
Lehrstuhl für Informatik 4 · Verteilte Systeme und Betriebssysteme

Clock-Tree–Aware Resource-Consumption Models
for Embedded SoC Platforms

Eva Dengler

Masterarbeit im Fach Informatik

30. September 2022

Please cite as:
Eva Dengler, “Clock-Tree–Aware Resource-Consumption Models
for Embedded SoC Platforms”, Master’s Thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), Dept. of Computer Science,
September 2022.

www4.cs.fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Verteilte Systeme und Betriebssysteme

Martensstr. 1 · 91058 Erlangen · Germany

http://www4.cs.fau.de

Clock-Tree–Aware Resource-Consumption Models
for Embedded SoC Platforms

Masterarbeit im Fach Informatik

vorgelegt von

Eva Dengler

geb. am 28. Juli 1998
in Ingolstadt

angefertigt am

Lehrstuhl für Informatik 4
Verteilte Systeme und Betriebssysteme

Department Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Dr.-Ing. Peter Wägemann
Simon Schuster, M. Sc.

Betreuender Hochschullehrer: Prof. Dr.-Ing. habil. Wolfgang Schröder-Preikschat

Beginn der Arbeit: 01. April 2022
Abgabe der Arbeit: 30. September 2022

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angege-
benen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenom-
men wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche
gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance from third parties.
I certify that the work has not been submitted in the same or any similar form for assessment to any
other examining body and all references, direct and indirect, are indicated as such and have been
cited accordingly.

(Eva Dengler)
Erlangen, 30. September 2022

A B S T R A C T

As of today, more and more applications with both timing and energy constraints arise in embedded
platforms. A famous example of such a platform is an artificial cardiac pacemaker. It has a safety-
critical timing constraint, but also requires appropriate energy management to ensure the battery lasts
until the next charging date in any case. To be able to give guarantees regarding these requirements,
Worst-Case Execution Time (WCET) and Worst-Case Energy Consumption (WCEC) analyses are
necessary to determine an upper bound of time and energy consumption. To make the recharging
procedures as infrequent as possible, achieving the minimum energy consumption at a given timing
constraint is the goal.

There are two main options to save energy in energy-constrained real-time systems: Either a
component, e.g., the CPU or a peripheral device, is turned off entirely if not needed, or it operates
at a lower speed. As a consequence, the system may need more time to complete its current task
but uses less power. While a different component setting can save power, one has to consider that
there are penalties regarding runtime and power consumption for the platform reconfiguration,
which can outweigh the benefit of the lower consumption for both time behaviour and energy
consumption. This applies to the main processing unit as well as peripheral devices on an embedded
microcontroller. In addition, the activated and used peripherals can have a massive impact on these
parameters, as well as the frequency these are running at. All these configuration options are based
on the clock tree of the embedded chip, which is used to convert the input clocks to the required
output signals for the CPU or peripheral devices.

Two objectives arise from this problem description and are dealt with in this work: First, this
thesis develops a mathematical model to determine the energy-optimal solution of a sequential set of
tasks for a given hardware platform, which still gives guarantees regarding the execution time of the
program. It considers the theoretical WCET and the available clock-tree configurations for required
frequency and device configurations for each task, the corresponding power consumption, a periodic
deadline for the program, and the penalties for changing between different clock-tree configurations
to determine the best possible solution for the set of tasks. The second objective is to check whether
this model can be used to determine the minimal power consumption of real hardware for a given set
of tasks. Therefore, a hardware model is created for a hardware platform, the ESP32-C3 (a RISC-V
single-core microprocessor), and integrated into the open-source analysis tool PLATIN. This model
is validated with a benchmark suite and compared to external time measurements. Finally, power
consumption measurements were performed for the ESP32-C3, and the energy-optimal solutions
for two example tasks are determined with the mathematical model. In comparison to a pessimistic
approach that does not selectively reconfigure clock trees the optimisations achieved significant
energy savings.

KU R Z FA S S U N G

In der heutigen Zeit gibt es für eingebettete Systeme immer mehr Anwendungen, bei denen so-
wohl Zeit- als auch Energiebeschränkungen eingehalten werden müssen. Ein Beispiel hierfür sind
künstliche Herzschrittmacher. Zum einen müssen zeitliche Garantien gegeben werden, zum anderen
erfordert es aber auch ein angemessenes Energiemanagement, um sicherzustellen, dass die Batterie
auf jeden Fall bis zum nächsten Aufladetermin ausreicht. Hierfür werden Worst-Case Execution
Time (WCET)- und Worst-Case Energy Consumption (WCEC)-Analysen verwendet, um Obergrenzen
für Zeit und Energieverbrauch zu bestimmen. Zusätzlich möchte man die Aufladevorgänge so selten
wie möglich durchführen. Daher ist es das Ziel, den minimalen Energieverbrauch eines Systems bei
einer gegebenen Zeitbeschränkung zu erreichen.

Um Energie in energiebeschränkten Echtzeitsystemen einzusparen, gibt es zwei Möglichkeiten:
Entweder werden Komponenten komplett abgeschaltet, oder sie arbeiten mit einer geringeren
Geschwindigkeit. Infolge dieser Sparmaßnahmen benötigt das System möglicherweise mehr Zeit, um
Aufgaben zu erledigen, verbraucht dadurch aber weniger Strom. Hierbei ist zu bedenken, dass durch
eine Neukonfiguration zusätzliche Nachteile in Bezug auf die Laufzeit und den Stromverbrauch
entstehen, die den Vorteil des geringeren Verbrauchs zunichte machen können. Darüber hinaus
haben Peripheriegeräte einen massiven Einfluss auf das Zeit- und Energieverhalten, ebenso wie die
Frequenz, mit der diese betrieben werden. Somit hängt der Energieverbrauch des Chips von dessen
Clock Tree ab, der zur Umwandlung der Eingangstakte in die erforderlichen Ausgangssignale für die
CPU oder die Peripheriegeräte verwendet wird.

Hieraus ergeben sich zwei Ziele für diese Arbeit: Zunächst wird ein mathematisches Modell
entwickelt, um die energieoptimale Lösung für die sequentielle Abarbeitung eines Sets von Aufgaben
zu bestimmen, während die Laufzeitgarantien weiterhin gegeben bleiben. Dazu werden die theoreti-
sche WCET, verfügbare Clock-Tree-Konfigurationen für jeden Programmabschnitt, die entsprechende
Leistungsaufnahme, eine periodische Deadline sowie die Kosten bei Clock-Tree-Neukonfigurationen
betrachtet, um die bestmögliche Lösung zu finden. Das zweite Ziel besteht darin, dieses Modell auf
Tauglichkeit für reale Hardware zu testen. Hierzu wird ein Hardwaremodell für den RISC-V Single-
Core Mikroprozessor ESP32-C3 erstellt und in das Open-Source Analysewerkzeug PLATIN integriert.
Nachdem das Modell mit einer Benchmark-Suite validiert wurde, folgen Stromverbrauchsmessungen,
um im Anschluss die energieoptimalen Lösungen für zwei Beispielszenarien zu bestimmen. Dies
führte im Vergleich zu einem pessimistischen Ansatz ohne Geräterekonfigurationen zu signifikanten
Energieeinsparungen.

C O N T E N T S

Abstract v

Kurzfassung vii

1 Introduction 1

2 Fundamentals 3
2.1 Real-Time Systems . 3
2.2 WCET Analysis . 5

2.2.1 Static Runtime Analysis . 5
2.2.2 The Implicit Path-Enumeration Technique . 5
2.2.3 Integer Linear Programs for the Implicit Path-Enumeration Technique 6
2.2.4 Constraints of the Integer Linear Program . 7
2.2.5 Hardware Model . 7

2.3 Hardware Platform . 8
2.3.1 Clock Tree . 8
2.3.2 Power Modes . 9

3 The Problem of Unknown Optimal Power Configurations 11

4 Approach 15
4.1 Description of the Linear Programming Problem . 16
4.2 Modelling Multiple Sleep Options . 19

5 Evaluation of the Solver Performance 23
5.1 Theoretical Problem Complexity . 23
5.2 Solver Efficiency . 25

5.2.1 Integer Linear Program versus Quadratic Program 26
5.2.2 Problem-Size–Scaling Behaviour of the Solver . 26

5.3 Viability of the Problem Description . 27

6 Implementation for the ESP32-C3 31
6.1 The ESP32-C3 . 31

6.1.1 Hardware Overview . 31
6.1.1.1 Chip Details . 31
6.1.1.2 Memory . 32

6.1.2 Espressif IoT Development Framework . 32

Contents

6.1.3 Clock Tree . 33
6.1.4 Power Modes . 33

6.2 PLATIN . 34
6.2.1 Toolchain Setup for the ESP32-C3 . 34
6.2.2 Timing Behaviour of the ESP32-C3 . 34
6.2.3 Platin Evaluation . 36

7 Evaluation for the ESP32-C3 39
7.1 Measurements . 39

7.1.1 Measurement Setup . 39
7.1.2 Active Modes . 41
7.1.3 Peripherals . 42
7.1.4 Light Sleep and Deep Sleep . 46
7.1.5 Reconfiguration . 46

7.1.5.1 Switching between Frequencies . 46
7.1.5.2 Configuring Devices . 46
7.1.5.3 Light Sleep . 49
7.1.5.4 Deep Sleep . 49

7.2 Real Values for the Quadratic Program . 51
7.2.1 Single Task . 51
7.2.2 Inter-Integrated Circuit Communication Test . 54

7.3 Conclusion for the ESP32-C3 . 56

8 Related Work 59
8.1 Multi-Objective Optimisation . 59
8.2 Clock-Tree Configurations . 60
8.3 Power Management . 60
8.4 Energy-Constrained Real-Time Systems . 61

9 Conclusion 63

Lists 65
List of Acronyms . 65
List of Figures . 67
List of Tables . 69
List of Listings . 71
Bibliography . 73

x

1I N T R O D U C T I O N

Nowadays, many computers use powerful but complex instruction sets, allowing for more optimised
single instructions and therefore improving the overall performance. While this is handy for the
actual runtime, it makes the time and power consumption of the Central Processing Unit (CPU) hard
to predict, as the power usage of an instruction depends heavily on the input parameters, as seen in
Pallister et al. [26]. The same holds for the time usage. When having a look at embedded real-time
platforms, this leads to an overestimate for both Worst-Case Execution Time (WCET) and Worst-Case
Energy Consumption (WCEC), as one has to use the most pessimistic outcome of an instruction to
stay sound. Nevertheless, for such systems, where time and energy are scarce resources, an accurate
model is essential - first, in terms of functionality, second, in terms of safety. If a system does not
meet a deadline, it does not provide the result of the task at a specific time. If it uses more energy
than expected, and the battery in the system runs empty, a task cannot be finished. On the other
hand, if the system does not make use of its available time or energy, that resources are wasted and
the real potential of the system is underestimated.

The time and the energy consumption depend heavily on the underlying hardware platform. If
the microprocessor cannot be modelled realistically, the analysis may be too pessimistic for being
useful for developing real-world products. In addition, not all available CPU resources are used,
as tasks can be bound by input/output operations or the CPU be a powerful one, which results in
idling. On some platforms, it is possible to reconfigure the clock tree. The clock tree is a network
of input sources, scalers, multiplexers, and gates to produce signals for the CPU or the peripherals
on the chip. It can be modified to deliver a lower frequency for the CPU to run at, lowering the
power consumption. The clock tree has a massive impact on runtime, energy consumption and the
frequency of activated and used peripherals. Turning off devices can save energy, but it introduces
penalties as additional time and energy to change the clock-tree configuration. Furthermore, not all
peripherals can be used at all frequencies or support switching between two frequencies while the
device is in use. All of this has to be considered when looking at a task, e.g., it could be advantageous
not to turn off a device when it is used again later as turning it off and on again is expensive.
However, the power consumption would significantly drop while it is deactivated.

To determine a power-optimal solution for a sequential series of tasks while still being able to
give guarantees regarding the execution time of the program, this thesis presents a mathematical
optimisation problem, which a mathematical problem solver can solve. It considers the theoretical
WCET of sections of each task, the available frequency and device configuration settings for each
phase, their corresponding power consumption, a periodic deadline, and the costs to change between
different device configuration states to determine the best possible solution.

To be able to evaluate the mathematical model, a suitable hardware platform has to be found.
It must be appropriate for energy-constrained real-time systems; as such, a valid and accurate

1 Introduction

hardware model is required. Such a hardware model is created for a hardware platform candidate,
the ESP32-C3, and integrated into the open-source analysis tool PLATIN [28]. The model results are
validated with a benchmark suite by comparing the WCET determined by PLATIN with time and
cycle-counter measurements. Together with power-consumption measurements for the ESP32-C3
and the hardware model in PLATIN, the mathematical model is tested whether a lower power
consumption can be achieved by adding clock-tree configuration changes.

In the following, the design and implementation are described in detail, as well as the evaluation.
Therefore, first of all, a brief description of real-time systems, an overview of WCET analysis and an
introduction to the hardware configurability of embedded microcontrollers is given in Chapter 2.
Chapter 3 follows with a comprehensive description of the optimisation problem described above.
A solution for this problem is presented in Chapter 4, whose efficiency is tested and evaluated
in Chapter 5. After that, the focus changes from a theoretical point of view to a practical one
in Chapter 6. There, the implementation for the ESP32-C3 and its integration into PLATIN are
detailed. Chapter 7 continues this work to be able to evaluate of the model from Chapter 4 on the
ESP32-C3. To conclude this thesis, Chapter 8 discusses related work before a summary is given
in Chapter 9.

2

2F U N DA M E N TA L S

Before this thesis details the problem description and the solutions for it, a set of fundamentals
is needed. First, Section 2.1 gives a brief introduction to real-time systems. Section 2.2 follows,
which explains the term WCET. Afterwards, Section 2.3 details the hardware requirements needed
to perform WCET analysis and changes to time and power consumption.

2.1 Real-Time Systems

A real-time system has different demands compared to a typical desktop user system. In addition
to being reactive to user inputs, calculations are tied to real-time requirements. The units of work,
also known as tasks, to be completed by the system have to be functionally correct and meet timing
constraints. They have an instant of time at which they become available for execution (which also
can be the start of the system) and have to be finished by a given deadline. That can either be a
point in time by which the execution is required to be completed (known as absolute deadline) or it
has a response time, also known as relative deadline, from which the absolute deadline is calculated
as the start point plus the relative deadline [18, Chapter 2.2].

Contrary to what might be expected from the term real-time, real-time systems do not necessarily
have to be fast but meet their given deadlines. If the system cannot meet such a deadline, there are
different ways the system deals with that:

• In soft real-time systems, missed deadlines can be tolerated. However, a late calculation
result is undesirable, as the results lose relevance over time. Examples are DVD players or
multimedia systems.

• Firm real-time systems can also tolerate missed deadlines, but the result of the calculation
gets useless after the deadline and is discarded. Communication systems can be found in this
category.

• Missing a deadline in a hard real-time system is a fatal fault because a late result may have
disastrous consequences. Therefore, missing it can not be tolerated. This is the case for heart
pacemakers, flight control systems or airbag control.

The applications of real-time systems can be categorized into four types [18, Chapter 1.5]:

• Purely cyclic: Every task executes periodically, so the behaviour of the system is deterministic.

• Mostly cyclic: Most tasks execute periodically, but the system must also respond to external
events such as interrupts.

2.1 Real-Time Systems

• Asynchronous and somewhat predictable: Most tasks are not periodic, but the variations in
time of each task have either bounded ranges or known statistics.

• Asynchronous and unpredictable: Most tasks are not periodic and cannot be predicted.

In this work, periodic tasks in a hard real-time–system environment will be analysed. These aspects
will be detailed in the following.

The execution time of a task is the amount of time required to complete execution on a specific
hardware when it executes alone on a system and has all required (hardware) resources available.
That time can vary for a task, as it depends on the underlying hardware and on the given input.
First, the influence of the input is analysed. Take the sorting algorithm BubbleSort for a list of n
integers as an example (Listing 2.1): If the input is already given sorted, it takes O (n) steps for
the function to return a sorted list. However, O (n2) instructions are needed in the worst case. This
leads to two boundaries: The minimum and the maximum execution time. Most of the time, in
real-time systems, primarily the maximum execution time is of interest, as this sets the boundary on
whether the task can always be completed before its deadline or not. As the minimum, average,
and maximum execution time can differ by far, using the maximum as execution time can lead to
massive underutilisation of a system. This is justified by the fact that most hard real-time systems
are safety-critical. For example, it can be tolerated that the crash-control system in a car idles most
of the time, but it is unacceptable if the airbag does not work in the case of a crash. Therefore, in
most hard real-time systems, the variations in task execution times are kept small to minimise the
gap between minimum and maximum execution time: This causes an overestimation of the actual
requirements, leading to unused resources. Additionally, the hard real-time portion of a system is
often small, and thus the overestimation is not that problematic [18, Chapter 3.2.2].

In the airbag example, the task to check whether a crash occurred or not has to be executed
regularly. That can be depicted with a periodic task model. Assume there are tasks Ti , and each task
Ti has a period pi . The periods pi are the minimum lengths of all time intervals between release
times of consecutive tasks of Ti . The hyperperiod H is the amount of time when the release times of
all tasks overlap in the same pattern again. It can be determined by calculating the least common
multiple of all pi [18, Chapter 3.3].

1 void bubbleSort(uint8_t size , uint8_t array []) {
2 uint8_t n = size;
3 bool swapped = false;
4 do {
5 swapped = false
6 for (uint8_t i = 0; i < n-1; ++i) {
7 if (array[i] > array[i+1]) {
8 swap(array[i], array[i+1]);
9 swapped = true;

10 }
11 }
12 --n;
13 } while (swapped);
14 }

Listing 2.1 – A BubbleSort implementation.

4

2.1 Real-Time Systems

2.2 WCET Analysis

For now, focus on one periodic task and return to the problem of the maximum execution time. To
meet the timing criteria of a hard real-time system, tasks need to meet their deadline. To ensure
that a task is completed within its period, the WCET has to be determined beforehand. The most
straightforward approach to that - execute all possible inputs - can become time-consuming. Take
the BubbleSort example (Listing 2.1) from above. With uint8_t as data type there are

(28)(2
8−1)

different input lists with a maximum length of 28 − 1 and 28 possibilities for each value to consider.
This number has 615 decimal digits, so it is clear that testing all inputs is no feasible solution except
for small input ranges.

2.2.1 Static Runtime Analysis

Another option to determine an upper bound for program execution is to perform a static runtime
analysis. Therefore, two preparation steps are necessary [17]:

1. Program-path analysis: A path analysis is run to explore path constraints and exclude infeasible
paths if possible. This is done by building a Control-Flow Graph (CFG) for the program, which
is explained in the next section.

2. Micro-architectural modelling: As any program’s execution time heavily depends on the
underlying hardware platform, it is required to perform a thorough hardware and architecture
analysis to determine timings for each program block.

