIFI

GPIO

ADC

SPI

Configurations

CTC1

CTC2

CTC3

CTC4

CTC5
...

J1,1@CTC1
22µJ

J1,1@CTC3
11µJ

CTC1
→ CTC1
0µJ

CTC1
→ CTC4
3µJ

CTC1
→ CTC5
8µJ

CTC3
→ CTC1
12µJ

...

J2,1@CTC1
24µJ

J2,1@CTC4
17µJ

J2,1@CTC5
13µJ

· · ·

· · ·

· · ·

minimum-cost flow problem

FUSIONCLOCK 12

On our system: variety of devices. Depending on CTC: usable or not

task: dependency on devices: in this example...

CPU: all configurations, wifi and spi: only limited set. 2 CTCs remain -> 2 nodes in CTRG

Similarily all other tasks

connect nodes of CTRG: CTC changes introduce reconf costs - perhaps.

annotate edges with additional costs

for all job instances -> clock-tree reconfiguratino graph.

minimum-cost flow problem.

13:10

Clock-Tree Reconfiguration Graph

τ1

. . .
w i f i _ack ()
. . .
sp i_wr i te ()
. . .

Devices

CPU

I2C

WIFI

GPIO

ADC

SPI

Configurations

CTC1

CTC2

CTC3

CTC4

CTC5
...

J1,1@CTC1
22µJ

J1,1@CTC3
11µJ

CTC1
→ CTC1
0µJ

CTC1
→ CTC4
3µJ

CTC1
→ CTC5
8µJ

CTC3
→ CTC1
12µJ

...

J2,1@CTC1
24µJ

J2,1@CTC4
17µJ

J2,1@CTC5
13µJ

· · ·

· · ·

· · ·

minimum-cost flow problem

FUSIONCLOCK 12

On our system: variety of devices. Depending on CTC: usable or not

task: dependency on devices: in this example...

CPU: all configurations, wifi and spi: only limited set. 2 CTCs remain -> 2 nodes in CTRG

Similarily all other tasks

connect nodes of CTRG: CTC changes introduce reconf costs - perhaps.

annotate edges with additional costs

for all job instances -> clock-tree reconfiguratino graph.

minimum-cost flow problem.

13:10

Clock-Tree Reconfiguration Graph

τ1

. . .
w i f i _ack ()
. . .
sp i_wr i te ()
. . .

Devices

CPU

I2C

WIFI

GPIO

ADC

SPI

Configurations

CTC1

CTC2

CTC3

CTC4

CTC5
...

J1,1@CTC1
22µJ

J1,1@CTC3
11µJ

CTC1
→ CTC1
0µJ

CTC1
→ CTC4
3µJ

CTC1
→ CTC5
8µJ

CTC3
→ CTC1
12µJ

...

J2,1@CTC1
24µJ

J2,1@CTC4
17µJ

J2,1@CTC5
13µJ

· · ·

· · ·

· · ·

minimum-cost flow problem

FUSIONCLOCK 12

On our system: variety of devices. Depending on CTC: usable or not

task: dependency on devices: in this example...

CPU: all configurations, wifi and spi: only limited set. 2 CTCs remain -> 2 nodes in CTRG

Similarily all other tasks

connect nodes of CTRG: CTC changes introduce reconf costs - perhaps.

annotate edges with additional costs

for all job instances -> clock-tree reconfiguratino graph.

minimum-cost flow problem.

13:10

Clock-Tree Reconfiguration Graph

τ1

. . .
w i f i _ack ()
. . .
sp i_wr i te ()
. . .

Devices

CPU

I2C

WIFI

GPIO

ADC

SPI

Configurations

CTC1

CTC2

CTC3

CTC4

CTC5
...

J1,1@CTC1
22µJ

J1,1@CTC3
11µJ

CTC1
→ CTC1
0µJ

CTC1
→ CTC4
3µJ

CTC1
→ CTC5
8µJ

CTC3
→ CTC1
12µJ

...

J2,1@CTC1
24µJ

J2,1@CTC4
17µJ

J2,1@CTC5
13µJ

· · ·

· · ·

· · ·

minimum-cost flow problem

FUSIONCLOCK 12

On our system: variety of devices. Depending on CTC: usable or not

task: dependency on devices: in this example...

CPU: all configurations, wifi and spi: only limited set. 2 CTCs remain -> 2 nodes in CTRG

Similarily all other tasks

connect nodes of CTRG: CTC changes introduce reconf costs - perhaps.

annotate edges with additional costs

for all job instances -> clock-tree reconfiguratino graph.

minimum-cost flow problem.

13:10

Clock-Tree Reconfiguration Graph

τ1

. . .
w i f i _ack ()
. . .
sp i_wr i te ()
. . .

Devices

CPU

I2C

WIFI

GPIO

ADC

SPI

Configurations

CTC1

CTC2

CTC3

CTC4

CTC5
...

J1,1@CTC1
22µJ

J1,1@CTC3
11µJ

CTC1
→ CTC1
0µJ

CTC1
→ CTC4
3µJ

CTC1
→ CTC5
8µJ

CTC3
→ CTC1
12µJ

...

J2,1@CTC1
24µJ

J2,1@CTC4
17µJ

J2,1@CTC5
13µJ

· · ·

· · ·

· · ·

minimum-cost flow problem

FUSIONCLOCK 12

On our system: variety of devices. Depending on CTC: usable or not

task: dependency on devices: in this example...

CPU: all configurations, wifi and spi: only limited set. 2 CTCs remain -> 2 nodes in CTRG

Similarily all other tasks

connect nodes of CTRG: CTC changes introduce reconf costs - perhaps.

annotate edges with additional costs

for all job instances -> clock-tree reconfiguratino graph.

minimum-cost flow problem.