With all this information available, the WCET can be computed. First, the following section starts
with an explanation of how a CFG is built and used in the analysis.

2.2.2 The Implicit Path-Enumeration Technique

A CFG represents the program flow of an analysed program. The assembler instructions are grouped
into so-called Basic Blocks (BBs) [17]. Each BB has exactly one entry point and exactly one exit
point. That means this code segment is always executed entirely or not at all (if no interrupt
occurs). Also, there are no jumps into the middle of the block or from the middle to somewhere
else. Each BB acts as a node in the CFG. BBs can also be extended to the notion of Atomic Basic
Blocks (ABBs) [33] and Power Atomic Basic Blocks (PABBs) [34, 41]. ABBs are defined as atomic
sections from a scheduling point of view and can span over multiple BBs. A PABB then generalises
this idea to include power-consumption configurations by adding the restriction that the system’s
energy consumption shall not change within one PABB. This includes that no changes to the device
configurations are made during a PABB. If the control flow passes between two BBs, an edge is
inserted into the CFG. For each node, a variable is introduced (x i), similar for each edge (ei, j), which
states how often this node or edge is used during a program flow. The WCET is then calculated as
the maximum of the sum of the costs per basic block ci times the execution frequency x i (with the
assumption that the edges do not have any costs):

max
N
∑

i=1

ci x i

5

2.2 WCET Analysis

The x is have restrictions, which are given by the CFG - more on that in Section 2.2.4. One could
look for the maximum by manually searching for the longest possible path through the graph, but
this is, besides not being feasible, not very functional. At this point, the idea behind the Implicit
Path-Enumeration Technique (IPET) [17, 29] comes in: In general, it is not necessary to identify the
exact worst-case paths, but just the worst-case execution time. Therefore, the problem of determining
the bounds of each x i is converted into an Integer Linear Program (ILP), which then can be solved
by a problem solver. The following section briefly introduces the usage of ILPs for IPET.

2.2.3 Integer Linear Programs for the Implicit Path-Enumeration Technique

An Integer Linear Program (ILP) consists of an objective (or goal) function with n frequency vari-
ables x i to be either maximised or minimised, and a set of m constraints, which describe the
constraints for variables used in the objective function. The canonical form of an ILP is:

maximise
n
∑

i=1

ci x i

subject to
n
∑

i=1

ai1 x i ≤ b1

n
∑

i=1

ai2 x i ≤ b2

. . .
n
∑

i=1

aim x i ≤ bm

∀i : x i ≥ 0
and ∀i : x i ∈ Z

The ci are the cost of each frequency variable, where in the context of WCET analysis the x i

corresponds to the execution frequency of a BB and the ci to the time needed by this BB. The
ai j are the influence of the i-th frequency variable on the j-th constraint, which is bounded by
b j . The variables x i ∈ Z ensure that only linear solutions are valid - meaning that a BB must be
executed in its entirety. If one or more variables can also be real numbers instead of just integers,
the problem is called a mixed-integer linear programming problem. The canonical form of an ILP as
presented above is often needed for passing a problem description to an ILP solver, e.g., lpsolve [21]
or Gurobi [14]. Other forms, e.g., when the conditions are malformed or the goal is to minimise a
function, can be adapted easily to match the required canonical form. An optimal solution is any
solution where the constraints are satisfied and the value of the objective function is maximised.

In general, ILPs are NP-complete, meaning that a solving algorithm has an exponential worst-case
complexity. Li and Malik [17] showed that an actual blowup did not occur for their WCET analyses as
the constraints matched a network flow problem, which can be solved in polynomial time. However,
in principle, the full range of possible constraints can lead to a general ILP. The following section
looks at the constraints needed to describe a task as an ILP.

6

2.2 WCET Analysis

2.2.4 Constraints of the Integer Linear Program

Mainly two constraints restrict the previously introduced x i:

• Structural constraints: These are directly extracted from the CFG.
For example, the number of ingoing edges must be the same as the execution frequency of the
BB, and the execution frequency of the BB must equal the number of outgoing edges.

• Functionality constraints: These have to be provided by the user as additional information.
For example, data-flow analysis or the programmer itself can add information on how many
times a loop will be executed at maximum. This information can be used as follows: When
examining loops, there are two different types of ingoing edges: Entry edges, where the
program flow enters a BB the first time, and back edges, which are the connections from the
end of the loop back to the beginning. If an upper bound of the loop-body executions is known,
the number of edges can be limited: The sum of all back edges must be smaller or equal to
the sum of entry edges times the number of loop executions, as each entry edge can trigger as
many as n executions of the first outgoing edge.

How the exact modelling of a program into an ILP works would exceed the fundamentals required for
this work. For further reading, the modeling procedure is detailed in Li and Malik [17] or Ballabriga
and Cassé [3].

2.2.5 Hardware Model

The execution time of one BB heavily depends on the underlying hardware platform. The hardware
model to determine these costs can be of variable complexity and, therefore, variably precise. A
simple model analyses the execution time of each assembler instruction in the BB and sums up
all (upper) bounds to determine the WCET of a BB. Additionally, models for pipelines and caches
exist to improve the accuracy [15, 30, 44] and thus minimise the error of the WCET estimation.
However, cache modelling can become quite hard, and several works have already addressed this
topic [15, 39]. Depending on the level of detail of the hardware modelling, one can thus obtain a
more and more accurate model of the program behaviour on the system. The downside of this is that
the time required for the analysis also increases. Whether the higher analysis effort for developing
the more precise outcome and the longer analysis time is worth the more accurate estimate depends
on the use case of the model. When creating a hardware model, it should be taken care of an
evaluation regarding the presence or absence of timing anomalies and, if there are any, model them
accordingly. Timing anomalies [6, 22] are situations where the local WCET does not lead to the
global WCET. One famous example is when a cache miss as local worst case can result in a shorter
global WCET due to scheduling effects for out-of-order execution. If timing composability does not
apply, WCET analysis becomes more difficult and time-consuming [31].

Altogether, the WCET of a program may be overestimated. However, the proposed techniques
can determine the WCET in a feasible amount of time. Also, the analysis does not miss any outliers
to the higher end, which would be a disaster for a hard real-time system.

7

2.2 WCET Analysis

2.3 Hardware Platform

The heart of controlling timing and energy consumption of a chip is its clock tree. Section 2.3.1
explains the term and how it works. Depending on the clock-tree configuration, a chip operates in
different modes. With regards to power consumption, these are known as power modes, which are
detailed in Section 2.3.2.

2.3.1 Clock Tree

A clock tree is a clock-distribution network on a microcontroller chip. Its task is to distribute and
route the source clock signals to all internal components. A network of source, intermediate, and
sink nodes is used. The complexity of the network depends on the chip. Intermediate nodes can
be multiplexers to choose between multiple inputs for its single output, multipliers or dividers to
scale the frequency, or clock gates to completely shut off single devices or a whole subtree from
the network. Figure 2.1 shows an example: There are three source clocks, namely PLL, RC and
OSC. These three source signals are routed to three output clocks: CPU_CLK , WIFI and BLE. In
between is a clock tree, which is made of scalers, multiplexers and clock gates. With these, a broad
range of output clocks can be achieved: For example, the WIFI signal can either be configured by
taking the PLL signal or by choosing the RC signal. This is then divided by FOSC_DIV , selected
by MUX1 instead of the OSC signal and then divided again by DIV. Finally, MUX3 chooses this
signal before the GATE is set to be open such that WIFI receives the signal. If WIFI is not used,
the GATE can be closed such that WIFI does not use additional energy and therefore reduces the
energy consumption of the chip, which is power over time.

The clock tree needs to be configured accordingly to provide the frequencies required by the
application and the peripherals. For example, the standard operation mode of the WiFi chip of an
ESP32-C3 [9] only works with fast clocks, while slow clocks are required for low-power operation.
So if one needs the WiFi chip to be active, the clock tree has to be configured such that a fast
clock drives the WiFi chip. There are two options for configuring the clock tree: Configuration
before and setup during startup, or (re-)configuration during runtime. The hardware usually
offers interfaces to reconfigure the clock tree, although not all parts of a clock tree allow the
system to be reconfigured during runtime. Often memory-mapped hardware registers contain

PLL

RC

OSC

PLL_DIV

FOSC_DIV

MU
X1 DIV

MU
X2 CPU_CLK

MU
X3 GATE WIFI

BLE

Figure 2.1 – A clock tree with three source clocks and three output clocks. In between, a clock
tree, made of scalers, multiplexers and clock gates, configures the values of the output clocks.

8

2.3 Hardware Platform

the configuration, and writing them triggers a state change, e.g., setting a divider value or gating
peripherals. Sometimes, writing a single value is all it needs to reconfigure a clock. However, other
clocks introduce further reconfiguration penalties: Some take time until a stable clock is reached
again, or changing one clock influences the whole system, e.g., changing the frequency for a subtree
and all devices on it or turning off devices that are not supposed to be switched off [32]. There
are also two options for how reconfiguration happens: either all configuration changes are known
beforehand, which enables optimisations at compile time. The other option is to dynamically react to
clock-tree reconfiguration requests, which makes a system more adaptable to application demands.
But, as a consequence, every change has to be checked on compliance with the restrictions of other
active requests and requirements.

2.3.2 Power Modes

Power modes of a system are predefined configurations of the clock tree. Examples are light sleep or
deep sleep, where the CPU clock is turned off. A Power-Management Unit (PMU) controls the power
supply to different parts of a chip. It decides which power domains stay powered on and which are
powered off in each power mode. A power domain describes a section of a chip, e.g., CPU, clock
sources, or peripherals. To switch from a high power mode to a mode where the CPU is powered
down, the PMU is configured to react to a wakeup source before entering a sleep mode. This can be
a GPIO pin or happen via UART, which then powers up the CPU again after it was in low-power
mode. When choosing a power mode with lower energy consumption, often only a limited set of
features of the chip are available. The other way round also holds: If not all features are needed,
one does not need as much power as before due to the fact that a power mode with less energy
consumption can be used.

9

3T H E P R O B L E M O F
U N K N O W N O P T I M A L
P O W E R C O N F I G U R AT I O N S

Determining the WCET is a central part of research in the field of real-time systems [44]. The
problem is mostly solved for single tasks or applications [13]. Besides that, strategies to provide
timing behaviour guarantees for whole systems are also available [1, 2]. The aspect of energy
consumption for individual applications or even the entire system is an ongoing research challenge,
as each device and its activation or deactivation influence the total system behaviour [41]. When
looking at such energy-constrained real-time systems, not only time but also energy-consumption
guarantees have to be met. A popular example of such a system is an artificial cardiac pacemaker:
The electrical impulses must regularly and reliably provide a signal to perform the cardiac contraction
– the time component of the requirements of such a device. The energy output of the battery is just
as important: There must always be enough energy to control the signalling system, otherwise, this
leads to system failure, an unacceptable state. An additional goal is to minimise the overall energy
consumption, which means to optimise the usage of the available resources according to the needs
of (a set of) given tasks, such that the energy source lasts longer. In the case of the artificial cardiac
pacemaker, its battery does not have to be controlled and changed as often.

To tackle this problem in a first step, only a single, periodic task with a previously known number
of phases is examined in the context of an energy-constrained real-time system. Each phase has
different requirements regarding the clock-tree configuration, which induces possible peripheral
device usage. In between the phases, the system has the option to be reconfigured by changing the
clock-tree configuration of the microcontroller to e.g., power on or turn off peripherals. This allows
the system to adapt to the requirements of each phase if necessary. An example is given in Listing 3.1:
It consists of three phases with different constraints on the clock-tree configuration. After the three
phases, it idles until the next period starts. From one phase to the next, the reconfiguration points
allow the system to adjust the clock tree to meet the demands of each phase. These mode changes
introduce penalties regarding time and power consumption, which must be taken into account. For
example, the time to wake up the ESP32-C3 from deep sleep takes 300 ms.

A safe way to ensure the power source does not run out of energy earlier than expected is to
assume the maximum power consumption of the microcontroller at all times. This leads to higher
predicted energy consumption and therefore shorter operation period of the energy source, which,
in turn, means that e.g., a battery has to be replaced sooner, although it was not yet required. A
configuration like this for the example from Listing 3.1 is shown in Figure 3.1a. The power demand
is shown as a curve, and the shaded area underneath corresponds to the energy consumption, as

3 The Problem of Unknown Optimal Power Configurations

1 while(true):
2 reconf(idle , p1);
3 execute(p1);
4 reconf(p1, p2);
5 execute(p2);
6 reconf(p2, p3);
7 execute(p3);
8 reconf(p3, idle);
9 wait(idle , until=period_end);

Listing 3.1 – Example task for the problem description: A periodic task with three sequenced
phases p1, p2, p3 and a sleep phase afterwards is given. In between each two of those, a
clock-tree reconfiguration can occur and thus change the microcontroller timing behaviour and
energy consumption.

it equals the power demand multiplied by time. The actual energy consumption can be far less,
e.g., by using feedback-based optimisation methods: Chiang et al. [7] introduce a kernel-based
dynamic clock management system. It reduces energy consumption by changing the clock of an
embedded microcontroller based on ongoing computations and I/O requests. They claim that slower
clocks with a lower power consumption are more suitable for fixed-time I/O operations, while pure
computations shall be done with faster clocks as these use less energy per clock tick. An example of
such a dynamic reconfiguration during runtime is shown in Figure 3.1b. In the first period, slower
clocks lead to less energy consumption than in Figure 3.1a, but to a longer runtime of the phases
themselves. This behaviour still meets the requirement of the timing constraint, as all tasks are
finished before the next period starts. In the second period, the dynamic reconfiguration is acting
more aggressively and, in some phases, uses even slower clocks. Again, the energy consumption
drops, but the periodic deadline is no longer met. This is unacceptable and leads to system failure
in hard real-time systems. That approach also has several other problems:

• To select a more suitable configuration, feedback on the current system - first - has to be
collected and - second - has to be evaluated. Since both tasks inevitably require extra time
and computing power and therefore consume additional energy, the result cannot be optimal.
Solution: Use static analysis before program execution to determine the most suitable config-
urations without runtime overhead.

• The feedback loop only reacts to the currently running application. It thus neither can take a
better configuration into account for the previous task nor prepare the system for the next
task in advance. This is seen in the first period of Figure 3.1b, where a longer execution time
of a phase and, therefore, lower power consumption is still acceptable.
Solution: A static analysis of the complete task and its environment before runtime uses this
information to construct configurations for the overall task set. As a result, the energy-optimal
solution is obtained.

• The outcome of the feedback evaluation is unknown beforehand. This can lead to problematic
behaviour like in the second period of Figure 3.1b: A deadline miss occurs. Even worse, no
guarantees for the execution time or power consumption can be given, which is disastrous for
hard real-time systems.
Solution: By using WCET analysis, timing behaviour is determined before runtime and, as
consequence, guarantees for real-time systems can be given.

12

3 The Problem of Unknown Optimal Power Configurations

time

power period period

p1 p1p2 p2p3 p3idle idle

(a) Option 1: Always-on approach. All devices on the microcontroller are active, therefore the maximum
power consumption is assumed.

time

power period period

p1
p2 p3

idle p1

p2

p3
�

(b) Dynamic, feedback-based optimisation: The system has the option to reconfigure the microcontroller
during operation to reduce power consumption.

time

power period period

p1

p2

p3 idle
p1

p2

p3 idle

(c) Static optimisation with timing guarantees: By collecting information about energy consumption, device
configuration constraints and timing behaviour, an optimal solution is determined beforehand.

Figure 3.1 – Finding the optimal power configuration for the example from Listing 3.1. Three
different strategies are displayed and described above.

All these problems are tackled with the approach presented in this thesis: By using a mathematical
model (further description follows in Chapter 4) for a static analysis before execution, no runtime
overhead is introduced. It uses information about the whole system with its clock-tree configurations
for all tasks, which shall be executed periodically with a given hyperperiod or deadline. Therefore,
the model also evaluates whether it is advantegous to leave a peripheral device turned on even if
not needed in the following phase(s) instead of accepting the reconfiguration costs occuring with
powering off and on the device for both energy-consumption minimisation and timing guarantees.
WCET analysis is used to determine the expected cycle count of each phase, from which - together
with the clock-tree configuration - both time and energy consumption behaviour are derived for
each phase. This is used as input for the mathematical model, together with the power consumption
for each clock-tree configuration and the penalties for reconfiguration. With all this information,
guarantees for meeting the periodic deadline and minimal power consumption can be given. As a
result, an optimal power-consumption curve, as shown in Figure 3.1c, can be achieved. The next
chapter describes the mathematical model, which expresses all requirements.

13

4A P P R O A C H

This chapter introduces the chosen approach to tackle the problems described in Chapter 3. It
introduces the overall theoretical problem description for determining time- and power-optimal
frequency settings and clock-tree configurations and discusses possible design options.

As in the previous chapter, it is assumed that the required power consumption for all available
clock-tree configurations and all penalties for changes between clock-tree configurations are known.
This includes changing the frequency of the CPU, turning on peripherals, using them, and turning
them off. A periodic task like the one shown in Listing 3.1 is given, which is split into phases. Just
one task is running at a point in time. The order of the task’s phases is fixed. Splits between two
phases are called reconfiguration or decision points. At these points, the clock-tree configuration
and, therefore, the power consumption of the system can, but does not need to, be changed -
e.g., power on a device, change to a lower frequency for I/O-bound operations or choose a higher
frequency for computation-intense operations. Therefore, there are no other points in time where
the power consumption of the device changes. For each phase, the worst-case number of CPU cycles
is determined with a WCET analysis. The maximum energy needed for a phase can be calculated by
multiplying that number with the current frequency and the power consumption per time, which
heavily depends on the used peripheral devices. The period length of the periodic task is given,
which is also the hyperperiod of the system, as only one phase of the sequential tasks is running at
each point in time. The goal is to determine the energy-optimal solution with regards to the choice
of frequencies and clock-tree configurations per phase, which still meets the give time constraint
- the hyperperiod. As stated by Chiang et al. [7], clock choice is essential to the system’s energy
consumption. Slower clocks drain less energy per time, but fast clocks are more energy-efficient for
computation-intense tasks on microcontrollers, as the system draws more power but less per CPU
cycle. That means the best trade-off between power consumption, computing speed and clock-tree
reconfiguration penalties is to be determined.

The possible clock-tree configuration changes can be represented as an acyclic graph, as shown
in Figure 4.1. Each phase has a set of possible configurations, representing each as a node in the
graph. A node has a cost depending on the chosen clock-tree configuration, which corresponds to a
set frequency and power consumption, and the overall time, which depends on the number of CPU
cycles. Between each configuration of a phase and all configurations of the next phase, a transition
by changing the clock tree (possibly in multiple steps) is possible and represented as an edge in
the acyclic graph. If a change is not viable, the corresponding edge is not part of the graph. The
edges have the costs of the power consumption of the corresponding transition. The S and E nodes
resemble the start and end of a task during a period. The remaining time between S and E is spent
in sleep mode; the edges from S or to E represent the costs of waking up or going to sleep. The

4 Approach

f1,1 f2,1 f3,1

f1,2

f1,3

f2,2

f2,3

f3,2

f3,3

S E

Phase 1 Phase 2 Phase 3

Figure 4.1 – Graph representation of the mathematical description: The possible changes
between all clock-tree configurations for each phase can be represented as edges of a cyclic
directed graph. Each edge resembles a valid change. Each edge and node has resource (time
and energy) costs. In the end, exactly one path from S to E is active. In this example, there are
three phases, where each one has three possible settings. All changes are possible, therefore, all
edges are displayed in the graph.

time in sleep is calculated as the hyperperiod without all time needed in the previous phases and
transitions, depending on the choice of clock-tree configurations.