13:10

Clock-Tree Reconfiguration Graph

τ1

. . .
w i f i _ack ()
. . .
sp i_wr i te ()
. . .

Devices

CPU

I2C

WIFI

GPIO

ADC

SPI

Configurations

CTC1

CTC2

CTC3

CTC4

CTC5
...

J1,1@CTC1
22µJ

J1,1@CTC3
11µJ

CTC1
→ CTC1
0µJ

CTC1
→ CTC4
3µJ

CTC1
→ CTC5
8µJ

CTC3
→ CTC1
12µJ

...

J2,1@CTC1
24µJ

J2,1@CTC4
17µJ

J2,1@CTC5
13µJ

· · ·

· · ·

· · ·

minimum-cost flow problem

FUSIONCLOCK 12

On our system: variety of devices. Depending on CTC: usable or not

task: dependency on devices: in this example...

CPU: all configurations, wifi and spi: only limited set. 2 CTCs remain -> 2 nodes in CTRG

Similarily all other tasks

connect nodes of CTRG: CTC changes introduce reconf costs - perhaps.

annotate edges with additional costs

for all job instances -> clock-tree reconfiguratino graph.

minimum-cost flow problem.

13:10

Clock-Tree Reconfiguration Graph

τ1

. . .
w i f i _ack ()
. . .
sp i_wr i te ()
. . .

Devices

CPU

I2C

WIFI

GPIO

ADC

SPI

Configurations

CTC1

CTC2

CTC3

CTC4

CTC5
...

J1,1@CTC1
22µJ

J1,1@CTC3
11µJ

CTC1
→ CTC1
0µJ

CTC1
→ CTC4
3µJ

CTC1
→ CTC5
8µJ

CTC3
→ CTC1
12µJ

...

J2,1@CTC1
24µJ

J2,1@CTC4
17µJ

J2,1@CTC5
13µJ

· · ·

· · ·

· · ·

minimum-cost flow problem

FUSIONCLOCK 12

On our system: variety of devices. Depending on CTC: usable or not

task: dependency on devices: in this example...

CPU: all configurations, wifi and spi: only limited set. 2 CTCs remain -> 2 nodes in CTRG

Similarily all other tasks

connect nodes of CTRG: CTC changes introduce reconf costs - perhaps.

annotate edges with additional costs

for all job instances -> clock-tree reconfiguratino graph.

minimum-cost flow problem.

13:10

Clock-Tree Reconfiguration Graph

τ1

. . .
w i f i _ack ()
. . .
sp i_wr i te ()
. . .

Devices

CPU

I2C

WIFI

GPIO

ADC

SPI

Configurations

CTC1

CTC2

CTC3

CTC4

CTC5
...

J1,1@CTC1
22µJ

J1,1@CTC3
11µJ

CTC1
→ CTC1
0µJ

CTC1
→ CTC4
3µJ

CTC1
→ CTC5
8µJ

CTC3
→ CTC1
12µJ

...

J2,1@CTC1
24µJ

J2,1@CTC4
17µJ

J2,1@CTC5
13µJ

· · ·

· · ·

· · ·

minimum-cost flow problem

FUSIONCLOCK 12

On our system: variety of devices. Depending on CTC: usable or not

task: dependency on devices: in this example...

CPU: all configurations, wifi and spi: only limited set. 2 CTCs remain -> 2 nodes in CTRG

Similarily all other tasks

connect nodes of CTRG: CTC changes introduce reconf costs - perhaps.

annotate edges with additional costs

for all job instances -> clock-tree reconfiguratino graph.

minimum-cost flow problem.

13:10

Incorporation of a Time-Triggered Schedule

H

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

J3,1

r3,1 d3,1

J4,1

r4,1 d4,1

idle idle idle idle idle

Distributing the slack:
reconfiguration penalties
idling: start times, durations, and configurations

FUSIONCLOCK 13

Next, we want to incorporate the timing constraints of the time-triggered schedule.

if util less than 100 percent there is slack

Let's assume we have one job with its release time and its deadline.

The slack time not used by the task is spent in an idling mode, which reaches from active idling to light or deep sleep.

With different CTCs we can either shorten or extend the execution time of the job.

12:45

We can also move the task within its release time and deadline.

We can also add other jobs, and change their position and time.

This allows for reconfiguration between tasks, and for choosing optimal idle modes.

So the goal is to distribute the slack between the reconf penal and the idling to get the minimal energy consumption.

14:40

Incorporation of a Time-Triggered Schedule

H

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

J3,1

r3,1 d3,1

J4,1

r4,1 d4,1

idle idle idle idle idle

Distributing the slack:
reconfiguration penalties
idling: start times, durations, and configurations

FUSIONCLOCK 13

Next, we want to incorporate the timing constraints of the time-triggered schedule.

if util less than 100 percent there is slack

Let's assume we have one job with its release time and its deadline.

The slack time not used by the task is spent in an idling mode, which reaches from active idling to light or deep sleep.

With different CTCs we can either shorten or extend the execution time of the job.

12:45

We can also move the task within its release time and deadline.

We can also add other jobs, and change their position and time.

This allows for reconfiguration between tasks, and for choosing optimal idle modes.

So the goal is to distribute the slack between the reconf penal and the idling to get the minimal energy consumption.