The goal is to find a way through the graph from S to E where exactly one node is selected
in each layer - as per phase, exactly one configuration can be selected. In addition, the most cost-
effective solution is to be determined. Therefore, the graph describes a minimum cost, maximum
flow problem with an additional constraint on the total time needed by all nodes and edges, which
needs to be less than the given hyperperiod, and a flow of 1. Starting with a flow of 1 at S, a flow
with minimum cost through the network by selecting the best combination of nodes and edges has
to reach E. Min-Cost-Max-Flow problems can be modelled as ILPs. As this problem falls into this
problem class, but with additional constraints, a suitable ILP model is presented in the next section.

4.1 Description of the Linear Programming Problem

Let

• x ∈ N be the amount of phases of the current problem,

• ci ∈ N the amount of cycles in phase i,

• fi ∈ N the number of available frequencies for phase i,

• ∀ j ∈ {0, . . . , fi − 1}. fi, j ∈Q all available configurations for phase i,

• ∀ j ∈ {0, . . . , fi − 1}. pi, j ∈Q the corresponding power consumption and

• H ∈Q the hyperperiod time.

The time for one phase i with configuration fi, j is defined as function t i, j(), which shall return a
fixed number. For example, the function depends on the WCET and the frequency of the current
configuration, where the frequency is given as how many CPU cycles can be executed per second.

16

4.1 Description of the Linear Programming Problem

Then, the time for this phase is calculated as the product of amount of CPU cycles, as determined by
WCET analysis, times the CPU frequency of the current setting,

t i, j() = ci · fi, j .

Similarly, the energy consumption of a phase i with a configuration fi, j is defined as function ei, j().
For example, the energy consumption is defined as product of time and the power consumption,
which results in

ei, j() = t i, j() · pi, j .

For simplicity, t i, j() and ei, j() are noted as t i, j and ei, j in the following.
Changing the frequency or activating a device when switching from one phase to the next can

induce additional time and/or power resources. To model these, each change introduces a penalty
with regards to energy (ei, j→i+1, j′) and time (t i, j→i+1, j′).

For all nodes (available clock-tree configurations for each phase) and edges (the changes between
nodes) there are some constraints:

• Per phase i exactly one node is selected. This node is called active node for phase i.

• There is exactly one active edge between two phases. An edge can only be active if both
predecessor and successor nodes are used and, therefore, also active.
This can also be formulated in another way: the ingoing edges for a node sum up to the
amount of outgoing edges, which splits up into:

– A node is only active if it has an active ingoing edge, and

– can only have an active outgoing edge if it is active.

• The time used by all active nodes and edges should be smaller than a previously known,
constant hyperperiod. All remaining time is spent in sleep mode.

To formulate these constraints mathematically, binary selection variables are introduced:

• ni, j ∈ {0, 1} selects a configuration for a phase, together with its power consumption.

• ni, j→i+1, j′ ∈ {0, 1} represents an active change from the j-th state of phase i to the j′-th state
of phase i + 1. For the connections to S and E there are the variables ns→0, j ∈ {0,1} and
n(x−1), j→e ∈ {0,1}.

With these variables, the constraints from above can be expressed as follows:

• Each phase can only have exactly one active node:

∀i ∈ {0, . . . , x − 1} :
fi−1
∑

j=0

ni, j = 1 (4.1)

• The amount of active ingoing edges equals the amount of active outgoing edges, and edges
can only be in- or outgoing if the node itself is active:

∀i ∈ {0, . . . , x − 1}. ∀ j ∈ {0, . . . , fi − 1}.
fi−1−1
∑

j′=0

ni−1, j′→i, j = ni, j (4.2)

∀i ∈ {0, . . . , x − 1}. ∀ j ∈ {0, . . . , fi − 1}. ni, j =
fi+1−1
∑

j′=0

ni, j→i+1, j′ (4.3)

17

4.1 Description of the Linear Programming Problem

• All times needed for the phases itself plus the times to change from one phase to another plus
the remaining sleep time tsleep should add up to the predefined hyperperiod H.

x−1
∑

i=0

fi−1
∑

j=0

t i, j +
x−2
∑

i=0

fi−1
∑

j=0

fi+1−1
∑

j′=0

ni, j→i+1, j′ t i, j→i+1, j′ +
f1−1
∑

i=0

ts→0, j +
fx−1
∑

i=0

t(x−1), j→e + tsleep = H (4.4)

• If a change from phase i with setting j to phase i+1 with setting j′ is not possible, the decision
variable for this state is set to zero:

ni, j→(i+1), j′ = 0 (4.5)

The optimisation problem is then formalised as follows:

min
x−1
∑

i=0

fi−1
∑

j=0

ni, j ei, j (4.6)

+
x−2
∑

i=0

fi−1
∑

j=0

fi+1−1
∑

j′=0

ni, j→i+1, j′ ei, j→i+1, j′ (4.7)

+
f0−1
∑

j=0

ns→0, j es→0, j (4.8)

+
fx−1−1
∑

j=0

n(x−1), j→e e(x−1), j→e (4.9)

+ tsleep psleep (4.10)

wrt.
∀i ∈ {0, . . . , x − 1} :

fi−1
∑

j=0

ni, j = 1 (4.11)

∀i ∈ {0, . . . , x − 1} : ∀ j ∈ {0, . . . , fi − 1} :
fi−1−1
∑

j′=0

ni−1, j′→i, j = ni, j (4.12)

∀i ∈ {0, . . . , x − 1} : ∀ j ∈ {0, . . . , fi − 1} : ni, j =
fi+1−1
∑

j′=0

ni, j→i+1, j′ (4.13)

x−1
∑

i=0

fi−1
∑

j=0

t i, j +
x−2
∑

i=0

fi−1
∑

j=0

fi+1−1
∑

j′=0

ni, j→i+1, j′ t i, j→i+1, j′

+
f0−1
∑

j=0

ts→0, j +
fx−1−1
∑

j=0

t(x−1), j→e + tsleep = H (4.14)

This is an ILP, as all values except for the n∗ and tsleep variables are known beforehand, or are
calculated as functions from the known variables for frequency, cycle count, and power consumption.

18

4.1 Description of the Linear Programming Problem

4.2 Modelling Multiple Sleep Options

Until here, the time tsleep spent sleeping from E to S is the remaining time which is not spent with
either executing a phase or switching from one phase to another. With this precondition, this time
spent in sleep mode is not fixed beforehand like the time needed when executing a phase with
a specific frequency. However, a fixed value can be determined when the solver determined the
selection variables for the ILP. To model more comprehensive problems, idling has more options to
"go to sleep" than just one, as real chips have more modes, for example:

• Deep Sleep: In this state, nearly everything on a microcontroller is powered down. As a
consequence, the power consumption of it drops low. For example, the ESP32-C3 needs 5 µA
in deep sleep compared to 20 mA during normal operation without peripherals [11]. The
disadvantage of this sleep mode is that the penalty for going there and waking up is higher than
in the following sleep options. For the ESP32-C3, it takes 300 ms to wake up (see Section 7.1.5.4
for more details).

• Light Sleep: In this state, the CPU and other parts of the chip are powered down, but the
system can be woken up faster than from deep sleep. The downside is that this state consumes
more energy than deep sleep.

• Idling: Switching between different CPU frequencies is very fast, e.g., for the ESP32-C3 it
takes up to 21 CPU cycles. But, as the CPU stays powered on, power consumption is usually
higher than in sleep mode. This can be the only way if turning the CPU off, like in light or
deep sleep, takes too much time. Also, every available clock-tree configuration can be an
option for idling.

As just mentioned, the time needed to enter or leave a mode varies for every option. Therefore, tsleep

depends on what sleep mode is selected. To model this, the S and E phases are merged into one
phase, which contains all possible sleep modes. With this, the resulting graph, shown in Figure 4.2,
is not acyclic anymore, as the start state has to be the same as the end state - the chosen sleep state.

f1,1 f2,1 f3,1

f1,2

f1,3

f2,2

f2,3

f3,2

f3,3

s2

s1

Phase 1 Phase 2 Phase 3 Sleep

Figure 4.2 – Graph representation with multiple sleep modes: The S and E states are merged
into a new phase, which contains all possible sleep modes. In this case, there are two possible
sleep modes.

19

4.2 Modelling Multiple Sleep Options

To describe this graph, new variables are introduced:

• The amount of sleep modes fsleep. The sleep phase is added to the x phases, therefore,
fsleep = fx .

• New binary selection variables ∀i ∈ {0, . . . , fsleep − 1}. nsleep,i to select the sleep mode.

• The power consumptions ∀i ∈ {0, . . . , fsleep − 1}. psleep,i of all sleep modes.

• Energy and time costs for changing from the last phase to sleep modes,
∀i ∈ {0, . . . , fx−1 − 1}.∀ j ∈ {0, . . . , fsleep − 1}. ex−1,i→sleep, j , t x−1,i→sleep, j ,
and for changing from sleep to the first phase,
∀i ∈ {0, . . . , fsleep − 1}.∀ j ∈ {0, . . . , f0 − 1}. esleep,i→0, j , tsleep,i→0, j .

• The corresponding binary variables for the changes
∀i ∈ {0, . . . , fx−1 − 1}.∀ j ∈ {0, . . . , fsleep − 1}. nx−1,i→sleep, j and
∀i ∈ {0, . . . , fsleep − 1}.∀ j ∈ {0, . . . , f0 − 1}. nsleep,i→0, j .

• For the remaining time in sleep depending on the selected sleep mode, the variables tsleep,i .
These are - as the binary variables for selecting the states per phase - not known beforehand.

This results in the following minimisation problem:

min
x−1
∑

i=0

fi−1
∑

j=0

ni, j ei, j (4.15)

+
fsleep−1
∑

j=0

nsleep, j tsleep, j psleep, j (4.16)

+
x−1
∑

i=0

fi−1
∑

j=0

f(i+1) mod (x+1)−1
∑

j′=0

ni, j→(i+1) mod (x+1), j′ ei, j→(i+1) mod (x+1), j′ (4.17)

wrt.
∀i ∈ {0, . . . , x} :

fi−1
∑

j=0

ni, j = 1 (4.18)

∀i ∈ {0, . . . , x} : ∀ j ∈ {0, . . . , fi − 1} :
f(i−1) mod x−1
∑

j′=0

n(i−1) mod x , j′→i, j = ni, j (4.19)

∀i ∈ {0, . . . , x} : ∀ j ∈ {0, . . . , fi − 1} :
f(i+1) mod x−1
∑

j′=0

ni, j→(i+1) mod x , j′ = ni, j (4.20)

x−1
∑

i=0

fi−1
∑

j=0

ni, j t i, j +
fsleep−1
∑

j=0

nsleep, j tsleep, j

+
x
∑

i=0

fi−1
∑

j=0

f(i+1) mod x−1
∑

j′=1

ni, j→(i+1) mod x , j′ t i, j→(i+1) mod x , j′ = H (4.21)

20

4.2 Modelling Multiple Sleep Options

This formulation is not linear anymore, as the objective function contains the terms
fsleep−1
∑

j=0

nsleep, j tsleep, j psleep, j (4.22)

and fsleep−1
∑

j=0

nsleep, j tsleep, j . (4.23)

In both equations, nsleep, j and tsleep, j are variables that are unknown and shall be determined by the
solver. But, as they are multiplied, the linear program turns into a Quadratic Program (QP) and is
not a valid input to any linear-program solver. To circumvent this problem, another solver might be
employed, which is also able to solve non-linear problems. One example of this is Gurobi [14]. If
such a solver is not available, one can generate a separate optimisation problem for each sleep state,
as introduced in Section 4.1. First, every one of these problems is solved, and then the minimum
value from all runs and the corresponding solution is selected in an additional step.

This results in the following problem statement for an ILP solver:
Select the minimum value for the problem described by varying Z ∈ {0, . . . , fsleep − 1}:

min
x−1
∑

i=0

fi−1
∑

j=0

ni, j ei, j (4.24)

+ tsleep,Z psleep,Z (4.25)

+
x−1
∑

i=0

fi−1
∑

j=0

f(i+1) mod (x+1)−1
∑

j′=0

ni, j→(i+1) mod (x+1), j′ ei, j→(i+1) mod (x+1), j′ (4.26)

wrt.
∀i ∈ {0, . . . , x − 1} :

fi−1
∑

j=0

ni, j = 1 (4.27)

nsleep,Z = 1 (4.28)

∀ j ∈ {0, . . . , fsleep − 1}\{Z} : nsleep, j = 0 (4.29)

∀i ∈ {0, . . . , x} : ∀ j ∈ {0, . . . , fi − 1} :
f(i−1) mod x−1
∑

j′=0

n(i−1) mod x , j′→i, j = ni, j (4.30)

∀i ∈ {0, . . . , x} : ∀ j ∈ {0, . . . , fi − 1} :
f(i+1) mod x−1
∑

j′=0

ni, j→(i+1) mod x , j′ = ni, j (4.31)

x−1
∑

i=0

fi−1
∑

j=0

ni, j t i, j + tsleep,Z +

+
x
∑

i=0

fi−1
∑

j=0

f(i+1) mod x−1
∑

j′=0

ni, j→(i+1) mod x , j′ t i, j→(i+1) mod x , j′ = H (4.32)

When the chosen mathematical solver supports non-linear problems, both problem descriptions shall
determine the same solution. By extracting the selected binary variables, a power-consumption–
optimal program with real-time guarantees can be developed. It depends on the performance of
the mathematical solver whether solving fsleep linear problems for each sleep state or one quadratic
problem is faster. This topic is analysed in the next chapter.

21

5E VA LUAT I O N O F T H E S O LV E R
P E R F O R M A N C E

The problem description from the previous chapter has multiple parameters. Three of these have a
definite influence on runtime: the number of phases, the number of available clock-tree configurations
per phase, and the number of idle or sleep modes. Other parameters are important for determining
the solution of real inputs but have no influence on the problem complexity itself. Therefore, they
are left out of the following problem-size analysis. These are the number of cycles per phase and all
costs for the configurations per phase or the costs for changing from one configuration to another in
terms of time and power consumption.

First, Section 5.1 takes a look at the complexity of the problem with regards to the input. After
that, it is to be tested whether the mathematical model description from Chapter 4 is efficient enough
for the intended use case. Therefore, input sets for the solver are generated automatically, and the
solver performance is evaluated in Section 5.2. Finally, based on those two insights, a conclusion is
made in Section 5.3.

5.1 Theoretical Problem Complexity

Let x + 1 be the amount of phases x plus the sleep phase, and n the maximum number of possible
frequencies per phase, including the sleep phase. The parts influencing the model complexity are:

1. The amount of binary and integer variables: A solver must determine a solution for each
unknown variable. A more extensive search space means more options and combinations it
has to try to reach the optimal solution.

2. The length and complexity of the objective function: If the number of summands in the
objective function increases, the solver has more calculation work when checking the objective
term. Also, more complex terms (linear versus quadratic) mean more calculation operations.

3. The length and complexity of the constraints.

The actual complexity depends heavily on the chosen solver and its optimisation strategies. Even
though a general statement is complex, the problem has several externally quantifiable parameters.
One could expect influences of these parameters on the problem complexity due to the comparatively
uniform structure of flow problems.

5.1 Theoretical Problem Complexity

Both models from Section 4.2 are tested.

• First, the model with all sleep options in one single optimisation problem is discussed:

1. Amount of variables:
There are binary selection variables for each phase and frequency option, which results
in (x + 1) · n binary variables. Between each layer, the maximum of connections is given
when every node from the current phase is connected to every other node from the next
phase. A binary variable for each connection controls the selection of these connections,
therefore (x + 1) · n2 binary variables. The remaining time spent in a sleep mode is
modelled with an integer variable per sleep mode, which are n linear variables.
In total, there are (n+ 1) · ((x + 1) · n) binary and n linear variables.

2. Complexity of the objective function:
Equation 4.15 has x · n linear terms, Equation 4.16 has n quadratic terms, and Equa-
tion 4.17 is made of (x + 1) · n2 linear terms.

3. Complexity of the constraints:
Equation 4.18 has (x + 1) linear terms with n summands each, Equation 4.19 and
Equation 4.20 (x + 1) · n linear terms, each with n summands per term. Equation 4.21 is
made of (x + 1) · n+ x · n2 linear summands, and n+ n2 quadratic ones.

Summing up: The problem size of both linear and quadratic terms grows in a quadratic manner
for the number of nodes per phase and linear for the number of phases. It is important to
point out that the quadratic terms are either made from two binary selection variables or one
real number and a binary selection variable.

• Next, just one sleep mode per input to the solver is assessed. The quadratic terms disappear
and create an ILP, which corresponds to the following complexity:

1. Amount of variables:
The amount of variables stays the same, as just the objective function and the constraints
are adapted to provide a valid ILP description.

2. Complexity of the objective function:
Equation 4.24 has x ·n linear terms, Equation 4.25 has one linear term, and Equation 4.26
is made of (x + 1) · n2 linear terms.

3. Complexity of the constraints:
Equation 4.27 has x linear terms with n summands each, Equation 4.28 and Equation 4.29
together are n linear terms. Equation 4.30 and Equation 4.31 are both (x + 1) · n terms
with n summands, and Equation 4.32 is made of (x + 1) · n + 1 + (x + 1) · n2 linear
summands.

Here, the problem size also grows quadratically for the number of nodes per phase and linear
in the number of phases, but only for linear terms instead of quadratic ones. However, the
quadratic factor is reintroduced as the problem has to be executed n times.

To check the solver efficiency for larger problems, the influence of the number of phases and
the influence of frequency options per phase are tested. Extrapolating from the notion of problem
size as described above, a linear growth for the number of phases and a quadratic growth for the
configuration options per phase are to be expected.

24

5.2 Solver Efficiency

5.2 Solver Efficiency

The first step before evaluating a solver’s performance is to identify suitable solvers for the given
problem. Two popular options are lpsolve [21] or Gurobi [14]. While lpsolve is an open-source
tool, Gurobi is a licensed mathematical solver which distributes free copies of it for use in research.
Because Gurobi is closed-source software, it is neither possible to identify or reconstruct which
solution approach the solver takes nor which parameters directly influence the problem complexity.
As the name suggests, lpsolve can only solve linear problems, while Gurobi is also capable of more
complex terms such as quadratic optimisation problems.

All tests were performed on a computer with an Intel(R) Core(TM) i5-4590 CPU and 16 GB of
RAM, running Debian with a Linux kernel, version 5.10. lpsolve is installed in version 5.5.2.5-2,
Gurobi in version 9.5.1 with an academic license. Throughout the evaluation, Gurobi outperformed
lpsolve, e.g., solving a program that took Gurobi milliseconds was aborted for lpsolve after 10
minutes. Therefore, the performance tests were run with Gurobi.

To have a look how the theoretical complexity inspected in Section 5.1 maps to real performance,
time measurements for varying problem sizes are performed. This thesis assumes that a range
from five to 80 phases and from five to 40 configurations per phase is a reasonable choice for hard
real-time systems in respect of a real-time task with a limited task size and a microcontroller with a
limited clock-tree size and, therefore, limited configuration options. A python [43] script generates
input files for Gurobi with random values. The random number generator uses a fixed seed for
reproducibility reasons. After generation, the solver is called with the input file, and its total time
usage is measured.

First, Section 5.2.1 discusses the performance of both variants detailed in Chapter 4. After-
wards, Section 5.2.2 compares the performance of the solver when increasing the problem sizes
with regards to the number of phases as well as the number of configuration options per phase for
approaches.

5 10 15 20 25 30 35 40
0

10

20

30

40

50

0.03 0.08 0.24 0.24 0.44
1.55 1.03

2.63

0.14 0.52
1.53

4.23

8.32

14.71

30.14

42.25

Configurations per phase

Ti
m

e
(s

)

QP
ILPs

Figure 5.1 – Comparing the solver performance of the QP and the ILPs for a fixed number of
25 phases.

25

5.2 Solver Efficiency

5.2.1 Integer Linear Program versus Quadratic Program

Chapter 4 provides two approaches for handling multiple sleep options: Either all sleep modes are
handled in one optimisation problem, which then is a QP and requires a powerful solver who is able
to handle such problems, or an ILP is generated for each sleep mode, which can be handled by a ILP
solver but has to run multiple times, once for each sleep mode, instead of one time.

As the chosen solver, Gurobi, can handle both, this section compares both approaches. The
solution for both approaches yields the same optimum for the same settings. The use of floating-point
numbers of the solver leads to slight deviations of the optimum value, but these did not influence the
optimal configuration choices. When comparing the time of the QP and the multiple ILPs, the first
one outperforms the second one. Figure 5.1 displays this for an increasing number of configurations
per phase for 25 phases: The time needed to solve the given problem(s) grows for both inputs, but
for all values, the QP is faster. In Figure 5.2, all measured values are compared by dividing the time
required to solve the QP by the time needed to solve all ILPs. If the ratio is smaller than 1, the QP is
faster than the ILPs, otherwise, the ILPs outperform the QP. The second case never occurs in this
test. The performance gets even worse in comparison to the single QP if there are more ILPs to
solve, as the number of configurations per phase and therefore sleep phases increases, and the ILPs
get more complex, as the number of phases increases as well as the number of ILPs to solve. In
summary, although the time needed to solve several ILPs is not comparable to the time needed to
solve a single QP in terms of usability, both methods return the same solution for the given problem.

5.2.2 Problem-Size–Scaling Behaviour of the Solver

Although the QP formulation is solved much faster than the approach with ILPs, both approaches
are evaluated in this section separately. Figure 5.3 shows the total time needed to solve the problem
for the ILP formulation for all tested input sizes. Figure 5.4 displays the same for the QP formulation.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

0.22

0.09

0.1

0.1

0.07

0.11

0.08

0.07

0.13

0.24

0.13

0.06

0.1

0.07

0.06

0.05

0.33

0.11

0.09

0.13

0.09

0.1

0.09

0.04

0.23

0.14

0.17

0.13

0.23

0.04

0.11

0.04

0.25

0.15

0.16

0.06

0.05

0.11

0.03

0.06

0.2

0.26

0.25

0.07

0.09

0.1

0.08

0.07

0.23

0.12

0.09

0.15

0.11

0.08

0.05

0.04

0.26

0.15

0.09

0.1

0.1

0.1

0.06

0.05

0.25

0.14

0.18

0.1

0.11

0.08

0.06

0.06

0.28

0.31

0.09

0.12

0.06

0.03

0.05

0.04

0.17

0.12

0.06

0.09

0.08

0.06

0.04

0.03

0.25

0.05

0.04

0.07

0.03

0.03

0.05

0.04

0.14

0.12

0.06

0.04

0.04

0.04

0.03

0.03

0.34

0.32

0.04

0.04

0.04

0.04

0.06

0.02

0.05

0.04

0.07

0.02

0.05

0.05

0.06

0.03

0.1

0.2

0.07

0.08

0.06

0.04

0.07

0.03

Phases

C
on

fig
ur

at
io

ns
pe

rP
ha

se

0.1

0.2

0.3

R
at

io
tim

e(
Q

P
)t

o
tim

e(
IL

P
s)

Figure 5.2 – Heatmap showing the ratio between the time taken to solve the QP and the time
taken to solve all ILPs for all measured combinations of phases and configurations per phase. If
the ratio is smaller than 1, the QP is faster than the ILPs, otherwise, the ILPs outperform the
QP. For all tested values, the QP was faster: The worst performance of the QP was 34%̇ of the
time of the ILPs.

26

5.2 Solver Efficiency

When increasing the number of phases or the number of configurations per phase, the time needed
to solve the problem increases - as expected. Figure 5.5, Figure 5.6, Figure 5.7, and Figure 5.8
display the same numbers in different manners: To visualize the growth rate, each value is divided
by the value for the highest input number. All these graphics also show that increasing the number
of phases or the number of configurations per phase leads to an increased solver runtime.

A slight tendency towards a quadratically increasing runtime of the solver can be seen when
scaling the configuration options per phase. Nevertheless, there is another clear insight: the
maximum time required to solve all ILPs in the current randomized measurement setup is 959.63 s.
The QP only takes a maximum of 37.28 s. This means that the mathematical description is sufficiently
good that Gurobi can solve the given problems in an acceptable time for static analysis.

5.3 Viability of the Problem Description

Summarising the results from Section 5.2.2 and Section 5.2.1, the result is unambiguous: Both
mathematical models can be solved sufficiently efficiently by the chosen solver, Gurobi, for the
expected input range. The test results indicate that also larger problems may be solved in a reasonable
time. When comparing both implementations of the same underlying problem, the nonlinear
approach yields faster solver runtimes than the multiple but linear programs. Since Gurobi is not
open-source software, one cannot prove the exact reasons for this. One possible factor is that the
quadratic formulation is faster as the problem description only has to be read once. This includes all
constraints, which are equally many for both formulations, but they have to be read n times instead
of once for the linear problems. Overall, the overhead of Gurobi to solve the mathematically more
complex quadratic problem is still less than solving the additional linear problems. Therefore, the
suggestion arising from the results of this section is to use the quadratic problem formulation to
find the optimal configuration.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

0.08

0.27

0.43

0.7

1.25

1.92

2.76

3.98

0.14

0.35

0.66

1.25

2.34

3.83

5.55

8.25

0.11

0.4

0.95

1.93

3.83

6.72

10.43

16.26

0.13

0.53

1.18

3.01

5.72

9.89

15.44

30.72

0.14

0.52

1.53

4.23

8.32

14.71

30.14

42.25

0.19

0.63

1.89

5.02

11.78

21.24

30.76

63.15

0.18

0.73

2.36

5.56

14.54

22.37

48.81

109.07

0.16

0.76

2.64

8.29

17

30.5

81.44

138.8

0.16

0.98

3.39

10.68

21.52

51.2

95.78

151.47

0.22

1.13

4.5

13.67

41.59

160.57

255.95

402.18

0.76

12.76

43.04

75.85

132.86

302.4

449.75

629.23

2.12

13.78

75.87

94.25

180.48

340.27

450.02

621.84

5.76

36.12

52.09

114.81

266.54

443.54

481.09

726.37

8.24

35.39

60.37

168.01

238.66

394.06

606.38

959.63

13.71

22.84

74.02

196.86

253.57

374.76

453.04

833.76

10.44

25.89

61.22

132.18

203.86

379.53

542.09

855.27

Phases

C
on

fig
ur

at
io

ns
pe

rP
ha

se

0

200

400

600

800

Ti
m

e
(s

)

Figure 5.3 – Time of sum of all ILPs for each configuration: With increasing numbers of phases
and configurations per phase, the time to solve the given problem increases.

27

5.3 Viability of the Problem Description

0 10 20 30 40 50 60 70 80
0

10

20

30

40

0.02

0.03

0.04

0.07

0.08

0.22

0.21

0.27

0.02

0.08

0.08

0.08

0.24

0.25

0.36

0.44

0.04

0.04

0.09

0.25

0.33

0.64

0.99

0.71

0.03

0.08

0.2

0.39

1.3

0.42

1.73

1.37

0.03

0.08

0.24

0.24

0.44

1.55

1.03

2.63

0.04

0.17

0.47

0.34

1.01

2.07

2.45

4.55

0.04

0.08

0.21

0.81

1.55

1.88

2.44

3.87

0.04

0.11

0.25

0.84

1.66

3.18

4.76

6.28

0.04

0.14

0.62

1.12

2.45

4.32

5.58

8.58

0.06

0.34

0.42

1.66

2.68

5.56

11.7

15.28

0.13

1.47

2.63

6.87

11.05

17.56

17.93

21.3

0.52

0.72

2.9

7.06

5.8

10.07

23.26

24.32

0.78

4.43

3.27

4.03

11.45

17.98

13.21

18.98

2.76

11.36

2.62

7.48

9.45

16.63

37.28

18.78

0.72

1

5.09

3.3

12.56

19.08

26.36

26.27

1.06

5.28

4.29

10.41

12.26

16.78

36.17

24.11

Phases

C
on

fig
ur

at
io

ns
pe

rP
ha

se

10

20

30

Ti
m

e
(s

)

Figure 5.4 – Time of QP for each configuration: With increasing numbers of phases and
configurations per phase, the time to solve the given problem increases.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

0.5

1

1.5

Number of phases

G
ro

w
ra

te
of

ti
m

e 5
10
15
20
25
30
35
40

Figure 5.5 – Ratio of time needed by maximum of 80 phases by the current amount of configu-
rations per phase to the current amount of phases by the current amount of configurations per
phase, for sum of time needed by ILPs.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

1

2

Number of phases

G
ro

w
ra

te
of

ti
m

e 5
10
15
20
25
30
35
40

Figure 5.6 – Ratio of time needed by maximum of 80 phases by the current amount of configu-
rations per phase to the current amount of phases by the current amount of configurations per
phase, for time needed by QP.

28

5.3 Viability of the Problem Description

5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

Number of phases

G
ro

w
ra

te
of

ti
m

e

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

Figure 5.7 – Ratio of time needed by maximum of 40 configurations per phase by the current
amount of phases to the current amount of configurations per phase by the current amount of
phases, for sum of time needed by ILPs.

5 10 15 20 25 30 35 40

0

0.5

1

1.5

2

Number of phases

G
ro

w
ra

te
of

ti
m

e

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

Figure 5.8 – Ratio of time needed by maximum of 40 configurations per phase by the current
amount of phases to the current amount of configurations per phase by the current amount of
phases, for time needed by QP.

29

6I M P L E M E N TAT I O N F O R T H E
E S P 3 2 - C 3

This chapter covers the implementation details necessary to use the approach presented in Chapter 4
on real hardware. The chosen hardware platform, which provides many different power modes,
allows the configuration of these and features many peripherals, is the ESP32-C3-MINI-1 module [11].
Section 6.1 dives deeper into the ESP32-C3. It describes the hardware and software details with
regards to determining the WCET of the ESP32-C3 and to making use of the given power modes.
Then, Section 6.2 explains how the measurements of the time needed by single instructions and all
side effects are acquired and integrated into PLATIN to determine the WCET of a program.

6.1 The ESP32-C3

A brief overview of the hardware platform of the ESP32-C3 is given in Section 6.1.1. Section 6.1.2
continues with the software and development environment. As power usage and, therefore, power
management is a key point in this work, Section 6.1.3 details the available clocks for the CPU and
their connections to the peripherals. Section 6.1.4 provides an insight into the available power
modes of the ESP32-C3.

6.1.1 Hardware Overview

The chosen ESP32-C3-MINI-1 module contains a 32-bit RISC-V ESP32-C3 single-core microproces-
sor (ESP32C3-C3FH4 or ESP32C3-C3FN4) with an RV32IMC Instruction Set Architecture (ISA),
which runs with a frequency up to 160 MHz. Many peripherals are included, such as WiFi, Bluetooth
Low Energy, a Serial Peripheral Interface (SPI), UART, an USB Serial/JTAG controller, a temperature
sensor and many more [11, Chapter 1].

6.1.1.1 Chip Details

The RV32IMC ISA [38] decodes into the following components of the RISC-V instruction set: RV32I
determines the instruction size, which is 32 bits, and provides the base set of available instructions.
The M standard extension adds multiplication and division instructions. The C standard extension
includes compressed instructions: To reduce static and dynamic code size, common operations get
16-bit instruction encodings in addition to the 32-bit ones. It also softens the alignment constraints
of instructions from 32-bit to 16-bit, so 16- and 32-bit instructions can be mixed freely to reduce the
program’s memory usage.

6.1 The ESP32-C3

The ESP32-C3 has a 4-stage, in-order, scalar pipeline. The documentation does not list additional
information about the branch prediction unit of the ESP32-C3, therefore each branching instruction
has to assume the worst-case scenario of a failed prediction and a resulting pipeline flush.

6.1.1.2 Memory

The module includes 384 kB of Read-Only Memory (ROM) and 400 kB of Internal Static Random-
Access Memory (SRAM), of which 16 kB can be used as a cache for 4 MB of an on-board flash. The
CPU can access data via the data bus with single-, double- and 4-byte alignment, while it can access
the instruction bus only in a 4-byte aligned manner [10, Chapter 3.3.1]. The SRAM can be accessed
by the CPU generally within a single CPU clock cycle [10, Chapter 3.3.2]. In combination with the
relaxed alignment constraints of the C RISC-V extension from 32-bit/4-byte to 16-bit/2-byte, this
means that in special cases two accesses must be made to the instruction bus to fetch one instruction.
Section 6.2.2 addresses this problem in more detail.

6.1.2 Espressif IoT Development Framework

The combination of the software development environment and the programming framework for
the family of Espressif microcontrollers is the Espressif IoT Development Framework (ESP-IDF).
It provides toolchains for all Espressif microcontrollers and workflows to develop applications.
That includes boot-up code for each device, building applications, flashing, JTAG debugging, and
support for monitoring running applications for Windows, Linux, and macOS operating systems.
The programming reference includes an Application Programming Interface (API) for applications,
e.g., an HTTP(S) server, a networking API, e.g., for WiFi and Bluetooth connections, a peripherals
API, e.g., for controlling General Purpose Input/Output (GPIO) pins or setting up and using SPI,
a system API for configuring system timers or set up power management, and more. All this and
additional information is found in the documentation for the ESP32-C3 [8].

As stated in Section 6.1.1.2, the chip has 16 kB of SRAM, which can be used as cache for 4 MB
of on-board flash. As mentioned in Section 2.2.5, creating a proper cache model can be tedious,
especially if there is no documentation of what cache replacement strategy is used. As the memory
usage of all tested applications is smaller than the size of the SRAM, this flash is not used, and
all needed data and instructions are stored in the single-cycle accessible SRAM. In addition, the
resulting hardware model will deliver more accurate runtime estimations as this additional level of
inaccuracy and overestimation is left out. To achieve this, the linker is told to place all application
and operating system data into the SRAM of the chip. ESP-IDF supports this with so-called linker
fragment files. An example is shown in Listing 6.1.

1 [mapping:foo]
2 archive: libfoo.a
3 entries:
4 * (noflash)

Listing 6.1 – The linker fragment file to place the library called libfoo.a into the noflash
area, also known as the SRAM.

32

6.1 The ESP32-C3

6.1.3 Clock Tree

The ESP32-C3-MINI-1 board has many options regarding its clock and device configuration, making
it interesting for the intended research. The clock tree, presented in the documentation [10, Figure 6-
2], shows how the input clocks connect to the CPU and the peripherals. In between, dividers,
multiplexers, and peripheral gates take care of which signal is passed through the tree. The ESP32-
C3 has five main input clocks:

• two fast clocks:

– PLL_CLK: the internal PLL clock, which runs at 320 MHz or 480 MHz.

– XTAL_CLK: a crystal clock, which provides a frequency of 40 MHz.

• three slow clocks:

– XTAL32K_CLK: a crystal clock at 32 kHz.

– FOSC_CLK: an internal fast RC oscillator at 17.5 MHz.

– RTC_CLK: an internal low RC oscillator at 136 kHz.

The CPU clock uses three of these as source clocks: PLL_CLK, XTAL_CLK or FOSC_CLK. For PLL_CLK,
one has the option to choose which base clock is used (320 MHz or 480 MHz) and whether the
resulting CPU clock is set to 160 MHz or 80 MHz by dividing the base clock accordingly. When
using XTAL_CLK or FOSC_CLK as CPU clock source, a divider can be set to values from 1 to 1024,
which divides the chosen input clock with the chosen value. This corresponds to a full CPU clock
range from 17.09 kHz up to 160 MHz, so high computational power and energy savings can be
achieved by setting the CPU frequency accordingly. Other clocks, namely APB_CLK, LEDC_SCLK and
CRYPTO_CLK, depend on the choice of the CPU_CLK. Also, WiFi and Bluetooth can only operate
when PLL_CLK is used as CPU clock source, but also have a low power mode for operating with
the low power clocks. For all other peripherals, the documentation lists which clock sources can be
used [10, Table 6-4]. For additional power savings the peripheral devices can also be clock-gated
and therefore deactivated and cut off the clock tree completely. All options can be configured in the
system registers of the ESP32-C3 by storing the necessary configuration values there, or the current
configuration can be read from them.

6.1.4 Power Modes

A main criterion for choosing the ESP32-C3 was its many different peripheral options and power
modes [10, Chapter 9]. The ESP32-C3 has nine power domains, which correspond to subparts of
the chip, such as the CPU, peripherals, or RTC. They are set on or off in four predefined power
modes: active, modem sleep, light sleep, and deep sleep. In the active state, all power domains are
turned on. In modem-sleep, the radio-frequency circuits get switched off. In light sleep, the CPU
and its clock sources (as seen in Section 6.1.3) are powered off, and in deep sleep also the digital
system gets turned off so that only the PMU and a small set of peripheral devices stay turned on.
To leave that mode later when sleeping, one has to define at least one wake-up source before that.
Multiple options are available for waking up the CPU from light sleep: GPIOs, the RTC timer, the
32 kHz crystal clock as a timer, UART, Bluetooth, or WiFi. For deep sleep, only the RTC GPIOs (0-5),
the RTC timer, and the 32 kHz crystal clock can wake up the core. When leaving light sleep, the
CPU will resume operation after the instruction where it went into sleep, as the internal states of the
digital peripherals, the RAM, and the CPU are preserved. For deep sleep, a complete reboot occurs:

33

6.1 The ESP32-C3

Only the RTC controller, the RTC peripherals, and the RTC fast memory remain powered on during
deep sleep. As a consequence, CPU, RAM, and all other peripherals are restarted when the wake-up
occurs.