14:40

Incorporation of a Time-Triggered Schedule

H

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

J3,1

r3,1 d3,1

J4,1

r4,1 d4,1

idle idle idle idle idle

Distributing the slack:
reconfiguration penalties
idling: start times, durations, and configurations

FUSIONCLOCK 13

Next, we want to incorporate the timing constraints of the time-triggered schedule.

if util less than 100 percent there is slack

Let's assume we have one job with its release time and its deadline.

The slack time not used by the task is spent in an idling mode, which reaches from active idling to light or deep sleep.

With different CTCs we can either shorten or extend the execution time of the job.

12:45

We can also move the task within its release time and deadline.

We can also add other jobs, and change their position and time.

This allows for reconfiguration between tasks, and for choosing optimal idle modes.

So the goal is to distribute the slack between the reconf penal and the idling to get the minimal energy consumption.

14:40

Incorporation of a Time-Triggered Schedule

H

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

J3,1

r3,1 d3,1

J4,1

r4,1 d4,1

idle idle idle idle idle

Distributing the slack:
reconfiguration penalties
idling: start times, durations, and configurations

FUSIONCLOCK 13

Next, we want to incorporate the timing constraints of the time-triggered schedule.

if util less than 100 percent there is slack

Let's assume we have one job with its release time and its deadline.

The slack time not used by the task is spent in an idling mode, which reaches from active idling to light or deep sleep.

With different CTCs we can either shorten or extend the execution time of the job.

12:45

We can also move the task within its release time and deadline.

We can also add other jobs, and change their position and time.

This allows for reconfiguration between tasks, and for choosing optimal idle modes.

So the goal is to distribute the slack between the reconf penal and the idling to get the minimal energy consumption.

14:40

Incorporation of a Time-Triggered Schedule

H

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

J3,1

r3,1 d3,1

J4,1

r4,1 d4,1

idle idle idle idle idle

Distributing the slack:
reconfiguration penalties
idling: start times, durations, and configurations

FUSIONCLOCK 13

Next, we want to incorporate the timing constraints of the time-triggered schedule.

if util less than 100 percent there is slack

Let's assume we have one job with its release time and its deadline.

The slack time not used by the task is spent in an idling mode, which reaches from active idling to light or deep sleep.

With different CTCs we can either shorten or extend the execution time of the job.

12:45

We can also move the task within its release time and deadline.

We can also add other jobs, and change their position and time.

This allows for reconfiguration between tasks, and for choosing optimal idle modes.

So the goal is to distribute the slack between the reconf penal and the idling to get the minimal energy consumption.

14:40

Incorporation of a Time-Triggered Schedule

H

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

J3,1

r3,1 d3,1

J4,1

r4,1 d4,1

idle idle idle idle idle

Distributing the slack:
reconfiguration penalties
idling: start times, durations, and configurations

FUSIONCLOCK 13

Next, we want to incorporate the timing constraints of the time-triggered schedule.

if util less than 100 percent there is slack

Let's assume we have one job with its release time and its deadline.

The slack time not used by the task is spent in an idling mode, which reaches from active idling to light or deep sleep.

With different CTCs we can either shorten or extend the execution time of the job.

12:45

We can also move the task within its release time and deadline.

We can also add other jobs, and change their position and time.

This allows for reconfiguration between tasks, and for choosing optimal idle modes.

So the goal is to distribute the slack between the reconf penal and the idling to get the minimal energy consumption.

14:40

Incorporation of a Time-Triggered Schedule

H

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

J3,1

r3,1 d3,1

J4,1

r4,1 d4,1

idle idle idle idle idle

Distributing the slack:
reconfiguration penalties
idling: start times, durations, and configurations

FUSIONCLOCK 13

Next, we want to incorporate the timing constraints of the time-triggered schedule.

if util less than 100 percent there is slack

Let's assume we have one job with its release time and its deadline.

The slack time not used by the task is spent in an idling mode, which reaches from active idling to light or deep sleep.

With different CTCs we can either shorten or extend the execution time of the job.

12:45

We can also move the task within its release time and deadline.

We can also add other jobs, and change their position and time.

This allows for reconfiguration between tasks, and for choosing optimal idle modes.

So the goal is to distribute the slack between the reconf penal and the idling to get the minimal energy consumption.

14:40

Incorporation of a Time-Triggered Schedule

H

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

idle idle idle

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

J3,1

r3,1 d3,1

J4,1

r4,1 d4,1

idle idle idle idle idle

Distributing the slack:
reconfiguration penalties
idling: start times, durations, and configurations

FUSIONCLOCK 13

Next, we want to incorporate the timing constraints of the time-triggered schedule.

if util less than 100 percent there is slack

Let's assume we have one job with its release time and its deadline.

The slack time not used by the task is spent in an idling mode, which reaches from active idling to light or deep sleep.

With different CTCs we can either shorten or extend the execution time of the job.

12:45

We can also move the task within its release time and deadline.

We can also add other jobs, and change their position and time.

This allows for reconfiguration between tasks, and for choosing optimal idle modes.

So the goal is to distribute the slack between the reconf penal and the idling to get the minimal energy consumption.

14:40

Formalization

min energy costs of jobs and idling options
+ energy penalty for reconfiguration

w.r.t.
constraints in the clock-tree reconfiguration graph
all times sum up to hyperperiod
each job starts at or after its release time
each job finishes before or at its deadline

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann

6:11

min

∑

ȷ̂∈Ĵ

f
ȷ̂ −1∑

c=0 n
ȷ̂,c E

ȷ̂ (c)
︸ ︷︷ ︸

energy costs of jobs
+ ∑

i∈I

f
i −1∑

c=0 n
i,c ts

i,c P
i,c

︸
︷︷

︸

energy costs of idle phases

+ N−1∑
i=0

f
i −1∑

c=0

f(i+1) −1
∑

c ′=0 n(i,c)→(i+1,c ′) E
reconf (c, c ′)

︸

︷︷

︸

energy penalty for reconfiguration

 wrt.