According to [11], the chip’s power consumption can reach up to 350 mA with active radio
frequency devices. Without these, 15 mA (with the CPU clock at 80 MHz) to 20 mA (with the CPU
clock at 160 MHz) are used in modem sleep. It gets lower when using the sleep modes: In light
sleep, the board consumes 130 µA. Deep sleep needs 5 µA, which equals 0.025 per cent of run mode.
This shows the huge potential of the chip to operate very energy-efficient when the computational
power or the integrated peripheral devices are not needed. Own measurements in Section 7.1 will
evaluate these values.

6.2 PLATIN

To analyse the WCET of a program for the ESP32-C3, the Portable LLVM Annotation and Tim-
ing (PLATIN) toolkit, developed by Hepp et al. [28] for analysing the PATMOS architecture [36],
was chosen as a basis for this thesis. PLATIN centres around the LLVM compiler infrastructure for
compiling and analysing applications. The intermediate representation of the LLVM toolchain is
used to create PLATIN’s native PML file format to store information about the program structure,
analysis results, and other meta-information in a target-machine–agnostic form for analysis [28].
It provides interfaces to external analysis tools, such as lpsolve [21], Gurobi [14] or the SWEdish
Execution Time tool (SWEET) [42], and tools for flow-fact transformation or IPET-based worst-case
analysis.

6.2.1 Toolchain Setup for the ESP32-C3

Hofmeier [16] already implemented a PLATIN integration for a SiFive E31 RISC-V Core on a SiFive
HiFive1 development kit with a 32-bit RV32IMAC ISA. A similar toolchain for generating the PML files
for PLATIN is used in this thesis: LLVM and its compiler frontend clang at version 7 support RISC-V.
An extension to the backend to transform the control-flow information into PML files was written at
the Department of Computer Science 4 at Friedrich-Alexander–University Erlangen-Nuremberg [28,
35, 36]. For integrating LLVM into the ESP-IDF build chain, clang compiles the application to
receive the PML file. A library is created from the object files, which is then loaded into SRAM via a
linker fragment file, as shown in Listing 6.1. The main task of the ESP-IDF infrastructure directly
calls the main function of the application. As a consequence, the remaining build, flash, and boot
infrastructure stay the same, but, in addition, the application can be analysed with PLATIN.

6.2.2 Timing Behaviour of the ESP32-C3

As a basis for this analysis, an architecture-specific model is needed. It specifies the timing and
hardware model of the chosen hardware. To determine the WCET, PLATIN determines the cost
of a path in the CFG by summing up the costs of each opcode in the control-flow representation
in the PML file. Therefore, this thesis needs to determine the maximum time needed for single
opcodes. There is only one sound source of information, which is timing information written in
the manual. Unfortunately, there is no sound documentation for these available of now, as none of
the documentation documents [9, 10, 11] list any information. The only available possibility is to
measure the value of each instruction pessimistically.

34

6.2 PLATIN

There are two options to achieve that:

• Use performance counters provided by the hardware, e.g., amount of CPU cycles.

• Measure and/or validate the timing behaviour with an oscilloscope.

The ESP32-C3 can operate at frequencies up to 160 MHz which can get cumbersome to measure
precisely with an oscilloscope. However, it has a set of performance counters available. According to
the RISC-V documentation [38, Chapter 10], the RISC-V ISA provides a set of 32 64-bit performance
counters. Although the ESP32-C3 implements the RISC-V ISA, these performance counters are not
implemented on this RISC-V chip, and the rdcycle instruction to read the cycle counter throws
an illegal instruction exception. Another set of performance counters, which are implemented in
the MPCER , MPCMR and MPCCR Configuration and Status Registers (CSRs) is available for the
ESP32-C3 [10, Chapter 1.4]. These can be set up to count the number of occurrences of different
events, such as branches, branches taken, stores, loads, idle cycles, instructions, or - relevant for this
problem - the clock cycles. To have reproducible measurements interrupts are disabled by clearing
the MIE bit (interrupt-enable bit) in the mstatus register before cycle counting. The assembler
macro to measure an instruction and read out the performance counter is shown in Listing 6.2.

As mentioned in Section 6.1.1.2, the CPU can access the instruction bus only in a 4-byte aligned
manner [10, Chapter 3.3.1]. The ESP32-C3 has the RISC-V C extension, so the alignment constraint
is loosened to support 2-byte wide instructions. This results in the problem that instructions can
need two accesses to the instruction bus to load one instruction. With pipelining, this is no problem
as one load fetches at least one instruction. However, when jumping or branching instructions
interrupt the straight-forward execution flow, it takes two loads to get a 4-byte instruction when the
jump goal targets a 16-bit aligned but not 32-bit aligned address. To simulate this behaviour, the
measurement infrastructure makes sure that both cases are looked after: one with the instruction
aligned to a 4-byte address and one with the instruction aligned to a 2-byte address but not a 4-byte
address. In all cases, the maximum time taken is entered as a measurement for PLATIN.

The PML file contains simple operation codes, such as add or sub. The costs for these instructions
can be directly substituted with the measured values. The LLVM compiling process also generates
pseudo operations such as PseudoRET or PseudoBRANCH . Depending on the address, a different
set of instructions is used for these pseudo operations. As one does not know at this level to which
instructions the operation will be resolved, the worst combination of the observed values is assumed
to reduce the risk of underestimated WCETs.

1 .macro measure_perf_count counter:req ins:vararg
2 csrw MPCCR , 0
3 \ins
4 csrr \counter , MPCCR
5 .endm

Listing 6.2 – GNU Assembler macro for measuring an instruction, \ins, and read out the
value of the performance counter (MPCCR) into \counter . \ins can also contain more
complicated commands, such as multiple instructions or jump commands, as long as the control
flow returns afterwards to stop the measurement by reading out the value into counter in
line 4.

35

6.2 PLATIN

6.2.3 Platin Evaluation

To check the correctness of the determined values from the performance counter, a new architecture
model was integrated into PLATIN with the measured values. This model was tested by running a set
of experiments. The set of benchmarks chosen is TACLeBench [12], a benchmark collection aimed
at WCET research. Each benchmark is self-contained and does not depend on standard libraries
or an operating system, which makes the collection useful for embedded systems as the ESP32-C3.
Additionally, all benchmarks are annotated with flow facts the analysis of PLATIN can use and have
a fixed entry point in the main function.

For analysis, a subset of the TACLeBench benchmark suite is used: the kernel benchmark
subset, where each benchmark computes a computational kernel. As the ESP32-C3 does not provide
a floating-point unit, floating-point instructions are emulated with instruction sequences stored in the
ROM of the ESP32-C3. Linker files contain the addresses in the ROM for each of these instructions.
A jump table located in the ROM links these addresses to the individual implementations. Therefore,
the generation of the PML files required for the analysis with PLATIN is not possible. As a consequence,
all benchmarks including floating-point operations are excluded from evaluation. Furthermore,
PLATIN does not offer support for analysing recursive function calls at the time of this thesis. As a
consequence, all recursive benchmarks are excluded as well. For some benchmarks, lpsolve is not
able to determine a solution. These are also omitted from the evaluation. The remaining benchmarks
are listed and described briefly in Table 6.1.

The results of the WCET analysis from PLATIN are compared with measurements of the perfor-
mance counters, just as performed for the measurements of single instructions shown in Listing 6.2.
As the ESP-IDF framework brings its own bootloader and compiler for the ESP32-C3, which does
not generate the necessary information for PLATIN to perform the IPET-based WCET analysis, the
benchmarks are built with the extended clang (already mentioned in Section 6.2.1) [28, 35, 36].
Afterwards, all necessary components for the benchmark are grouped in a library, which is then
linked to the startup code. A linker fragment file, as shown in Listing 6.1, forces the code to be
placed in the SRAM. For each benchmark, 1000 runs were measured. Before each run, interrupts
were disabled.

Table 6.1 – TACLeBench benchmarks [12, 37]

Benchmark Description

binarysearch Binary search of 15 integers. The program is completely structured (no
unconditional jumps, no exits from loop bodies), and does not contain
switch statements or do-while loops.

bsort Bubblesort implementation for testing the basic loop constructs, integer
comparisons, and simple array handling by sorting 100 integers

countnegative Counts negative and non-negative numbers in a matrix. The program
features nested loops.

isqrt Calculates the integer square root of a fixed number.
jfdctint JPEG slow-but-accurate integer implementation of the forward Discrete

Cosine Transform on an 8x8 pixel block.
matrix1 Generic matrix multiplication of two 10× 10 matrices.
md5 Cryptographic hash function of Message Digest Algorithm 5.
prime Prime number test on two random integers.

36

6.2 PLATIN

The results are shown in Figure 6.1. The cycle-counter measurements showed a maximum
deviation of one cycle. Therefore, only the larger value is displayed. The upper bounds of
binarysearch , countnegative , isqrt , jfdctint , and matrix1 overestimate the ex-
ecution time by up to a factor of 1.85. For bsort and md5 the estimates reach a factor of 4.
Most instructions have a fixed execution time, but some such as DIV, all branching or load/store
operations have a varying number of cycles, of which PLATIN uses the maximum. This introduces
additional pessimism, as bsort executes many swaps, which are load and store operations, and as
md5 also contains many load/store operations. In addition to that, bsort contains a triangular
loop, which cannot be handled by PLATIN appropriately, and is therefore overestimated.

Overall, the upper bounds determined by PLATIN are reasonable estimates of the WCET: The
measured times remain below the upper limit, and the upper limit is overestimated, but within a
reasonable range. Therefore, the WCET estimates can be used to evaluate the performance of the
QP in the next section.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

binarysearch

bsort

countnegative

isqrt

jfdctint

matrix1

md5

prime

1.54

4.18

1.64

1.68

1.62

1.85

3.99

2.46

Ratio of measured cycles to PLATIN estimate

Figure 6.1 – Execution times compared to the upper bound of the execution time by PLATIN’s
WCET analysis. The orange bars display the measured cycle counter divided by the corresponding
WCET estimate of PLATIN.

37

7E VA LUAT I O N F O R T H E
E S P 3 2 - C 3

The main goal of this thesis is to develop a generic method to reduce the energy consumption
of a system for a given ordered set of periodic tasks. The mathematical model from Chapter 4
determines an optimal solution for this. It uses the power consumption of different clock-tree
configurations and the reconfiguration costs for both time and energy. All those values depend on
the given hardware platform. Therefore, these values must be determined before the QP can give a
platform-dependent solution. The solution then returns the optimal clock-tree configurations for the
task set. Measurements for the chosen hardware platform, the ESP32-C3, are performed in order to
evaluate test input sets.

First, Section 7.1 deals with these measurements. It starts with the details of the measurement
setup, followed by the measurements for active modes, peripherals and sleep modes. Afterwards, the
penalties for changes of the clock-tree configuration are discussed. Section 7.2 uses the determined
values to evaluate the mathematical model for the ESP32-C3 on two test programs. Finally, Sec-
tion 7.3 discusses whether the approach of this thesis is applicable for the ESP32-C3.

7.1 Measurements

Before the QP can be given to a mathematical solver, the system-dependent values of the QP
description have to be filled in. On the one hand, this means a program’s tasks must be analysed to
determine the WCET of the phases of each task. This thesis developed an architecture model of the
ESP32-C3 for PLATIN for determining the WCET, as already discussed in Section 6.2.2. On the other
hand, the power-consumption values of each configuration and the penalties of changing between
them need to be known for the ESP32-C3. These are determined by the measurements in this section.
First, Section 7.1.1 explains the measurement setup for determining power-consumption values of
the ESP32-C3. Afterwards, all necessary values for the mathematical description from Chapter 4 are
shown. The different measurements can be split up into the following categories: First, Section 7.1.2
discusses the measurements for active CPU states. Afterwards, the power consumption of the
peripheral devices on the ESP32-C3 follow in Section 7.1.3, before Section 7.1.4 analyses the sleep
modes. Finally, Section 7.1.5 investigates the clock-tree reconfiguration penalties on the ESP32-C3.

7.1.1 Measurement Setup

Electric power (P) is the product of voltage (U) and current (I): P = U · I . Both U and I must be
known or measured to determine power-consumption values. While a chip requires a fixed voltage

7.1 Measurements

+
-↓U

RL

RS↑US

I

Oszilloscope

Probe for U

Probe for I

(a) Schematic display of a shunt-based
measurement setup: RS displays the
shunt with a resistance of RS , RL is the
resistance of the load. An oscilloscope
with two probes is connected to this cir-
cuit: the first one measures the voltage
U , the second one measures the current
I using the shunt.

(b) ESP32-C3 measurement setup: The
ESP32-C3 is connected to a power
source, configured to 3.3 V. The probes
of an oscilloscope are connected to dif-
ferent parts of the ESP32-C3 to mea-
sure the voltage and the current, and
to react on a trigger provided by the
ESP32-C3 software.

Figure 7.1 – Measurement setup.

U , the current I varies with different loads of the chip. Therefore, the current has to be measured
to determine the overall energy consumption. As measurement infrastructure, an oscilloscope can
be used, which measures voltage. To measure the current with an oscilloscope, the setup uses a
shunt-based measurement with a low-side shunt, as displayed in Figure 7.1a. A shunt is a low-ohm
resistor with high accuracy regarding its tolerance RS and is built into the measurement infrastructure
by connecting it in series with the load RL , in this case, the ESP32-C3. As the current flows through
the shunt, it generates a voltage drop. The oscilloscope measures this drop. With Ohm’s law,

U = R · I ⇔ I =
U
R

dividing the measured voltage, US , by the size of the shunt, RS , results in the current,

I =
US

RS

and, therefore, the following formula determines the system’s power consumption:

P = U · I = U ·
US

RS

A picture of the actual measurement setup is shown in Figure 7.1b. As oscilloscope, a Tektronix
DPO4034 is used [24]. A 1 Ω shunt is connected to a GND pin of the board. Channel 1 of the
oscilloscope, which measures the voltage, is connected to the 3.3 V pin together with the power
supply. The GND from both probe and power supply are connected to the other end of the shunt.
Channel 2 is connected to both sides of the shunt. It indirectly measures the current, as the size of
the shunt is known and the oscilloscope measures the voltage over the shunt. The third channel is
connected to pin 3 of the board, which acts as the trigger pin for the oscilloscope. An evaluation
program on the ESP32-C3 triggers this channel by setting or clearing a GPIO pin. When channel 3

40

7.1 Measurements

measures an edge between the low and high state of the GPIO, the measurement starts. The data of
all three channels is collected by the oscilloscope. Therefore, if the time behaviour is of interest,
e.g., in between two trigger points, the oscilloscope collects all data provided by the channels. The
Tektronix DPO4034 is connected to a computer, which configures the oscilloscope, e.g., the sampling
frequency, and starts data collection. The computer retrieves that data and stores it in a file in HDF5
format. Each measurement was run five times to detect possible outliers. The outputs, where each
run collected 20,000,000 samples in the configured sampling rate, are stored in separate output
files.

7.1.2 Active Modes

The chosen hardware platform, the ESP32-C3, provides many different options to choose from for
its CPU frequency. On the one hand, the PLL_CLK provides either 160 MHz or 80 MHz from two
different clock sources. On the other hand, there are the XTAL_CLK at 40 MHz and the FOSC_CLK
at 17.5 MHz, where both can have a divider reaching from 1 up to 1024. This results in a total
CPU range from 160 MHz to 17.1 kHz. While having these many CPU-clock options available equals
a broad range of configurability, not all options are included for measurement and QP solving.
Measuring all options takes much time, and the difference in energy consumption gets marginal.
Additionally, the number of connections in the QP grows quadratically with an increasing number of
available options per phase. Therefore, the problem gets harder to solve and the mathematical solver
takes additional time to deliver the solution for a task set. Because of this, the CPU frequencies
evaluated are limited to the following five: 160 MHz and 80 MHz from the PLL_CLK clocks, and
40 MHz, 10 MHz, and 1 MHz from the XTAL_CLK.

For the PLL_CLK, there are two different base clocks: a 480 MHz and a 320 MHz clock. When
comparing these two base clocks for both 160 MHz and 80 MHz settings, a difference in energy
consumption is not measurable with the current setup. As there are incompatibilities as either
unintended rebooting or entering a panic state when changing from the 320 MHz clock back to the
480 MHz clock, the evaluation will only use the 480 MHz base clock.

All five CPU speeds were evaluated in a row, and each separately to verify these results. The
sampling rate of the oscilloscope for this measurement is 1 MHz. During an active CPU phase test,
a loop performs a sum calculation to keep the chip active. Figure 7.2 displays an oscilloscope
measurement containing all five CPU frequencies. Table 7.1 lists the measured power-consumption
values. As the frequency drops, the current consumption and, therefore, the power consumption also
gets lower. However, the fastest clock is also the most energy efficient in terms of operations per cycle:
while the 160 MHz clock reaches 5.16 MHz per Ampere, the 1 MHz clock only achieves 0.12 MHz
per Ampere. Also, all other clocks do not achieve the same efficiency as the fastest available clock
with 160 MHz. This phenomenon was also mentioned in Chiang et al. [7] and Bambagini et al. [5]:
fast clocks are more energy efficient for CPU operations.

In summary, the most energy-efficient variant for a CPU-only task on the ESP32-C3 is a so-
called race-to-idle behaviour: The fastest clock is selected to finish the task as soon as possible and,
afterwards, to enter a sleep mode for idling. This results from the following: The energy consumed
is calculated as the time needed multiplied with the power consumption of the chosen setting. The
slower clocks draw less current per second. However, tasks take longer to complete with these
settings. Overall, the time saved by executing a task with the fastest clock outweighs the energy
savings of a slower clock for the ESP32-C3. This can change with peripherals: These often need a
fixed amount of time to e.g., complete a message transmission. In this case, the power consumption
per second is more important than the power consumption per CPU cycle. As a consequence, slow
clocks perform better when the system has to wait, e.g., when working with peripherals [5, 7].

41

7.1 Measurements

0 20 40 60 80 100 120 140 160
0

10

20

30

40

160 MHz 80 MHz 40 MHz 10 MHz 1 MHz

31.0mA

22.6mA

14.7mA

10.0mA
8.6mA

Time (ms)

C
ur

re
nt

(m
A

)

Figure 7.2 – Active phases: The graphic shows the current and the rolling average over 100
values from a range of 8,750,000 values. When switching the frequency of the CPU clock from
160 MHz to 80 MHz to 40 MHz to 10 MHz and finally, to 1 MHz, the current consumption drops,
although the fastest clock remains the most power-efficient one. The dashed horizontal lines
indicate the average measured values for each CPU frequency.