Linear constraints:
exactly one active configuration per job:

∀i ∈ {0, . . . , N − 1} :

f
i −1∑

c=0 n
i,c

=
1

flow-preservation constraint for incoming edges:

∀i ∈ {0, . . . , N − 1} : ∀c ∈ {0, . . . , f
i − 1} : f

i−1 −1∑
c ′=0 n(i−1,c ′)→(i,c) =

n
i,c

flow-preservation constraint for outgoing edges:

∀i ∈ {0, . . . , N − 1} : ∀c ∈ {0, . . . , f
i − 1} : f

i+1 −1∑
c ′=0 n(i,c)→(i+1,c ′) =

n
i,c

Quadratic constraints:

idle-phase durations and configuration-specific job WCETs sum up to the hyperperiod:

∑
i∈I

f
i −1∑

c=0 n
i,c ts

i,c

︸
︷︷

︸

idle durations

+ ∑

ȷ̂∈Ĵ

f
ȷ̂ −1∑

c=0 n
ȷ̂,c C

ȷ̂ (c)

︸
︷︷

︸

execution times

+ N−1∑
i=0

f
i −1∑

c=0

f(i+1) −1
∑

c ′=1 n(i,c)→(i+1,c ′) C
reconf (c, c ′)

︸

︷︷

︸

time penalty for clock-tree reconfiguration =
H

preceeding work and idle time sums up to or surpasses release time:

∀ȷ̂ ∈ Ĵ : ∑
i∈I,i<ȷ̂

f
i −1∑

c=0 n
i,c ts

i,c

︸

︷︷

︸

idle durations
+ ∑

ȷ̂ ′∈Ĵ ,ȷ̂ ′<ȷ̂

f
ȷ̂ ′ −1∑

c=0 n
ȷ̂ ′,c C

ȷ̂ ′(c)

︸

︷︷

︸

execution times (note the <)

+ ȷ̂−1∑
i=0

f
i −1∑

c=0

f(i+1) −1
∑

c ′=1 n(i,c)→(i+1,c ′) C
reconf ((c, c ′)

︸

︷︷

︸

time penalty for clock-tree reconfiguration ≥
r
ȷ̂

preceeding work and idle time plus job WCET adheres to deadline:

∀ȷ̂ ∈ Ĵ : ∑
i∈I,i<ȷ̂

f
i −1∑

c=0 n
i,c ts

i,c

︸

︷︷

︸

idle durations
+ ∑

ȷ̂ ′∈Ĵ ,ȷ̂ ′≤ȷ̂

f
ȷ̂ ′ −1∑

c=0 n
ȷ̂ ′,c C

ȷ̂ ′(c)

︸

︷︷

︸

execution times (note the ≤)

+ ȷ̂−1∑
i=0

f
i −1∑

c=0

f(i+1) −1
∑

c ′=1 n(i,c)→(i+1,c ′) C
reconf (c, c ′)

︸

︷︷

︸

time penalty for clock-tree reconfiguration ≤
d
ȷ̂

ECRTS 2023

FUSIONCLOCK 14

This can be solved by modern mathematical solvers in practical time.

The full formalization and an evaluation of the solution times can be found in our paper.

15:30

Formalization

min energy costs of jobs and idling options
+ energy penalty for reconfiguration

w.r.t.
constraints in the clock-tree reconfiguration graph
all times sum up to hyperperiod
each job starts at or after its release time
each job finishes before or at its deadline

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann

6:11

min

∑

ȷ̂∈Ĵ

f
ȷ̂ −1∑

c=0 n
ȷ̂,c E

ȷ̂ (c)
︸ ︷︷ ︸

energy costs of jobs
+ ∑

i∈I

f
i −1∑

c=0 n
i,c ts

i,c P
i,c

︸
︷︷

︸

energy costs of idle phases

+ N−1∑
i=0

f
i −1∑

c=0

f(i+1) −1
∑

c ′=0 n(i,c)→(i+1,c ′) E
reconf (c, c ′)

︸

︷︷

︸

energy penalty for reconfiguration

 wrt.

Linear constraints:
exactly one active configuration per job:

∀i ∈ {0, . . . , N − 1} :

f
i −1∑

c=0 n
i,c

=
1

flow-preservation constraint for incoming edges:

∀i ∈ {0, . . . , N − 1} : ∀c ∈ {0, . . . , f
i − 1} : f

i−1 −1∑
c ′=0 n(i−1,c ′)→(i,c) =

n
i,c

flow-preservation constraint for outgoing edges:

∀i ∈ {0, . . . , N − 1} : ∀c ∈ {0, . . . , f
i − 1} : f

i+1 −1∑
c ′=0 n(i,c)→(i+1,c ′) =

n
i,c

Quadratic constraints:

idle-phase durations and configuration-specific job WCETs sum up to the hyperperiod:

∑
i∈I

f
i −1∑

c=0 n
i,c ts

i,c

︸
︷︷

︸

idle durations

+ ∑

ȷ̂∈Ĵ

f
ȷ̂ −1∑

c=0 n
ȷ̂,c C

ȷ̂ (c)

︸
︷︷

︸

execution times

+ N−1∑
i=0

f
i −1∑

c=0

f(i+1) −1
∑

c ′=1 n(i,c)→(i+1,c ′) C
reconf (c, c ′)

︸

︷︷

︸

time penalty for clock-tree reconfiguration =
H

preceeding work and idle time sums up to or surpasses release time:

∀ȷ̂ ∈ Ĵ : ∑
i∈I,i<ȷ̂

f
i −1∑

c=0 n
i,c ts

i,c

︸

︷︷

︸

idle durations
+ ∑

ȷ̂ ′∈Ĵ ,ȷ̂ ′<ȷ̂

f
ȷ̂ ′ −1∑

c=0 n
ȷ̂ ′,c C

ȷ̂ ′(c)

︸

︷︷

︸

execution times (note the <)

+ ȷ̂−1∑
i=0

f
i −1∑

c=0

f(i+1) −1
∑

c ′=1 n(i,c)→(i+1,c ′) C
reconf ((c, c ′)

︸

︷︷

︸

time penalty for clock-tree reconfiguration ≥
r
ȷ̂

preceeding work and idle time plus job WCET adheres to deadline:

∀ȷ̂ ∈ Ĵ : ∑
i∈I,i<ȷ̂

f
i −1∑

c=0 n
i,c ts

i,c

︸

︷︷

︸

idle durations
+ ∑

ȷ̂ ′∈Ĵ ,ȷ̂ ′≤ȷ̂

f
ȷ̂ ′ −1∑

c=0 n
ȷ̂ ′,c C

ȷ̂ ′(c)

︸

︷︷

︸

execution times (note the ≤)

+ ȷ̂−1∑
i=0

f
i −1∑

c=0

f(i+1) −1
∑

c ′=1 n(i,c)→(i+1,c ′) C
reconf (c, c ′)

︸

︷︷

︸

time penalty for clock-tree reconfiguration ≤
d
ȷ̂

ECRTS 2023

FUSIONCLOCK 14

This can be solved by modern mathematical solvers in practical time.

The full formalization and an evaluation of the solution times can be found in our paper.

15:30

Evaluation

Evaluation Hardware

FUSIONCLOCK 15

I want to conclude my presentation with some evaluation data.

To actually measure the power consumption of a embedded system we built our own custom PCB with an ESP32C3 to circumvent any interference factors on other boards.

For measurements, we used a joulescope JS220.

Our paper consists of three evaluations.

I mentioned the first one already for the solver evaluation.

The other two are: a qualitative evaluation, where I analyze the quality of the solver results,

and a quantitative evaluation with generated tasksets.

16:30

Evaluation: Break-Even Point Analysis

while (true) {
f i bonacc i _ca l cu la t ion () ;
i d l e (un t i l =hyperperiod . end) ;

}

5 CTCs: which one is used for the compute task?
3 idle options: when do the energy savings outweigh the
reconfiguration penalties?
how do actual measurements compare to the predicted energy
consumptions?

FUSIONCLOCK 16

qualitative eval: break-even point. simple piece of code

CPU task from tacle bench

5 different configs -> 5 cpu freq, influence on time

which conf is used: esp32c3; highest freq most energy efficient (instr per joule), always this

for idle: efficient = consumption in terms of energy per sec

3 different idle: AI, LS, DS: which selected, where theoretical break-even point when reconf penal

last question: energy-optimal clock-tree-reconfiguration sequences for a taskset

provide guarantees, resource-consumption model contains some degree of pessimism

effect best seen at break-even points ->compare solver w measurements

instruct chip to spend time in predet. sleep mode for all three

Evaluation: Break-Even Point Analysis

while (true) {
f i bonacc i _ca l cu la t ion () ;
i d l e (un t i l =hyperperiod . end) ;

}

5 CTCs

: which one is used for the compute task?
3 idle options: when do the energy savings outweigh the
reconfiguration penalties?
how do actual measurements compare to the predicted energy
consumptions?

FUSIONCLOCK 16

qualitative eval: break-even point. simple piece of code

CPU task from tacle bench

5 different configs -> 5 cpu freq, influence on time

which conf is used: esp32c3; highest freq most energy efficient (instr per joule), always this

for idle: efficient = consumption in terms of energy per sec

3 different idle: AI, LS, DS: which selected, where theoretical break-even point when reconf penal

last question: energy-optimal clock-tree-reconfiguration sequences for a taskset

provide guarantees, resource-consumption model contains some degree of pessimism

effect best seen at break-even points ->compare solver w measurements

instruct chip to spend time in predet. sleep mode for all three

Evaluation: Break-Even Point Analysis

while (true) {
f i bonacc i _ca l cu la t ion () ;
i d l e (un t i l =hyperperiod . end) ;

}

5 CTCs: which one is used for the compute task?

3 idle options: when do the energy savings outweigh the
reconfiguration penalties?
how do actual measurements compare to the predicted energy
consumptions?

FUSIONCLOCK 16

qualitative eval: break-even point. simple piece of code

CPU task from tacle bench

5 different configs -> 5 cpu freq, influence on time

which conf is used: esp32c3; highest freq most energy efficient (instr per joule), always this

for idle: efficient = consumption in terms of energy per sec

3 different idle: AI, LS, DS: which selected, where theoretical break-even point when reconf penal

last question: energy-optimal clock-tree-reconfiguration sequences for a taskset

provide guarantees, resource-consumption model contains some degree of pessimism

effect best seen at break-even points ->compare solver w measurements

instruct chip to spend time in predet. sleep mode for all three

Evaluation: Break-Even Point Analysis

while (true) {
f i bonacc i _ca l cu la t ion () ;
i d l e (un t i l =hyperperiod . end) ;

}

5 CTCs: which one is used for the compute task?
3 idle options

: when do the energy savings outweigh the
reconfiguration penalties?
how do actual measurements compare to the predicted energy
consumptions?