The following section analyses the power consumption of the peripheral devices attached to the
ESP32-C3.

7.1.3 Peripherals

The ESP32-C3 lists many peripheral devices. The list includes GPIO, SPI, UART, I2C, or a temperature
sensor. Since this list is extensive, this thesis restricts itself to the following subset:

SPI For communication via SPI, an SPI FRAM chip [23] was attached to the ESP32-C3. The
evaluation deploys the same loop as for testing the CPU phases. However, during each
iteration, the lowest 8 bit of the sum are written onto the SPI memory chip and read back. As
this adds additional runtime to each loop iteration, the test decreased the number of iterations.
As displayed numerically in Table 7.1 and graphically in Figure 7.3, the overall consumption
did change slightly in comparison to the CPU measurements. However, the measured current
is very noisy compared to without SPI communication.

Table 7.1 – Current consumption values of the ESP32-C3 with different active peripherals.

Frequency [MHz] None [mA] SPI [mA] LED [mA] I2C [avg. mA]

160 31.0 30.0 35.2 25.6
80 22.6 21.7 25.8 22.3
40 14.7 13.6 17.4 17.2
10 10.0 9.5 13.4 14.5
1 8.6 8.3 12.0 14.4

42

7.1 Measurements

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

10

20

30

40

160 MHz 80 MHz 40 MHz 10 MHz 1 MHz

30.0mA

21.7mA

13.6mA

9.5mA
8.3mA

Time (ms)

C
ur

re
nt

(m
A

)

Figure 7.3 – SPI test: As for testing the active phases, all available clock configurations are tested
in a row, but during each loop of active idling, the SPI FRAM is read and written once. This leads
to a slightly lower average current consumption during SPI communication, but the measured
current fluctuates much more, especially for the 160 MHz and the 80 MHz communication: To
be able to display the measured values, the current is presented as a rolling average of 2000
and of 5000 samples from 6,750,000 values in the selected range. As in Figure 7.2, the dashed
horizontal lines display the average measured values for each CPU frequency.

LED The power consumption of a single LED is tested by alternatingly setting and clearing the
corresponding GPIO pin for the LED while changing the clock frequency from 160 MHz to
80 MHz to 40 MHz to 10 MHz and, finally, to 1 MHz. Figure 7.4 visualises this measurement.
Table 7.1 lists the corresponding values. In summary, an active LED adds an overhead to the
consumption of 3.4 mA on average.

I2C An 8-bit I/O expander for an I2C bus [27] was connected to the ESP32-C3, together with
an 1.5 kΩ resistor. I2C uses pull-up resistors for the data and clock line, which consume an
extra amount of power when current is drawn through the resistor. An additional drain of
3.3 V/1.5 kΩ= 2.2 mA per active lane is to be expected. Figure 7.5 displays I2C communication
at 160 MHz. It demonstrates this drain behaviour corresponding to the active lanes: The clock
line repeatedly changes from high to low, which causes the current to form a waveform: When
the clock line goes low, more current is drawn due to the pull-up resistors. The same is true
for the data line: Pulling this line down causes shifts in the waveform of the current. This
results in the final picture in Figure 7.5. Important to mention is that the current drawn is
less than during CPU operation with the same frequency. This is caused by the fact that the
underlying FreeRTOS implementation blocks when it waits for the next byte according to the
clock frequency of the I2C bus. A regular timer tick wakes up the chip during the blocked
state to check whether enough time has elapsed so far to unblock the task. The tick time of
the FreeRTOS is set to 100 Hz. Therefore, the CPU is less active than during active idling. On
average, one can assume that both clock and data line are set half the time and therefore take
the average of the measured state as the assumption for the power consumption.

43

7.1 Measurements

The timing behaviour of I2C communication solely depends on the clock speed of the I2C
bus, as a consequence, the time needed to complete one I2C transaction at a certain I2C
clock frequency is fixed. As observed in Section 7.1.2, higher CPU frequencies are the most
energy efficient one per CPU cycle, but draw more current over time. On the other side,
low CPU frequencies complete less instructions per second, but consume less power. This is
also seen when using I2C, where Table 7.1 and Figure 7.6 show the measurements: Lower
frequencies consume less power. The time needed for one I2C message stays the same due to
the fixed length of bits to be transmitted and the fixed I2C clock speed. Therefore, the slower
frequencies are the optimal configuration for a single I2C phase.

These peripherals show an influence on the power consumption of the system. Also, the behaviour
mentioned in Chiang et al. [7] and Bambagini et al. [5] - that slower clocks are more suitable for
communication - holds true for the ESP32-C3. Nevertheless, future work includes evaluating further
peripherals such as Bluetooth or WiFi. For example, the WiFi chip peaks up to 350 mA according
to the documentation [11], which is ten times the baseline power consumption (i.e., active mode
at 160 MHz). Such a device would be particulary interesting with regard to the saving potential
compared to a pessimistic all-always-on approach. First measurements of the WiFi chip indicated a
complex timing behaviour, which is not as easily determined as it is for SPI or I2C communication.
Additionally, there is no documentation of the WiFi chip available as of now. Therefore, modelling it
is considered as future work.

0 20 40 60 80 100 120 140 160
0

10

20

30

40

160 MHz 80 MHz 40 MHz 10 MHz 1 MHz

35.2mA

25.8mA

17.4mA

13.4mA
12.0mA

Time (ms)

C
ur

re
nt

(m
A

)

Figure 7.4 – LED test: As for testing the active phases, all available clock configurations are
tested in a row, but each configuration is run with LED turned on and then off before changing
to the subsequent frequency. The graph displays the current and the rolling average of 100
values from a displayed range of 8,750,000 values. The black line visualises the trigger signal,
which corresponds to turning the LED on and off. It can be seen clearly that the LED adds
additional current consumption, which averages to 3.4 mA of additional current consumption
for all frequencies. The dashed horizontal lines display the average measured values for each
CPU frequency when the GPIO pin is set to high and, therefore, the LED is turned on.

44

7.1 Measurements

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

25.6mA

Time (ms)

C
ur

re
nt

(m
A

)

Figure 7.5 – I2C at 160 MHz: The green line displays the current, the blue line shows the data
line of the I2C communication, and the black line is the clock signal of the I2C communication.
To present the values, the data line and the clock signal are scaled and shifted. The current
averages to 25.6 mA during I2C communication. The pull-down resistors draw extra current
when a line is set to low. Therefore, fluctuations around this value - visualised by a dashed line -
are caused by the changes in the data and clock signal line.

0 10 20 30
0

10

20

30

40

22.3mA

Time (ms)

C
ur

re
nt

(m
A

)

(a) I2C communication at 80 MHz.

0 10 20 30
0

10

20

30

40

17.2mA

Time (ms)

C
ur

re
nt

(m
A

)

(b) I2C communication at 40 MHz.

0 10 20 30
0

10

20

30

40

14.5mA

Time (ms)

C
ur

re
nt

(m
A

)

(c) I2C communication at 10 MHz.

0 10 20 30
0

10

20

30

40

14.4mA

Time (ms)

C
ur

re
nt

(m
A

)

(d) I2C communication at 1 MHz.

Figure 7.6 – I2C with varying CPU frequency for the same task as displayed in Figure 7.5.

45

7.1 Measurements

7.1.4 Light Sleep and Deep Sleep

Measuring the energy consumption of light and deep sleep involved a problem with the measurement
setup. Although the oscilloscope measured lower values than in the active states, the values still
were significantly higher than those listed in the manual [9]. According to it, light sleep consumes
130 µA and deep sleep consumes 5 µA. The measurements returned values around 2 mA for light
sleep and 1 mA for deep sleep. A closer look at the measurement setup showed that even when no
probe is connected to the oscilloscope, values just below 1 mA were measured, which could not be
eliminated by signal path compensation. This means that the measurement setup already introduces
some noise that overlays the values to be measured for light and deep sleep. As a consequence, the
values of the energy consumption for both sleep modes are taken from the manual until a different
measurement setup is available.

7.1.5 Reconfiguration

The following measurements look at the penalties for reconfiguring the clock tree. These are split
up into four categories: switching between frequencies (Section 7.1.5.1), configuring devices (Sec-
tion 7.1.5.2), light sleep (Section 7.1.5.3) and deep sleep (Section 7.1.5.4).

7.1.5.1 Switching between Frequencies

Since switching between different CPU frequencies on the ESP32-C3 only requires the execution of
a few CPU instructions (at most 21 CPU cycles), the time for the current to change is very short.
Measurements have shown that the delay in the measured current introduced by the measurement
setup and hardware on the board, such as capacitors, is too large to have reliable measurements for
such a short period. Instead, the WCET of each transition multiplied by the previous CPU frequency
is assumed as the time needed to perform the change. As the last instruction changes the frequency,
the complete sequence is still executed with the old setting. The power consumption of the previous
state is taken to determine the energy consumption.

7.1.5.2 Configuring Devices

SPI Before SPI communication can be used, the SPI master has to be set up by the system. After
usage, it can be deinitialised. To perform these operations, this thesis uses the ESP-IDF
functionalities and measures their behaviour. Table 7.2a displays the resulting time and
current consumptions.

LED Turning on or turning off the LED is done by setting or clearing a bit in a memory-mapped
register. As for switching between the CPU frequencies, this is too fast to be captured by the
used measurement setup. Therefore, the WCET of each transition is multiplied by the current
CPU frequency to determine the time. The energy consumption uses the energy behaviour of
the state to be left.

I2C Similar to SPI, the I2C master has to be initialized before communicating and can be deinitial-
ized after usage. The ESP-IDF functions are used here as well, and measurements of them
were taken. Table 7.2b displays the measured values.

46

7.1 Measurements

Table 7.2 – Time and power consumption for clock-tree reconfigurations.

(a) SPI.

Frequency [MHz] Power [mA s] Time [ms]
Init Deinit Init Deinit

160 0.7148 0.7185 26.50 26.50
80 0.6594 0.5543 32.90 26.80
40 0.3987 0.3398 32.40 27.30
10 0.2771 0.2605 35.50 30.90
1 1.3885 1.3003 189.90 177.70

(b) I2C.

Frequency [MHz] Power [mA s] Time [ms]
Init Deinit Init Deinit

160 0.0024 0.0007 0.07 0.02
80 0.0025 0.0009 0.10 0.04
40 0.0030 0.0012 0.19 0.08
10 0.0099 0.0032 0.87 0.31
1 0.0850 0.0301 8.50 3.12

(c) Light sleep.

Frequency [MHz] Power [mA s] Time [ms]
Sleep Wakeup Sleep Wakeup

160 0.0066 0.029 0.45 1.14
80 0.0083 0.023 1.10 1.18
40 0.0094 0.015 1.03 1.08
10 0.0072 0.014 1.28 1.48
1 0.0275 0.053 4.39 7.28

(d) Deep sleep.

Frequency [MHz] Power [mA s] Time [ms]
Sleep Wakeup Sleep Wakeup

160 0.0085 6.545 0.44 296.70
80 0.0095 6.657 0.74 295.70
40 0.0111 6.816 0.99 295.30
10 0.0233 6.677 2.29 295.00
1 0.1957 6.732 19.74 295.20

47

7.1 Measurements

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

10

20

30

40

Time (ms)

C
ur

re
nt

(m
A

)

(a) Transition into light sleep: After the trigger signal goes down as the last action before starting the
transition into light sleep, the current stays high before dropping to its minimum after a penalty of 1.4 ms.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

Time (ms)

C
ur

re
nt

(m
A

)

(b) Transition from light sleep: Before waking up after light sleep and executing the first instruction
afterwards, which is pulling up the trigger signal, the power consumption goes up to the same level as
before entering light sleep. This period before being active again and the corresponding power consumption
are the penalties of waking up from light sleep.

Figure 7.7 – Light sleep transitions from and to 160 MHz: In both figures, the blue graph
displays the current, and the orange graph shows the trigger signal.

48

7.1 Measurements

7.1.5.3 Light Sleep

When transitioning from light sleep to normal mode and back, a non-linear progression of current
consumption can be observed, where Figure 7.7 shows the switch from 160 MHz to light sleep.
First, Figure 7.7a is discussed, which displays the transition into light sleep. Before starting the
transfer to light sleep, the last instruction is to pull the trigger GPIO to low. After that, the current
remains high until all devices are powered off. It finally drops to its lowest after around 0.4 ms.
Figure 7.7b displays the wakeup process: The first change in current consumption is seen around
1.2 ms before the trigger is set back to active. After this, the current consumption increases until it
reaches the level of before entering light sleep.

The area underneath the curve in both subgraphs is the observed current consumption of going
to and waking up from light sleep. Table 7.2c lists these values for all frequencies. As the CPU
frequency decreases, the time as well as energy consumption increase. While the increase in time
is because a lower frequency means that the CPU can execute fewer instructions per second, the
energy consumption increases as these lower frequencies are less energy-efficient than the higher
ones. This leads to a similar result as in Section 7.1.2: The fastest CPU clock can enter light sleep
with the lowest penalties for both time and energy.

When FreeRTOS is asked to go to light sleep for a certain period of time, it will wake up after
that time span and resume operation in the same system setting than before. The measurements
verify that behaviour. Light sleep resumes in the same state as it was entered, which is essential for
modelling the ESP32-C3 with the QP. There are two options to model that: One option is to add
additional constraints to the phases before entering and after leaving light sleep. Both must have the
same system configuration. This, however, constrains the potential solution space of the QP, if e.g.,
the optimal settings for both phases differ. To circumvent this, two additional phases before and
after light sleep can be introduced. This enables the possibility to switch to the optimal frequency
for entering and leaving light sleep, as the reconfiguration costs to enter and leave light sleep differ
for all frequencies. The disadvantage is that the model contains two additional phases. The other
option is to introduce separate light sleep modes for each available configuration. For this, the
reconfiguration penalties must include the penalties of entering the selected configuration in addition
to the costs of changing to or from light sleep. Although this does not add extra phases, the number
of configurations for the sleep mode increases, and, therefore, adds additional reconfiguration paths.
Whether the first or second option is better depends on the given task and the given hardware model.

7.1.5.4 Deep Sleep

When evaluating deep sleep, it is necessary to consider that the chip always wakes up at 160 MHz.
It does not restore the system settings prior to entering deep sleep. Therefore, when waking up
from deep sleep, all differences must be reconfigured before the execution can continue. Also, the
application needs additional preparations to reach its previous state of execution again since only
the RTC controller, the RTC peripherals and the RTC fast memory remain powered on during deep
sleep. These can be used to remember the previous system state. However, restoring the settings
requires additional implementation effort for the developer.

Therefore, the test setup for deep sleep differs to the one for light sleep: The last instruction
before going to sleep is clearing a GPIO pin as trigger signal. When waking up, the system restores
the previous setting before setting the GPIO pin to high afterwards. The first transition, where the
GPIO pin switches from high to low, measures the change from the previous clock-tree configuration
to deep sleep. The second transition, where the GPIO pin switches from low to high, marks the
change from deep sleep to the given clock-tree configuration. Different from light sleep, the phases

49

7.1 Measurements

before and after deep sleep are not connected to each other. Therefore, the model does not need
additional constraints for the deep sleep of the ESP32-C3.

The evaluation showed a similar behaviour for going to deep sleep as for entering light sleep
for all five CPU frequencies. Figure 7.8 shows the transition for 160 MHz as an example. The chip
takes time until the current consumption drops to its lowest, which also happens in a non-linear
current consumption curve. As for the lower frequencies, each instruction takes longer to execute.
As a consequence, the preparations for entering the sleep mode take more time. As mentioned
in Section 7.1.2, the lower frequencies are less energy-efficient than the higher ones. This results
in an increase in the overall current consumption as the frequency decreases. The measurements,
shown in Table 7.2d, support this outcome.

As already mentioned, the wakeup process from deep sleep is different than from light sleep:
The entire chip is powered down, except for the RTC controller, the RTC peripherals and the RTC
fast memory. The ESP32-C3 supports different wakeup signals, as mentioned in Section 6.1.4. In the
setting in Figure 7.8, a timer wakes up the chip after 100 ms. The first spike in current consumption
appears after 100 ms. Afterwards, the chip enters the boot sequence, which takes just below 300 ms,
before the trigger is set to active. The wakeup time of nearly 300 ms outweighs the reconfiguration
costs, therefore, the wakeup time was about equal for all frequencies.

In comparison to active idling with lower CPU frequencies or light sleep, deep sleep adds
significant penalties for reconfiguring the chip. Although the costs for entering deep sleep are
comparable with the costs of entering light sleep, the wakeup process takes up to 270 times that
of light sleep, while having a larger energy consumption of up to 450 times that of light sleep.
However, the energy consumption during deep sleep is 3.8 % of light sleep. Whether this saving is
advantageous in comparison to the overhead depends on the remaining sleep time.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

10

20

30

40

Deep Sleep Wake-Up

Time (s)

C
ur

re
nt

(m
A

)

Figure 7.8 – Deep sleep transitions from and to 160 MHz: In the green sections, the CPU is
active. First, the chip enters deep sleep for 100 ms. After that, the wake-up phase takes place,
which takes nearly 300 ms. Finally, the CPU is active again.

50

7.2 Real Values for the Quadratic Program

7.2 Real Values for the Quadratic Program

Now, all necessary information for the QP is collected. To conclude this chapter, this section presents
two evaluation scenarios. Section 7.2.1 starts with a simple example, which looks at the influence of
reconfiguration penalties by evaluating different sleep modes. Afterwards, Section 7.2.2 extends the
scope to a more complex evaluation scenario, which includes a peripheral device (I2C) and multiple
phases.

7.2.1 Single Task

This scenario, which shall act as the baseline scenario, investigates two questions: The first one
is to evaluate how the QP handles the fact that faster clocks are more power-efficient, as stated
in Section 7.1.2, and whether this results in a race-to-idle behaviour for CPU computations. The
second question is to investigate the influence of the penalties on the QP decisions and the resulting
power consumption of the overall problem.

As mentioned in Section 7.1.5.4, the reconfiguration penalties of deep sleep outweigh other
reconfiguration costs. Therefore, it is enough to analyse a single task to show the influence of
penalties by using the penalties of entering different sleep modes. The given task only utilises the
CPU and has a fixed execution length regarding the number of CPU cycles. Afterwards, it waits for
the next period to start and enters a sleep mode. The choice of which sleep mode is the optimal
one regarding the overall energy consumption depends on the duration of the sleep phase. This, in
turn, depends on the given task set’s period and, additionally, on the chosen CPU frequency for the
active task, as the time remaining for sleeping is the total period minus the time consumed by the
task. To tackle the first parameter, multiple problems with varying period lengths are evaluated.
For the second one, the possible clock-tree configurations for the tasks are all five evaluated CPU
clock frequencies: 160 MHz, 80 MHz, 40 MHz, 10 MHz, and 1 MHz. The available sleep modes
are deep sleep with a large penalty, especially for waking up, light sleep with smaller but still
measurable penalties, and 1 MHz active idling with the smallest penalties. As there is only one phase,
the clock-tree configuration before and after sleep is the same. Therefore, light sleep is modelled
correctly.

1 int fib (int x1) {
2 if (x1 == 0 || x1 == 1)
3 return 1;
4 int grandparent = 1, parent = 1, me = 0;
5 _Pragma("loopbound min 0 max 1000001")
6 for (int i = 2; i <= x1; ++i) {
7 me = parent + grandparent;
8 grandparent = parent;
9 parent = me;

10 }
11 return me;
12 }

Listing 7.1 – Iterative Fibonacci calculation: PLATIN estimates 8,000,031 CPU cycles for the
example input of 1,000,000, which equals to just above 50 ms for the maximum CPU frequency
of 160 MHz. The _Pragma acts as hint for PLATIN for handling the loop bounds regarding the
WCET analysis.

51

7.2 Real Values for the Quadratic Program

The computation to be performed is the iterative calculation of a Fibonacci number, as displayed
in Listing 7.1. The input number for the calculation was chosen such that the execution time with
the maximum CPU frequency of 160 MHz takes just above 50 ms.

Between 50 and 60, the solver was run for each ms. Between 1000 and 75,000, a measurement
was performed for every 1000 ms. Additionally, the range between 52,000 and 53,000 was investi-
gated in more detail, the reason for this follows in a moment. Figure 7.9 shows the results. The
solver chose the fastest CPU clock for all tests with a valid solution. This is the race-to-idle behaviour:
The task is finished as fast as possible, as the fastest CPU clock is the most power-efficient and the
sleep modes offer at least the efficiency per unit of time as the slowest CPU clock.

The choice of the sleep mode was as follows:

• For values smaller than or equal to 50 ms, the solver can not determine a solution, as the
shortest execution time for the task itself is just above 50 ms.

• For a period of 51 ms, the time until the next period begins is spent in active idling, as the
time needed to switch to a sleep mode and wake up afterwards is larger than the available
time frame. Therefore, active idling is the only option available for this period length.

• At 52 ms, light sleep becomes an option, as the time penalties for entering and leaving light
sleep are small enough. However, active idling is using less energy overall until a period length
of 54 ms. The break-even point is reached at 55 ms, where light sleep consumes less energy
than active idling. This is visualised in Figure 7.9b.

• For the range from 54 ms to 347 ms, active idling and light sleep are the only options. At
348 ms, deep sleep becomes available. However, the large reconfiguration penalties for deep
sleep prevent the solver to choose this sleep mode, although the energy consumption in deep
sleep is just 3.8 % of the energy consumption in light sleep.

• The break-even point between light and deep sleep is at a period length of 52,182 ms, visualised
in Figure 7.9c. For all values larger than 52,182 , deep sleep is the best solution.

These results indicate that the clock-tree–reconfiguration penalties on the ESP32-C3 have an
impact on the energy consumption of the system. Although some modes have lower energy costs,
the reconfiguration adds a large overhead for both time and energy consumption. Therefore, these
modes only outperform others as the total time available for this phase increases. Active idling with
the lowest reconfiguration penalties was the best choice for a short sleep phase. Light sleep has
a slightly larger overhead, but consumes only 1.5 % of energy consumption in sleep mode. This
break-even point is passed for a sleep length of 5 ms. Deep sleep has a large penalty, especially for
waking up, but only consumes 5 µA. The break-even point between light and deep sleep is reached
after 52,133 ms.

This investigation showed significant influences on the optimal power consumption of the system:
The baseline of the power consumption without any reconfiguration is a pessimistic all-always-on
approach at the highest available frequency. In this example, the 160 MHz CPU frequency consumes
31 mA. The determined power-consumption savings at the break-even point between active idle
and light sleep are just

1−
1.593mA s

55ms · 0.031A
= 6.6% . (7.1)

However, the model predicts an energy saving of

1−
8.363mA s

52183ms · 0.031A
= 99.5% (7.2)

52

7.2 Real Values for the Quadratic Program

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000
0

2

4

6

8

10

12

Period Time (ms)

E
st

im
at

ed
E

ne
rg

y
C

on
su

m
pt

io
n

(m
A

s)

× Active Idle
× Light Sleep
× Deep Sleep

(a) Full figure.

50 52 54 56 58 60
1.5

1.55

1.6

1.65

1.7

Period Time (ms)

E
st

im
at

e
(m

A
s)

(b) Active idle to light sleep: break-even
point between 54 and 55 ms.

45,000 55,000
6

7

8

9

10

Period Time (ms)

E
st

im
at

e
(m

A
s)

(c) Light sleep to deep sleep: break-even
point between 52,182 and 52,183 ms.

Figure 7.9 – Solver results for test program with one task: Between 50 and 60, the solver
was run for each ms. Between 1000 and 75,000, a measurement was performed for every
1000 ms. The graphs display these values with marks. The colored lines display the theoretical
energy consumption for active idle, light sleep and deep sleep when the fastest CPU frequency
of 160 MHz is chosen. This was the case for all the results displayed in this figure.
As the minimum execution time of the task is just over 50 ms with the maximum CPU frequency
of 160 MHz, there is no solution for values smaller than or equal to 50 ms. For a time of 51 ms,
the solver chooses active idling, as the remaining time is not enough to enter light or deep sleep.
For a period of 52 ms, entering light sleep is an option, but the reconfiguration penalties of light
sleep are still larger than active idling. This changes at 55 ms, as displayed in Figure 7.9b. After
348 ms, deep sleep is an option for going to sleep, but light sleep is the better option until a
period length of 52,182 ms. For all values above 52,182 ms, deep sleep is chosen. This transition
is displayed in Figure 7.9c.

53

7.2 Real Values for the Quadratic Program

at the break-even point between light and deep sleep. These are promising results for the capa-
bilities of this model. Also, this investigation only covered the influence of a single phase with its
reconfiguration penalties. Adding more phases offers the potential for more success of the model.

7.2.2 Inter-Integrated Circuit Communication Test

The previous section covered the behaviour of the system with regard to the available time for the
sleep mode. In this scenario, the behaviour of the model for a system with a peripheral device is
investigated. It uses a task with five phases, as displayed in Listing 7.2. The first, third and fifth
phases use the CPU and do not use any peripherals. The second and fourth phases both perform a
single I2C communication, as measured in Section 7.1.3.

160

10

160

10

160

10

160

10

160

10

160

10

160

10

160

10

ls
10

ls
160

ls
10

ls
160

ds

160

10

160

10

Figure 7.10 – Graph of peripheral test: Blue nodes describe the CPU frequency in MHz, green
nodes the CPU frequency in MHz with a clock-tree configuration which allows I2C communi-
cation. The grey nodes are the sleep modes of the ESP32-C3. An edge between two nodes
displays a potential configuration change. In the second and fourth phases, I2C communication
is required. Therefore, the blue nodes cannot be used there. The ESP32-C3 has the same mode
before and after light sleep. Therefore, the single light sleep mode is extended into four modes
for each available configuration, which is used before and after light sleep. Additionally, all four
active modes can be used for active idling during the sleep phase.

54

7.2 Real Values for the Quadratic Program

1 void task(int n1, int n2, int n3) {
2 /* Phase 1 */ fib(n1);
3 /* Phase 2 */ i2c_communication ();
4 /* Phase 3 */ fib(n2);
5 /* Phase 4 */ i2c_communication ();
6 /* Phase 5 */ fib(n3);
7 }

Listing 7.2 – Peripheral test: n1, n2 and n3 default to 1000000 as in the last section.

The scenario investigates two points:

1. The I2C communication is executed with the same I2C clock frequency, regardless of the CPU
frequency setting. Therefore, it takes the same time for all CPU frequencies to complete the
I2C transaction. The evaluation tests whether the lower power consumption for slower CPU
clocks is then advantageous over the faster CPU clocks with higher power consumption.

2. During the I2C communication phase, there is an intermediate CPU phase, where I2C is not
needed. Depending on the costs of a configuration with an active, but unused I2C unit and
the length of the CPU phase, it may be beneficial to either leave I2C configured or turn it off.

For simplicity, this example uses only two CPU-frequency configurations of the measured five
frequencies: 10 MHz and 160 MHz. The I2C-frequency configurations use the same base frequencies.
Phases two and four use I2C. Therefore, these phases require a configuration which allows I2C
communication. All other phases allow all available configurations. Additionally, the two sleep
modes of the ESP32-C3 - light and deep sleep - are added to the available idle modes. As mentioned
before, the ESP32-C3 restores the system state of before entering light sleep when leaving it. This
is modelled here as follows: The single light-sleep idle mode is split up into four modes, which
results in the graph shown in Figure 7.10. Each of these modes gets additional information on
what configuration it takes before and after light sleep: 160 MHz as ls160, 10 MHz as ls10, 160 MHz
with active I2C as ls160,i , and 10 MHz as ls10,i . While the power consumption during light sleep
stays the same for all four light-sleep modes, the reconfiguration costs when entering or leaving the
modes have to be adapted: For example, when changing to the sleep mode ls160, the chip first has to
change to 160 MHz before it can switch to light sleep. When the phase before light sleep already has
the 160 MHz clock-tree configuration, there are no additional costs to the penalty of entering light
sleep from 160 MHz. Otherwise, the costs of changing to 160 MHz are added to the reconfiguration
penalties. Similarly, the penalties for waking up from light sleep must be recalculated.

For the values of the ESP32-C3 with a period length of 1,000,000 ms, the solver returns the
optimal solution as follows: When I2C communication is active, the lower CPU clock is chosen, as
the CPU frequency does not influence the runtime of the communication. During each CPU phase,
the fastest available CPU clock configuration is chosen. This was also the outcome of the QP for the
intermediate CPU phase.

This evaluation scenario showed that it is advantageous for the ESP32-C3 to use a lower CPU
clock during I2C communication, which was the first question of this section. However, as there are
no measurable disadvantages for power consumption when I2C stays powered on when not used,
there is no need to turn it off and on again.

To test whether the QP formulation would choose to turn off I2C if there is additional overhead for
active but unused I2C, the model of the ESP32-C3 is modified by adding extra current consumption of
10 mA for the clock-tree configurations including I2C: Instead of 31 mA for 160 MHz and 10 mA for

55

7.2 Real Values for the Quadratic Program

10 MHz, these modes now consume 41 mA and 20 mA. Whether turning off I2C is beneficial depends
on the total overhead, which equals to the time span of the intermediate CPU phase. Therefore,
the test varies the number of CPU cycles for the third phase. The results of the solver produce the
graph presented Figure 7.11. For small values up to 11 cycles, the costs of changing to a clock with
a higher frequency outweigh the benefits of the faster and, therefore, more energy-efficient clock.
After that, it is better to change to a higher clock frequency, where the costs are low, but not to de-
and reinitialize the I2C driver. The break-even point at which this becomes profitable is at 48,505
CPU cycles, from where the faster CPU clock with deactivated I2C is chosen for the intermediate
CPU phase.

Therefore, an answer can be given to the second question of this section - that there is a break-
even point where the reconfiguration costs to turn off active but unused peripherals get smaller
than the additional costs of those peripherals. Although the ESP32-C3 cannot profit from the QP
formulation in this case, the mathematical model is capable to further optimise such configurations.
Depending on the length of the phase and the costs of the active but unused I2C unit, the benefits
of different modes can outweigh the clock-tree reconfiguration penalties.

7.3 Conclusion for the ESP32-C3

All results from this chapter propose good results for the QP formulation and the hardware model of
the ESP32-C3. The optimal CPU frequency for a CPU-only phase is the fastest clock for a race-to-idle
behaviour: The task is finished with the lowest possible energy consumption, and can switch to a
power-saving sleep mode afterwards. The sleep-mode selection depends on the remaining time in
the current period. For short periods, an active-idle approach is the best, but with an increase in
the remaining time, light sleep and deep sleep are better options. However, both sleep modes do

0 10,000 20,000 30,000 40,000 50,000 60,000

15.48

15.49

15.5

CPU cycles of third phase (cyc)

E
st

.
Po

w
er

C
on

su
m

pt
io

n
(m

A
s) 10i

160i
160

Figure 7.11 – Solver results for Listing 7.2 with I2C communication: The graph displays the
chosen configuration for the third phase. For small values ≤ 11 CPU cycles, the penalties of
changing from the 10 MHz with I2C setting to 160 MHz with I2C setting for the intermediate
calculation outweigh the benefits of a faster clock. For values larger than 48,505, the penalties
of deinitializing and reinitializing I2C are smaller than the benefits of the calculation with the
160 MHz setting in comparison to the 160 MHz with I2C setting.

56

7.3 Conclusion for the ESP32-C3

not outperform the previous optimum as soon as there is enough time available to allow the higher
reconfiguration penalties. For tasks with a fixed time, for example a single I2C communication, the
priority is to choose the configuration with the least energy consumption per second. Here, slower
CPU clocks perform better than fast CPU clocks.

For these relatively small problems the results are already promising. As larger problems in-
corporate more phase and a larger variety of peripheral devices with more varied reconfiguration
penalities, it is expected that these offer the potential for more success of the model. More energy
savings in comparison to pessimistic all-always-on approaches are likely to be achieved by measur-
ing additional peripheral devices of the ESP32-C3, e.g., the WiFi chip. The acquisition of better
measurement infrastructure is also planned to improve the measurement accuracy. As the time
consumption of the single tasks are taken as the WCET to give guarantees, the tasks may complete
earlier. Therefore, one can add a dynamic component to the system to save even more energy:
The insights from Section 7.2.1 give clear instructions what sleep mode is the best for a certain
remaining time in sleep mode. As a consequence, the system can decide dynamically whether it is
worth to enter a less power-consuming sleep mode than predicted.

57

8R E L AT E D W O R K

This chapter reviews related work and points out commonalities and differences to this thesis.
The static analysis presented in this thesis optimised the energy consumption of a system with
a fixed deadline. As a consequence, no optimisation happens jointly for both WCET and WCEC.
Section 8.1 takes a look at related work for multi-objective optimisations. As this work relies on
clock trees to reconfigure the system, Section 8.2 discusses other works on configuring clock trees.
In Section 8.3, a runtime-based approach to reduce the energy consumption of microcontrollers
is discussed, before Section 8.4 has a look at related work regarding energy-constrained real-time
systems.

8.1 Multi-Objective Optimisation

This thesis optimises the energy consumption of a system with a fixed deadline. However, for energy-
constrained real-time systems, both energy consumption and time are subjects to optimisation,
which leads to multi-objective optimisation.

Lokuciejewski et al. [19, 20] propose a WCET-aware compiler framework to automatically
determine compiler optimisation sequences to achieve highly optimised code. They investigate evo-
lutionary multi-objective algorithms that identify Pareto-optimal solutions for multiple optimisation
objectives. In embedded platforms, not only the WCET and WCEC, but also the code size is relevant,
as the memory available on these chips is limited. Muts and Falk [25] discuss optimisations for
function inlining, a well-known compiler-based optimisation. The idea of function inlining is to
replace a function call with the function body, which eliminates the function-call overhead. However,
the code size increases, as the body is inserted at every position of this function. Muts and Falk
formulate this optimisation as a multi-objective optimisation problem with the WCET, code size and
energy consumption as optimisation objectives. These objectives contradict each other. To find the
best trade-off solutions, they also use evolutionary multi-objective algorithms.

The presented approaches also aim to minimise the costs of embedded devices. However, in
comparison to this work, they do not consider device configurations and the corresponding clock-tree
reconfigurations, which would further improve their optimisation goals.

8.1 Multi-Objective Optimisation

8.2 Clock-Tree Configurations

Reconfiguring the clock tree is no new topic, as it is a prerequisite for power saving. Two implemen-
tations are described below.

Linux provides the Common Clock Framework [40]. The first part of the framework provides
a generic interface which unifies the infrastructure of all clock nodes in the clock tree. The other
part contains hardware-specific structures and implementations for particular clocks hidden behind
generic callbacks. It explores the underlying hardware at boot up and dynamically builds up the
clock subsystem by parsing the device tree and loading necessary modules for available devices.
This results in an implementation which relies on dynamic memory allocation, recursive parsing
and a generally large runtime overhead, which is not preferred for embedded SoC platforms.

The FlexClock approach [32] also presents an abstract representation of clock trees and dynam-
ically explores and reconfigures the clock tree at runtime. The goal platform differs: While the
Common Clock Framework targets laptops or desktop computers, FlexClock aims to support small
embedded devices, which are usually restricted in memory and computing power. This complicates
managing and (re-)configuring the clock trees, as the runtime implementation must be very efficient,
and the code size limited. They break down every clock tree into three types of nodes: Scalers,
multiplexers, and gates. These types were enough to model every clock tree they encountered. As
such, only three node types were implemented, which reduces the code size. They also point out
that more specific implementations can reduce the modelling overhead.

In this work, the clock-tree exploration happens before runtime. All changes are to be built
into the application, therefore, the evaluation before the actual execution on the chip can use a
more powerful computer instead of the embedded target platform to determine the optimal solution.
Thus, there are no constraints on the complexity of clock-tree changes.

8.3 Power Management

Reconfiguring the clock tree can change the CPU clock of a system and, therefore, can have massive
influences on the energy usage of a system. Chiang et al. [7] introduce a kernel-based dynamic
clock management system for microcontrollers. By changing the clock according to the ongoing
computation or the current pending I/O requests, energy can be saved by applying the following
insight: Contrary to what is achieved with dynamic voltage and frequency scaling in conventional
processors, faster CPU clocks are more energy efficient for CPU operations. In traditional systems,
a lower clock allows for lower voltage and, therefore, lower power consumption, but the voltage
remains the same in a microcontroller. This means that a faster clock requires more energy per
second but less per cycle and is more efficient for CPU-intense computations, as long as the chip can
enter an energy-saving mode afterwards. When waiting for answers of I/O operations, slow clocks
are more efficient, as not the energy per cycle, but the overall energy consumption is of interest.
Power Clocks, the introduced system, dynamically adapts to feedback about ongoing computational
and peripheral operations as well as the application state and chooses a suitable clock.

It differs from this work: While achieving a low energy consumption is crucial for both, this thesis
also wants to give guarantees for hard real-time systems with static analysis. This part is not a subject
of the Power Clocks paper. Instead, they aim for a dynamic feedback approach, where it is impossible
to give static guarantees. This might work well for standard applications on microcontrollers but
makes power consumption and timing behaviour hard, if not nearly impossible, to predict.

60

8.4 Energy-Constrained Real-Time Systems

8.4 Energy-Constrained Real-Time Systems

If a system wants to save energy, there are two main approaches: The first one is scaling the voltage
or frequency of the chip, the second is putting it in an inactive state or turning it off completely. Those
two techniques are referred to as Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic
Power Management (DPM) in Bambagini et al. [5], where they present a survey of energy-aware
scheduling algorithms proposed for real-time systems. Although the presented techniques use
various approaches in regards to online or offline scheduling, overhead, or complexity, most do not
account for the penalty introduced by changing the frequency or changing into an inactive state.
Another work of Bambagini et al.[4] considers the switching overhead between two frequencies:
The algorithm checks whether there is enough time to switch to the new frequency, execute the task
under consideration at that frequency, and then switch back to the previous one. But - in contrast to
this thesis - it neither considers such scalings in combination with system-wide analysis, nor aims for
a system-wide optimal configuration for every task. Also, peripheral devices, whose availability is
part of the clock-tree configuration, are left out of the scheduling approaches of energy-constrained
real-time systems.