FUSIONCLOCK 16

qualitative eval: break-even point. simple piece of code

CPU task from tacle bench

5 different configs -> 5 cpu freq, influence on time

which conf is used: esp32c3; highest freq most energy efficient (instr per joule), always this

for idle: efficient = consumption in terms of energy per sec

3 different idle: AI, LS, DS: which selected, where theoretical break-even point when reconf penal

last question: energy-optimal clock-tree-reconfiguration sequences for a taskset

provide guarantees, resource-consumption model contains some degree of pessimism

effect best seen at break-even points ->compare solver w measurements

instruct chip to spend time in predet. sleep mode for all three

Evaluation: Break-Even Point Analysis

while (true) {
f i bonacc i _ca l cu la t ion () ;
i d l e (un t i l =hyperperiod . end) ;

}

5 CTCs: which one is used for the compute task?
3 idle options: when do the energy savings outweigh the
reconfiguration penalties?

how do actual measurements compare to the predicted energy
consumptions?

FUSIONCLOCK 16

qualitative eval: break-even point. simple piece of code

CPU task from tacle bench

5 different configs -> 5 cpu freq, influence on time

which conf is used: esp32c3; highest freq most energy efficient (instr per joule), always this

for idle: efficient = consumption in terms of energy per sec

3 different idle: AI, LS, DS: which selected, where theoretical break-even point when reconf penal

last question: energy-optimal clock-tree-reconfiguration sequences for a taskset

provide guarantees, resource-consumption model contains some degree of pessimism

effect best seen at break-even points ->compare solver w measurements

instruct chip to spend time in predet. sleep mode for all three

Evaluation: Break-Even Point Analysis

while (true) {
f i bonacc i _ca l cu la t ion () ;
i d l e (un t i l =hyperperiod . end) ;

}

5 CTCs: which one is used for the compute task?
3 idle options: when do the energy savings outweigh the
reconfiguration penalties?
how do actual measurements compare to the predicted energy
consumptions?

FUSIONCLOCK 16

qualitative eval: break-even point. simple piece of code

CPU task from tacle bench

5 different configs -> 5 cpu freq, influence on time

which conf is used: esp32c3; highest freq most energy efficient (instr per joule), always this

for idle: efficient = consumption in terms of energy per sec

3 different idle: AI, LS, DS: which selected, where theoretical break-even point when reconf penal

last question: energy-optimal clock-tree-reconfiguration sequences for a taskset

provide guarantees, resource-consumption model contains some degree of pessimism

effect best seen at break-even points ->compare solver w measurements

instruct chip to spend time in predet. sleep mode for all three

Evaluation: Break-Even Point Analysis

light sleep

deep sleep

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

6,000

Hyperperiod H (ms)

En
er
gy
(µ
J)

FUSIONCLOCK 17

Evaluation: Break-Even Point Analysis

6 8 10 12
0

100

200

300

active idle light sleep

Hyperperiod H (ms)

En
er
gy
(µ
J)

light sleep

deep sleep

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

6,000

Hyperperiod H (ms)

magnification

FUSIONCLOCK 18

Evaluation: Break-Even Point Analysis

6 8 10 12
0

100

200

300

active idle light sleep

Hyperperiod H (ms)

En
er
gy
(µ
J)

light sleep

deep sleep

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

6,000

Hyperperiod H (ms)

magnification

FUSIONCLOCK 18

Evaluation: Break-Even Point Analysis

6 8 10 12
0

100

200

300

active idle light sleep

Hyperperiod H (ms)

En
er
gy
(µ
J)

light sleep

deep sleep

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

6,000

Hyperperiod H (ms)

magnification

FUSIONCLOCK 18

Evaluation: Break-Even Point Analysis

6 8 10 12
0

100

200

300

active idle light sleep

Hyperperiod H (ms)

En
er
gy
(µ
J)

light sleep

deep sleep

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

6,000

Hyperperiod H (ms)

magnification

FUSIONCLOCK 18

Evaluation: Break-Even Point Analysis

6 8 10 12
0

100

200

300

active idle light sleep

Hyperperiod H (ms)

En
er
gy
(µ
J)

light sleep

deep sleep

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

6,000

Hyperperiod H (ms)

magnification

FUSIONCLOCK 18

Evaluation: Taskset Generation

Does FUSIONCLOCK ...

... determine a reliable upper bound?

... minimze energy consumption in comparison to device-unselective
approaches?

Evaluation with generated tasksets:

simulate device usage: sense, compute, actuate
5 active modes
2 idle modes: light sleep, deep sleep
9 to 18 tasks

FUSIONCLOCK 19

This evaluation has two goals: (read from slide)

For the evaluation, we used generated tasksets, simulate device usage by using fixed-time tasks.

device interaction = three phases: sensing the environment, computing the resulting action, followed by actuating

Therefore, each task is put into one of two groups: 70 percent are device interaction, 30 percent CPU-only tasks.

We use five configuration option for active phases, and additionally two idle modes,

namely light sleep and deep sleep, which save additional power, but come with higher reconfiguration costs.

Each taskset consists of 9 to 18 tasks.

Evaluation: Taskset Generation

Does FUSIONCLOCK ...

... determine a reliable upper bound?

... minimze energy consumption in comparison to device-unselective
approaches?

Evaluation with generated tasksets:

simulate device usage: sense, compute, actuate
5 active modes
2 idle modes: light sleep, deep sleep
9 to 18 tasks

FUSIONCLOCK 19

This evaluation has two goals: (read from slide)

For the evaluation, we used generated tasksets, simulate device usage by using fixed-time tasks.

device interaction = three phases: sensing the environment, computing the resulting action, followed by actuating

Therefore, each task is put into one of two groups: 70 percent are device interaction, 30 percent CPU-only tasks.

We use five configuration option for active phases, and additionally two idle modes,

namely light sleep and deep sleep, which save additional power, but come with higher reconfiguration costs.

Each taskset consists of 9 to 18 tasks.

Evaluation: Taskset Generation

56.0%
25ms

61.6%
125ms

64.8%
125ms

67.2%
125ms

74.4%
125ms

80.0%
125ms

85.6%
125ms

86.0%
50ms

91.2%
125ms

96.8%
125ms

0×

0.5×

1×

blablabla

53
9
µJ

2,
21
8
µJ

2,
28
9
µJ

2,
37
6
µJ

2,
36
3
µJ

2,
43
8
µJ

2,
71
7
µJ

1,
24
9
µJ

2,
64
6
µJ

2,
78
5
µJ

54
9
µJ

2,
58
5
µJ

2,
68
8
µJ

2,
80
7
µJ

2,
72
9
µJ

2,
79
9
µJ

3,
17
3
µJ

1,
37
0
µJ

2,
99
9
µJ

3,
17
5
µJ

re
d.
by

78
.3
%

re
d.
by

82
.2
%

re
d.
by

81
.6
%

re
d.
by

80
.9
%

re
d.
by

81
.0
%

re
d.
by

80
.4
%

re
d.
by

78
.2
%

re
d.
by

74
.9
%

re
d.
by

78
.7
%

re
d.
by

77
.6
%

Task Utilization / Hyperperiod

En
er
gy

Co
ns
um

pt
io
n

(n
or
m
al
ize
d)

tailored application binary
predicted energy consumption

binary without clock-tree reconfigurations

FUSIONCLOCK 20

First, we measured a binary for the given taskset without any optimizations regarding the clock-tree configuration and reconfigurations.

Then, FusionClock determines an optimal clock-tree configuration for each task and the predicted worst-case energy consumption.

Finally, our code generation builds a tailored application binary, where we additionally measure the power consumption.

This leads to the following results:

FusionClock is able to reduce the needed power consumption up to 82 percent compared to an all-always-on approach.

Also, each measured energy consumption was below the predicted energy consumption.

Therefore, we can positively answer our questions:

FusionClock determines a reliable upper bound for the energy consumption,

and does minimize the energy consumption in comparison to device-unselective approaches.

Evaluation: Taskset Generation

56.0%
25ms

61.6%
125ms

64.8%
125ms

67.2%
125ms

74.4%
125ms

80.0%
125ms

85.6%
125ms

86.0%
50ms

91.2%
125ms

96.8%
125ms

0×

0.5×

1×

blablabla

53
9
µJ

2,
21
8
µJ

2,
28
9
µJ

2,
37
6
µJ

2,
36
3
µJ

2,
43
8
µJ

2,
71
7
µJ

1,
24
9
µJ

2,
64
6
µJ

2,
78
5
µJ

54
9
µJ

2,
58
5
µJ

2,
68
8
µJ

2,
80
7
µJ

2,
72
9
µJ

2,
79
9
µJ

3,
17
3
µJ

1,
37
0
µJ

2,
99
9
µJ

3,
17
5
µJ

re
d.
by

78
.3
%

re
d.
by

82
.2
%

re
d.
by

81
.6
%

re
d.
by

80
.9
%

re
d.
by

81
.0
%

re
d.
by

80
.4
%

re
d.
by

78
.2
%

re
d.
by

74
.9
%

re
d.
by

78
.7
%

re
d.
by

77
.6
%

Task Utilization / Hyperperiod

En
er
gy

Co
ns
um

pt
io
n

(n
or
m
al
ize
d)

tailored application binary

predicted energy consumption
binary without clock-tree reconfigurations

FUSIONCLOCK 20

First, we measured a binary for the given taskset without any optimizations regarding the clock-tree configuration and reconfigurations.

Then, FusionClock determines an optimal clock-tree configuration for each task and the predicted worst-case energy consumption.

Finally, our code generation builds a tailored application binary, where we additionally measure the power consumption.

This leads to the following results:

FusionClock is able to reduce the needed power consumption up to 82 percent compared to an all-always-on approach.

Also, each measured energy consumption was below the predicted energy consumption.

Therefore, we can positively answer our questions:

FusionClock determines a reliable upper bound for the energy consumption,

and does minimize the energy consumption in comparison to device-unselective approaches.

Evaluation: Taskset Generation

56.0%
25ms

61.6%
125ms

64.8%
125ms

67.2%
125ms

74.4%
125ms

80.0%
125ms

85.6%
125ms

86.0%
50ms

91.2%
125ms

96.8%
125ms

0×

0.5×

1×

blablabla

53
9
µJ

2,
21
8
µJ

2,
28
9
µJ

2,
37
6
µJ

2,
36
3
µJ

2,
43
8
µJ

2,
71
7
µJ

1,
24
9
µJ

2,
64
6
µJ

2,
78
5
µJ

54
9
µJ

2,
58
5
µJ

2,
68
8
µJ

2,
80
7
µJ

2,
72
9
µJ

2,
79
9
µJ

3,
17
3
µJ

1,
37
0
µJ

2,
99
9
µJ

3,
17
5
µJ

re
d.
by

78
.3
%

re
d.
by

82
.2
%

re
d.
by

81
.6
%

re
d.
by

80
.9
%

re
d.
by

81
.0
%

re
d.
by

80
.4
%

re
d.
by

78
.2
%

re
d.
by

74
.9
%

re
d.
by

78
.7
%

re
d.
by

77
.6
%

Task Utilization / Hyperperiod

En
er
gy

Co
ns
um

pt
io
n

(n
or
m
al
ize
d)

tailored application binary
predicted energy consumption
binary without clock-tree reconfigurations

FUSIONCLOCK 20

First, we measured a binary for the given taskset without any optimizations regarding the clock-tree configuration and reconfigurations.

Then, FusionClock determines an optimal clock-tree configuration for each task and the predicted worst-case energy consumption.

Finally, our code generation builds a tailored application binary, where we additionally measure the power consumption.

This leads to the following results:

FusionClock is able to reduce the needed power consumption up to 82 percent compared to an all-always-on approach.

Also, each measured energy consumption was below the predicted energy consumption.

Therefore, we can positively answer our questions:

FusionClock determines a reliable upper bound for the energy consumption,

and does minimize the energy consumption in comparison to device-unselective approaches.

Evaluation: Taskset Generation

56.0%
25ms

61.6%
125ms

64.8%
125ms

67.2%
125ms

74.4%
125ms

80.0%
125ms

85.6%
125ms

86.0%
50ms

91.2%
125ms

96.8%
125ms

0×

0.5×

1×

blablabla

53
9
µJ

2,
21
8
µJ

2,
28
9
µJ

2,
37
6
µJ

2,
36
3
µJ

2,
43
8
µJ

2,
71
7
µJ

1,
24
9
µJ

2,
64
6
µJ

2,
78
5
µJ

54
9
µJ

2,
58
5
µJ

2,
68
8
µJ

2,
80
7
µJ

2,
72
9
µJ

2,
79
9
µJ

3,
17
3
µJ

1,
37
0
µJ

2,
99
9
µJ

3,
17
5
µJ

re
d.
by

78
.3
%

re
d.
by

82
.2
%

re
d.
by

81
.6
%

re
d.
by

80
.9
%

re
d.
by

81
.0
%

re
d.
by

80
.4
%

re
d.
by

78
.2
%

re
d.
by

74
.9
%

re
d.
by

78
.7
%

re
d.
by

77
.6
%

Task Utilization / Hyperperiod

En
er
gy

Co
ns
um

pt
io
n

(n
or
m
al
ize
d)

tailored application binary
predicted energy consumption
binary without clock-tree reconfigurations

FUSIONCLOCK 20

First, we measured a binary for the given taskset without any optimizations regarding the clock-tree configuration and reconfigurations.

Then, FusionClock determines an optimal clock-tree configuration for each task and the predicted worst-case energy consumption.

Finally, our code generation builds a tailored application binary, where we additionally measure the power consumption.

This leads to the following results:

FusionClock is able to reduce the needed power consumption up to 82 percent compared to an all-always-on approach.

Also, each measured energy consumption was below the predicted energy consumption.

Therefore, we can positively answer our questions:

FusionClock determines a reliable upper bound for the energy consumption,

and does minimize the energy consumption in comparison to device-unselective approaches.

Problems solved by FUSIONCLOCK

1. CPU-only approaches...
neglect energy consumption of devices
ignore dependencies of devices and clock-tree configurations

X device-aware model, making use of the system’s clock tree

2. no guarantees of feedback-based approaches

X resource consumption guarantees due to static approach

3. missing reconfiguration penalties

X inclusion of clock-tree reconfiguration costs in optimization

FUSIONCLOCK 21

not all devices work at each clock tree conf

optimal energy demand with respect to worst-case assumptions

Problems solved by FUSIONCLOCK

1. CPU-only approaches...
neglect energy consumption of devices
ignore dependencies of devices and clock-tree configurations

X device-aware model, making use of the system’s clock tree
2. no guarantees of feedback-based approaches

X resource consumption guarantees due to static approach

3. missing reconfiguration penalties

X inclusion of clock-tree reconfiguration costs in optimization

FUSIONCLOCK 21

not all devices work at each clock tree conf

optimal energy demand with respect to worst-case assumptions

Problems solved by FUSIONCLOCK

1. CPU-only approaches...
neglect energy consumption of devices
ignore dependencies of devices and clock-tree configurations

X device-aware model, making use of the system’s clock tree
2. no guarantees of feedback-based approaches

X resource consumption guarantees due to static approach
3. missing reconfiguration penalties

X inclusion of clock-tree reconfiguration costs in optimization

FUSIONCLOCK 21

not all devices work at each clock tree conf

optimal energy demand with respect to worst-case assumptions

Problems solved by FUSIONCLOCK

1. CPU-only approaches...
neglect energy consumption of devices
ignore dependencies of devices and clock-tree configurations

X device-aware model, making use of the system’s clock tree
2. no guarantees of feedback-based approaches

X resource consumption guarantees due to static approach
3. missing reconfiguration penalties

X inclusion of clock-tree reconfiguration costs in optimization

FUSIONCLOCK 21

not all devices work at each clock tree conf

optimal energy demand with respect to worst-case assumptions

Questions?

Source Code and Artifact Evaluation of FUSIONCLOCK
https://gitlab.cs.fau.de/fusionclock

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann.
FusionClock: WCEC-Optimal Clock-Tree
Reconfigurations (Artifact).
Dagstuhl Artifacts Series, 9(1):2:1–2:3, 2023.

C
o
n
si
st

en
t *
Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se
* *

Evaluated

*
E
C
R
T
S
*

Artifact

*
A
E

FUSIONCLOCK 22

https://gitlab.cs.fau.de/fusionclock

	Problem Description
	The FusionClock Approach
	Evaluation