Another approach takes devices into account. For determining an upper bound of energy
consumption, the worst-case energy consumption of the whole system can be assumed as follows:
All peripherals are active all the time. This delivers an upper bound for the power consumption,
but, as this usually is not the case, it overestimates the real power consumption. The SysWCEC
approach [41] aims to minimise that error and give reliable upper bounds for the energy consumption
by using static analysis. This splits into three steps: First, a CFG is derived from the source code.
From the blocks of the CFG, SysWCEC explicitly adds transitions between these blocks induced by
synchronous task activations or interrupts. This results in a state graph that includes the system’s
dynamic behaviour. Finally, the worst-case energy consumption of each node is calculated based on
the WCET of this code block and the power states of all active devices. From these values, an ILP is
formulated to derive the WCEC.

In addition to the approach of SysWCEC, this work seeks not only to provide guarantees for
energy consumption but an energy-optimal solution for an ordered set of phases, similar to the blocks
presented in SysWCEC. SysWCEC shows the direction in which this thesis’s future work is going to
advance: Instead of identifying the energy optimum for a fixed sequence of tasks, the model itself
can be extended to allow flexible task arrangements as part of the optimisation strategy. Finding the
optimal arrangement of multiple tasks will be required to determine the energy minimum for the
entire system ultimately. Finally, merging the approach presented in this thesis with the SysWCEC
approach [41] would allow an automatic energy-consumption optimisation of all tasks running in
an energy-constrained real-time system.

61

9C O N C LU S I O N

This thesis describes a solution for minimising the energy consumption of a periodic, sequential set
of tasks in an energy-constrained real-time system. The clock tree and its reconfiguration play the
main role in this optimisation: Each task has a set of possible clock-tree configurations based on its
required system settings. Each clock-tree reconfiguration introduces penalties regarding the time
and energy-consumption behaviour of the system. They must be considered when determining
the optimal configurations, as this can mean that the reconfiguration penalties to reach the most
energy-saving configuration outweigh the additional costs of staying at a suboptimal configuration
for one task. Such decisions can influence the whole task set.

For determining the optimal solution, this thesis introduces a static-analysis approach prior
to runtime. A mathematical problem description takes the following parameters into account to
model an optimisation program for a mathematical solver: A view on the whole system, clock-tree
configurations, clock-tree reconfiguration penalties, their time and energy-consumption behaviour,
all possible clock-tree configurations and the WCET for each task, and the tasks’ deadline, which
needs to be met to give timing guarantees. Additionally to giving guarantees for runtime and total
energy consumption, the mathematical model is solved prior to runtime. Therefore, there is no
additional overhead during execution.

To evaluate the model, this thesis performed a multipart evaluation. First, the practicability of
the model for medium-size energy-constrained real-time systems (up to 80 tasks, each having up
to 40 possible configurations) was investigated. All tests completed within a reasonable amount
of time (less than one minute with Gurobi [14]). After that, the evaluation focus shifted towards
applicability in the real world by analysing the ESP32-C3. A model was created for the open-source
analysis tool PLATIN to calculate WCET estimates, which are verified with a benchmark suite. With
measurements of the energy and time behaviour of the ESP32-C3 for the model, test scenarios
showed that, compared to a pessimistic all-always-on approach, the optimisation achieved significant
energy savings.

L I S T O F A C R O N Y M S

ABB Atomic Basic Block

API Application Programming Interface

BB Basic Block

CFG Control-Flow Graph

CPU Central Processing Unit

CSR Configuration and Status Register

DPM Dynamic Power Management

DVFS Dynamic Voltage and Frequency Scaling

ESP-IDF Espressif IoT Development Framework

FRAM Ferroelectric Random-Access Memory

GPIO General Purpose Input/Output

I2C Inter-Integrated Circuit

ILP Integer Linear Program

ISA Instruction Set Architecture

IPET Implicit Path-Enumeration Technique

LED Light Emitting Diode

PABB Power Atomic Basic Block

PMU Power-Management Unit

QP Quadratic Program

RAM Random-Access Memory

ROM Read-Only Memory

SPI Serial Peripheral Interface

SRAM Internal Static Random-Access Memory

UART Universal Asynchronous Receiver Transmitter

WCEC Worst-Case Energy Consumption

WCET Worst-Case Execution Time

L I S T O F F I G U R E S

2.1 Clock Tree Example . 8

3.1 Finding the Optimal Power Configuration . 13

4.1 Graph Representation of the Mathematical Description 16
4.2 Graph Representation with Sleep Modes . 19

5.1 Comparison of the Solver Performance for the QP and the ILPs 25
5.2 Ratio between Time needed by Solver for QP and ILPs 26
5.3 Time of Sum of ILPs . 27
5.4 Time of QP . 28
5.5 Time Ratio of Configurations per Phase for ILPs . 28
5.6 Time Ratio of Configurations per Phase for QP . 28
5.7 Time Ratio of Phases for ILPs . 29
5.8 Time Ratio of Phases for QP . 29

6.1 Execution Times compared to PLATIN’s WCET Analysis 37

7.1 Measurement Setup . 40
7.2 Active Phases . 42
7.3 SPI Test . 43
7.4 LED Test . 44
7.5 I2C at 160 MHz . 45
7.6 I2C with varying CPU Frequency . 45
7.7 Light Sleep Transitions from and to 160 MHz . 48
7.8 Deep Sleep Transitions from and to 160 MHz . 50
7.9 Solver Results for Test Program with One Task . 53
7.10 Graph of Peripheral Test . 54
7.11 Solver Results for Listing 7.2 with I2C Communication 56

L I S T O F TA B L E S

6.1 TACLeBench Benchmarks . 36

7.1 Current Consumption Values of the ESP32-C3 . 42
7.2 Time and Current Consumption for Clock-Tree Reconfigurations 47

L I S T O F L I S T I N G S

2.1 BubbleSort Implementation . 4

3.1 Example Task for Problem Description . 12

6.1 Example of a Linker Fragment File . 32
6.2 Performance Counter Measurement . 35

7.1 Iterative Fibonacci Calculation . 51
7.2 Peripheral Test . 55

R E F E R E N C E S

[1] Neil Audsley, Ken Tindell, and Alan Burns. “The End Of The Line For Static Cyclic Scheduling?”
In: In Proc. 5th Euromicro Workshop on Real-Time Systems. Society Press, 1993, pp. 36–41.

[2] Neil Audsley et al. “Applying New Scheduling Theory to Static Priority Pre-Emptive Schedul-
ing.” In: Software Engineering Journal 8 (1993), pp. 284–292.

[3] Clément Ballabriga and Hugues Cassé. “Improving the WCET computation time by IPET using
control flow graph partitioning.” In: 8th International Workshop on Worst-Case Execution Time
Analysis (WCET’08). Vol. 8. OpenAccess Series in Informatics (OASIcs). 2008.

[4] Mario Bambagini et al. “Energy Management for Tiny Real-Time Kernels.” In: International
Conference on Energy Aware Computing. Nov. 2011.

[5] Mario Bambagini et al. “Energy-Aware Scheduling for Real-Time Systems: A Survey.” In:
ACM Trans. Embed. Comput. Syst. 15.1 (Jan. 2016), pp. 1–6.

[6] Franck Cassez, René Hansen, and Mads Chr. Olesen. “What is a Timing Anomaly?” In:
OpenAccess Series in Informatics 23 (Jan. 2012).

[7] Holly Chiang et al. “Power Clocks: Dynamic Multi-Clock Management for Embedded Systems.”
In: Proceedings of the International Conference on Embedded Wireless Systems and Networks
(EWSN ’21). Feb. 2021, pp. 139–150.

[8] ESP32-C3 ESP-IDF Programming Guide. Version Release v5.0-dev-2586-ga82e6e63d9. Espres-
sif Systems (Shanghai) Co., Ltd. Apr. 2022. URL: https://docs.espressif.com/
projects/esp-idf/en/latest/esp32c3/esp-idf-en-v5.0-dev-2586-ga82e6e63d9-
esp32c3.pdf (visited on 05/03/2022).

[9] ESP32-C3 Series Datasheet. Version 1.2. Espressif Systems. 2022. URL: https://www.
espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
(visited on 04/28/2022).

[10] ESP32-C3 Technical Reference Manual. Version Pre-release v0.6. Espressif Systems. 2022.
URL: https://www.espressif.com/sites/default/files/documentation/esp32-
c3_technical_reference_manual_en.pdf (visited on 04/28/2022).

[11] ESP32-C3-Mini-1 Datasheet. Version 1.0. Espressif Systems. 2021. URL: https://www.
espressif.com/sites/default/files/documentation/esp32-c3-mini-1_datasheet_
en.pdf (visited on 04/28/2022).

[12] Heiko Falk et al. “TACLeBench: A Benchmark Collection to Support Worst-Case Execution
Time Research.” In: 16th International Workshop on Worst-Case Execution Time Analysis (WCET
2016). Vol. 55. OpenAccess Series in Informatics (OASIcs). 2016, 2:1–2:10.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/esp-idf-en-v5.0-dev-2586-ga82e6e63d9-esp32c3.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/esp-idf-en-v5.0-dev-2586-ga82e6e63d9-esp32c3.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/esp-idf-en-v5.0-dev-2586-ga82e6e63d9-esp32c3.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1_datasheet_en.pdf

REFERENCES

[13] Christian Ferdinand and Reinhold Heckmann. “ait: Worst-Case Execution Time Prediction by
Static Program Analysis.” In: Building the Information Society. 2004, pp. 377–383.

[14] Gurobi Website. 2022. URL: https://www.gurobi.com/ (visited on 06/02/2022).

[15] Reinhold Heckmann et al. “The influence of processor architecture on the design and the
results of WCET tools.” In: Proceedings of the IEEE 91 (Aug. 2003), pp. 1038–1054.

[16] Henriette Hofmeier. “Timing Analysis for the RISC-V Architecture.” Bachelor’s thesis. Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), Dept. of Computer Science, May 2019.

[17] Yau-Tsun Steven Li and Sharad Malik. “Performance Analysis of Embedded Software Using
Implicit Path Enumeration.” In: Proceedings of the 32nd Annual ACM/IEEE Design Automation
Conference. 1995, pp. 456–461.

[18] Jane W. S. Liu. Real-Time Systems. 2000.

[19] Paul Lokuciejewski et al. “Approximating Pareto optimal compiler optimization sequences–a
trade-off between WCET, ACET and code size.” In: Software: Practice and Experience 41.12
(2011), pp. 1437–1458.

[20] Paul Lokuciejewski et al. “Multi-objective Exploration of Compiler Optimizations for Real-Time
Systems.” In: Proceedings of the 13th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC ’10). 2010, pp. 115–122.

[21] lp_solve reference guide. 2022. URL: http://lpsolve.sourceforge.net/ (visited on
06/02/2022).

[22] Thomas Lundqvist and Per Stenström. “Timing anomalies in dynamically scheduled micro-
processors.” In: Proceedings of the 20th IEEE Real-Time Systems Symposium (Dec. 1999),
pp. 12–21.

[23] Memory FRAM 64K - MB85RS64V. 2022. URL: https://cdn- shop.adafruit.com/
datasheets/MB85RS64V-DS501-00015-4v0-E.pdf (visited on 09/26/2022).

[24] MSO4000 and DSO4000 Series Digital Phosphor Oscilloscopes - User Manual. 2022. URL:
https://download.tek.com/manual/071212104web.pdf (visited on 09/26/2022).

[25] Kateryna Muts and Heiko Falk. “Multi-Criteria Function Inlining for Hard Real-Time Systems.”
In: Proceedings of the 28th International Conference on Real-Time Networks and Systems (RTNS
’20). 2020, pp. 56–66.

[26] James Pallister et al. “Data dependent energy modelling: A worst case perspective.” In: CoRR
(May 2015).

[27] PCF8574 Remote 8-Bit I/O Expander for I2C Bus Datasheet (Rev. J). 2022. URL: https:
//www.ti.com/lit/ds/symlink/pcf8574.pdf (visited on 09/26/2022).

[28] Peter Puschner et al. “The T-CREST approach of compiler and WCET-analysis integration.”
In: 16th IEEE International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing, ISORC 2013 (June 2013), pp. 1–8.

[29] Peter P. Puschner and Anton V. Schedl. “Computing Maximum Task Execution Times — A
Graph-Based Approach.” In: Real-Time Systems 13 (2004), pp. 67–91.

[30] Phillip Raffeck et al. “Worst-Case Energy-Consumption Analysis by Microarchitecture-Aware
Timing Analysis for Device-Driven Cyber-Physical Systems.” In: 19th International Workshop
on Worst-Case Execution Time Analysis (WCET 2019). Vol. 72. 2019, 4:1–4:12.

[31] Jan Reineke et al. “A Definition and Classification of Timing Anomalies.” In: 6th International
Workshop on Worst-Case Execution Time Analysis (WCET’06). Vol. 4. 2006.

74

https://www.gurobi.com/
http://lpsolve.sourceforge.net/
https://cdn-shop.adafruit.com/datasheets/MB85RS64V-DS501-00015-4v0-E.pdf
https://cdn-shop.adafruit.com/datasheets/MB85RS64V-DS501-00015-4v0-E.pdf
https://download.tek.com/manual/071212104web.pdf
https://www.ti.com/lit/ds/symlink/pcf8574.pdf
https://www.ti.com/lit/ds/symlink/pcf8574.pdf

REFERENCES

[32] Michel Rottleuthner, Thomas Schmidt, and Matthias Wählisch. FlexClock: Generic Clock
Reconfiguration for Low-end IoT Devices. 2021.

[33] Fabian Scheler. “Atomic Basic Blocks – Eine Abstraktion für die gezielte Manipulation der
Echtzeitsystemarchitektur.” In: Ausgezeichnete Informatikdissertationen 2011. 2011, pp. 181–
190.

[34] Fabian Scheler and Wolfgang Schröder-Preikschat. “The Real-Time Systems Compiler: migrat-
ing event-triggered systems to time-triggered systems.” In: Software: Practice and Experience
41.12 (2011), pp. 1491–1515.

[35] Martin Schoeberl et al. Patmos Reference Handbook. Tech. rep. Feb. 2020. URL: http:
//patmos.compute.dtu.dk/patmos_handbook.pdf (visited on 09/28/2022).

[36] Martin Schoeberl et al. “Towards a Time-predictable Dual-Issue Microprocessor: The Patmos
Approach.” In: Bringing Theory to Practice: Predictability and Performance in Embedded Systems.
Vol. 18. OpenAccess Series in Informatics (OASIcs). 2011, pp. 11–21.

[37] TACLe Benchmarks. 2022. URL: https://github.com/tacle/tacle-bench (visited on
09/06/2022).

[38] The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA. Version 20191213. CS
Division, EECS Department, University of California, Berkeley. Dec. 2019. URL: https:
//riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf (visited on
04/28/2022).

[39] Valentin Touzeau, Claire Maïza, and David Monniaux. “Model Checking of Cache for WCET
Analysis Refinement.” In: ArXiv (2017).

[40] Mike Turquette. The Common Clk Framework. Linux Kernel Documentation. 2021. URL:
https://www.kernel.org/doc/Documentation/clk.txt (visited on 09/28/2022).

[41] Peter Wägemann et al. “Whole-System Worst-Case Energy-Consumption Analysis for Energy-
Constrained Real-Time Systems.” In: 30th Euromicro Conference on Real-Time Systems (ECRTS
2018). Vol. 106. 2018, 24:1–24:25.

[42] WCET project / SWEET. 2013. URL: http://www.mrtc.mdh.se/projects/wcet/sweet.
html (visited on 08/17/2022).

[43] Welcome to Python.org. 2022. URL: https://www.python.org/ (visited on 08/31/2022).

[44] Reinhard Wilhelm et al. “The Worst-Case Execution-Time Problem—Overview of Methods
and Survey of Tools.” In: ACM Transactions on Embedded Computing Systems 7.3 (May 2008).

75

http://patmos.compute.dtu.dk/patmos_handbook.pdf
http://patmos.compute.dtu.dk/patmos_handbook.pdf
https://github.com/tacle/tacle-bench
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://www.kernel.org/doc/Documentation/clk.txt
http://www.mrtc.mdh.se/projects/wcet/sweet.html
http://www.mrtc.mdh.se/projects/wcet/sweet.html
https://www.python.org/

	Abstract
	Kurzfassung
	1 Introduction
	2 Fundamentals
	2.1 Real-Time Systems
	2.2 WCET Analysis
	2.2.1 Static Runtime Analysis
	2.2.2 The Implicit Path-Enumeration Technique
	2.2.3 Integer Linear Programs for the Implicit Path-Enumeration Technique
	2.2.4 Constraints of the Integer Linear Program
	2.2.5 Hardware Model

	2.3 Hardware Platform
	2.3.1 Clock Tree
	2.3.2 Power Modes

	3 The Problem of Unknown Optimal Power Configurations
	4 Approach
	4.1 Description of the Linear Programming Problem
	4.2 Modelling Multiple Sleep Options

	5 Evaluation of the Solver Performance
	5.1 Theoretical Problem Complexity
	5.2 Solver Efficiency
	5.2.1 Integer Linear Program versus Quadratic Program
	5.2.2 Problem-Size–Scaling Behaviour of the Solver

	5.3 Viability of the Problem Description

	6 Implementation for the ESP32-C3
	6.1 The ESP32-C3
	6.1.1 Hardware Overview
	6.1.1.1 Chip Details
	6.1.1.2 Memory

	6.1.2 Espressif IoT Development Framework
	6.1.3 Clock Tree
	6.1.4 Power Modes

	6.2 PLATIN
	6.2.1 Toolchain Setup for the ESP32-C3
	6.2.2 Timing Behaviour of the ESP32-C3
	6.2.3 Platin Evaluation

	7 Evaluation for the ESP32-C3
	7.1 Measurements
	7.1.1 Measurement Setup
	7.1.2 Active Modes
	7.1.3 Peripherals
	7.1.4 Light Sleep and Deep Sleep
	7.1.5 Reconfiguration
	7.1.5.1 Switching between Frequencies
	7.1.5.2 Configuring Devices
	7.1.5.3 Light Sleep
	7.1.5.4 Deep Sleep

	7.2 Real Values for the Quadratic Program
	7.2.1 Single Task
	7.2.2 Inter-Integrated Circuit Communication Test

	7.3 Conclusion for the ESP32-C3

	8 Related Work
	8.1 Multi-Objective Optimisation
	8.2 Clock-Tree Configurations
	8.3 Power Management
	8.4 Energy-Constrained Real-Time Systems

	9 Conclusion
	Lists
	List of Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography

