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A B S T R A C T

This thesis implements and evaluates a mechanism to support privilege separation for OCTOPOS,
the operating system for Invasive Computing. OCTOPOS is built as a library operating system that
currently supports three different architectures. This thesis uses the system call mechanism in
combination with software interrupts to implement the foundation for privilege separation. A
uniform interface for all three supported platforms of OCTOPOS is implemented as part of a system-
call library for user space. At the same time, OCTOPOS itself can now receive and handle those
system-call function requests. The system-call library also contains a wrapper for all functions that
are available for the user space application programmer.

Sending a system call from user to kernel space and returning the result is a massive overhead
in comparison to directly calling the kernel function. As a consequence, the new implementation for
the user space functions takes longer than just executing the kernel function, as OCTOPOS did it
before. This behaviour was evaluated with a set of microbenchmarks and macrobenchmarks. The
result of the application benchmarks is that the overhead is at a very moderate level and the usage
of the system-call mechanism can be recommended because of the many advantages introduced by
that approach. As the system-call implementation allows a clear separation between user and kernel
space, a layer of safety and security is added to OCTOPOS which ensures a user-space application
can not harm the operating system or other applications any more. The system-call concept also
lays the foundation for other operating system concepts, such as dynamic loading of user-space
applications.
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KU R Z FA S S U N G

In dieser Arbeit wird ein Mechanismus zur Unterstützung von Privilegientrennung für OCTOPOS, das
Betriebssystem für Invasive Computing, implementiert und evaluiert. OCTOPOS ist ein Bibliotheksbe-
triebssystem, welches derzeit die Ausführung auf drei verschiedenen Architekturen unterstützt. Um
Privilegientrennung zu implementieren, nutzt diese Arbeit Softwareinterrupts zur Anforderung von
Systemaufrufen. Eine einheitliche Schnittstelle für alle drei unterstützten Plattformen von OCTOPOS
wird als Teil einer Systemaufrufbibliothek für den Benutzerraum implementiert, während OCTOPOS
diese Serviceanfragen empfangen und bearbeiten kann. Die Systemaufrufbibliothek kapselt alle
Funktionen, die dem Anwendungsprogrammierer zur Verfügung stehen.

Das Senden eines Systemaufrufs vom Benutzer- an den Kernraum und die Rückgabe des Ergebnis-
ses hat einen massiven Mehraufwand im Vergleich zum direkten Aufruf der entsprechenden Funktion
zur Folge. Die neue Umsetzung der Benutzerraumfunktionen dauert daher länger als die direkte
Ausführung der Kernfunktion, wie es zuvor in OCTOPOS implementiert war. Mit einer Reihe von
Mikro- und Makrobenbenchmarks wurde dieses Verhalten evaluiert. Die Anwendungsbenchmarks
zeigen, dass der Mehraufwand durch den Systemaufrufmechanismus vergleichsweise gering ist
und die Anwendung der Systemaufrufbibliothek wegen der vielen dadurch eingeführten Vorteile
empfohlen werden kann. Durch die Systemaufrufimplementierung besitzt OCTOPOS nun eine klare
Trennung zwischen Benutzer- und Kernraum, die sicher stellt, dass eine Benutzerraumanwendung
dem Betriebssystem sowie anderen Anwendungen nicht mehr schaden kann. Das Konzept des
Systemaufrufs legt auch die Grundlage für andere Betriebssystemkonzepte, wie z. B. das dynamische
Laden von Benutzerraumanwendungen.
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1I N T R O D U C T I O N

This thesis introduces a system call mechanism to OCTOPOS, the operating system for Invasive
Computing. Two components are required: a user space implementation to request the execution
of an operating system function while changing the operating mode to privileged, and a kernel
interface to receive and handle the function requests.

Invasive Computing is a project that investigates future manycore architectures to avoid and
overcome the problems of today’s multicore architectures, e. g. synchronization for memory access
across all cores or memory bandwidth limitations. A tiled hardware architecture with strong coupling
on the tiles and loose coupling between the tiles is chosen, which reduces memory synchronization
overheads for the entire system as synchronization only happens locally on each tile. Because
manycore architectures come with a vast amount of computing cores, the cores can be given to an
application exclusively. Therefore, instead of temporal multiplexing, spatial multiplexing is used:
All programs are split into lightweight control flows with run-to-completion semantics. With these
short control flows, a fine-granular control over the program flow and the computing resources is
possible.

At the time of writing, all programs in OCTOPOS are running in the same privilege level as
the operating system kernel. The missing privilege separation can lead to accidental or malicious
influencing of the operating system or other applications as all user programs run without effective
restrictions over operating system functions and structures. This causes both security problems and
safety issues, as a user application can use or modify operating system functions and data structures
that are not meant to be used or modified by a user application. In order to solve these problems
and to establish a clear separation between user applications and the operating system kernel, this
thesis lays the foundations for privilege separation for OCTOPOS.

After a clear cut has been made, user applications are restricted to use the operating system’s
well-defined application programming interface (API). Thus, ideally, applications are only allowed
to influence operating-system behaviour in a well-defined manner. For achieving proper privilege
separation, all applications should be decoupled from the operating system. Since the user application
needs to use the operating system functionalities, a way to request kernel services is required, e. g.
for privileged memory or hardware access, creating or executing new program flows or input/output
operations. System calls provide the necessary interface to execute kernel functionalities from user
space. Therefore, this thesis further implements a system call interface for OCTOPOS as a base for
privilege separation.

As OCTOPOS is a library operating system, a new library, the system call library, is built to
encapsulate the system call interface for the user space applications and shall replace the previous
operating system library for building user applications. This library contains wrappers for all
functionalities a user application requires from the operating system. If a user program requires
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1 Introduction

operating-system support, a system call is executed to request the execution from the operating
system. With this, the user program is completely separated from the operating system kernel
as the only information that is passed between user and kernel are the system call parameters
and the return value of the requested system call function. Therefore, independent binaries of
OCTOPOS and OCTOPOS user applications are possible, while the system call interface is extendable
and configurable. The completion of the privilege separation implementation would be that the
operating system can start and run without an application, as well as hardware support for the
implemented concepts.

OCTOPOS is currently available for three different execution environments, x86 user-space
emulation on top of the system call API of the Linux kernel, x86_64 port, and a prototype, based on
the SPARC v8 LEON hardware architecture. This thesis presents a system call implementation for
all three environments and the corresponding concepts of crossing the border between user and
kernel space. For this, a generic approach was chosen that supports a specialization for the different
architectures if necessary.

In the following, the design and implementation are described in detail, as well as the evaluation
of the new system call library for OCTOPOS. Therefore, first of all, the fundamentals of Invasive
Computing, the concept of privilege separation, and the supported architectures for OCTOPOS are
explained in Chapter 2. This is followed by a description of how and where the privileged and the
unprivileged operating mode are separated in Chapter 3, with an explanation of the implications
of that separation for the system call library and the operating system infrastructure. After that,
Chapter 4 presents the implementation of the system call library as a new module for OCTOPOS, as
well as a system call mechanism for all three supported architectures of OCTOPOS in both user and
kernel space for sending and receiving system calls. As the system call framework is a new feature
for OCTOPOS and requires additional steps for calling a function from user space, the system call
implementation is evaluated against the previous version of OCTOPOS with respect to performance in
Chapter 5. System calls are a well known and used feature for operating systems. Hence, Chapter 6
compares the implemented mechanism with other techniques and takes a look at related work on
the subject of privilege separation and system calls. Finally, the thesis ends with the conclusion and
the outlook for further work in Chapter 7.
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2F U N DA M E N TA L S

This chapter introduces the fundamentals of this thesis. To begin with, Section 2.1 examines the
idea of Invasive Computing to give the reader an impression of the background of this thesis. This is
followed by an explanation of the basics and tools for establishing a separation mechanism between
privileged and non-privileged mode in Section 2.2, as privilege separation is one of the objectives
this thesis achieves. The concept of privilege separation has to be supported by the operating system.
Section 2.3 gives a short insight into OCTOPOS, the operating system for Invasive Computing, and
its supported hardware architectures.

2.1 Invasive Computing

In the early 2000s, most personal computers used single-core processors. Over the years, hardware
designers have improved the performance of these cores. By increasing the clock rate, more
instructions per time slot became possible. Superscalar processors were developed, which can, in
contrast to scalar processors, execute more than one instruction during each clock cycle. Techniques
like jump prediction or out-of-order execution further enhanced the performance of new processors.
With better manufacturing technologies, the size of the individual transistors and gates shrank.
Smaller transistors can run with a smaller power supply voltage, which leads to lower energy
consumption. Additionally, the number of transistors per processor can be increased while the size of
the processor stays the same. This made it possible to create more complex circuits that implement
and optimize complicated instructions for a faster execution time per instruction.

However, these improvements slowly came to a halt because of physical limitations, e. g. the
clock rate increase caused the chips to overheat1. For further enhancements, engineers developed
new chips by increasing the number of cores on the chip itself. So the era of multicore processors
began.

Multicore systems indeed promise a gain in performance. However, they bring their own share
of challenges. Taking full advantage of the possible parallelism of the hardware for a single program
requires first parallelizable applications. On the other hand, these applications must be distributed
efficiently by the operating system to the cores of the underlying multicore system.

Nevertheless, even if the operating system distributes the parallel program flows on a multicore
system, the theoretical speedup for N processors on a chip is mostly not reached in reality. Each
program can be split into sequential and parallel parts. Since only parallel parts can be accelerated
with more hardware resources, the sequential part, which must be synchronized between the

1The heat problem could be kept within limits with an immense amount of cooling, but this effort is in no relation to the
improved performance of the processor.
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2.1 Invasive Computing

parallel sections of the program, is the limiting factor. This is described by Amdahl’s law, visualized
in Figure 2.1: Because of the sequential components of a program, perfect acceleration is not
possible [Amd67]. Increasing the parallelism will not further increase the speedup of a parallel
program after a certain point because the sequential bottleneck prevents further acceleration.
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Figure 2.1 – Visualization of Amdahl’s Law: Speedup of a parallelizable problem by processors
working in parallel2. Each line corresponds to a certain percentage of parallelizable code for an
application. As one can see, even with a parallelizable amount of 95%, a speedup of more than
20 is not even achieved with more than 4000 processors.

That programmers struggle to fully exploit their hardware shows that this is still a not completely
solved issue by today. Furthermore, compilers are not always aware of the hardware and therefore
cannot produce efficient parallel code for each platform3. Some high-level programming languages
use generic ways to tackle various problems, which results in code that sometimes does not use all
features a hardware platform provides. If a programmer uses a new hardware architecture that
surpasses previous systems in terms of hardware specifications, however there is no well working
compiler or a suitable operating system for it to produce efficient code and execute it on the system,
the theoretical abilities of the hardware cannot be fully exploited.

Besides problems inherent to processing power and parallelism, there are other limiting factors.
While computing power has increased massively in recent years, memory and hard disk speed have
not improved to the same extent. It is therefore to be expected that a memory speed and bandwidth
problem will be encountered with ever-increasing multicore systems. Another problem is that in a
classic multicore system, cores use shared caches for storing data for faster access, which must be
kept coherent between different cores, i. e. the last written value is read for each read access. This
results in an overhead that increases for more processors in a way that has a massive negative impact
on the performance of the whole multicore system. Traditional approaches have to be rethought in
order to provide proper scaling for future massively parallel computing systems with hundreds or
thousands of cores.

2The theoretical speedup S is calculated by
S =

1

s+ 1−s
p

with s the percentage of the sequential part of an application and p the number of processes.
3Of course there are techniques to produce efficient executables for individual architectures, e. g. the CUDA programming

model for NVIDIA graphics processing units (GPUs) [NVI19] or the NEC compiler suite for NEC vector engines [NEC20], but
for good results in runtime the given code has to be modified for each platform separately to achieve the best performance.
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2.1 Invasive Computing

2.1.1 The Idea of Invasive Computing

In order to circumvent some of the previously mentioned problems of current multicore chips with
hundreds or thousands of cores (also known as manycore systems), a Transregional Collaborative
Research Center, funded by the German Research Foundation (DFG), was established in July 2010. In
InvasIC4, multiple parts of the hardware architecture and the software stack are rethought. However,
this thesis just covers, besides the general idea of InvasIC, the operating system and the necessary
hardware components.

The idea is to investigate a new concept for a resource-conscious use of future massively parallel
computer systems [SIR19]. Jürgen Teich, the coordinator of the project, formulated the first
definition of Invasive Programming, which is the application programming concept on top of
Invasive Computing, in 2008 [Tei08]:

Invasive Programming denotes the capability of a program running on a parallel com-
puter to request and temporarily claim processing, communication, and memory re-
sources in the neighborhood of its actual computing environment, to then execute
in parallel the given program using these claimed resources, and to be capable to
subsequently free these resources again.

For satisfying this definition, the system is divided into smaller parts to reduce the overhead of cache
coherence for the whole system and to provide smaller units of resources that can be claimed by
an application. An application has to take care of requesting, allocating and freeing its computing
resources on its own and therefore adjusts the used hardware resources to its needs [Tei+12].

2.1.2 Exclusivity and Awareness of Resources

The idea of Invasive Computing involves giving programs full control over the requested resources.
This includes giving an application exclusive access, e. g. for a computing resource, which means
that no other program will run on the same core during that time.

This exclusive access is the basis for using spatial multiplexing instead of temporal multiplexing.
Spatial multiplexing describes the idea that each application can use a set of cores exclusively; in
contrast, temporal multiplexing is designed to give each application a certain amount of time for
core use. With spatial multiplexing, each core is occupied by at most one running application and
is not shared between two applications as it would be with temporal multiplexing. Therefore, no
preemptive scheduling is required and switching between two applications during execution does
not happen, so no additional overhead is introduced.

Each application can reserve a partition of the system exclusively. The resources for an application
are grouped to form a claim [Oec18]. Each application has full control over the resources in its
claim. The application can also control the current amount of computing resources and can adapt to
changing requirements of the application during run time. For example, it can request more cores
for highly parallel execution, and can later retreat from the previously requested resources [Oec18;
Rab19].

2.1.3 The Invasive Execution Model

For reducing the overhead of creating and launching new control sequences, a lightweight execution
model is introduced. It has less overhead for creating and launching control sequences. With the
ability to claim more resources or retreat from them, all algorithms can be split into short-running

4Further information can be found at https://invasic.informatik.uni-erlangen.de.
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2.1 Invasive Computing

program flows with run-to-completion semantics5. These program flows are called Invasive-lets,
short iLets [Oec18]. iLets are designed to represent the parallel execution component of the system.
They thus are efficiently created, stored and executed, since these steps are traversed very often
in an Invasive application. An iLet represents a program flow with the intention to be executed6.
To finally execute an iLet, it must be united with a resource that is part of a claim [Oec18]. The
following section details how one can get a claim and execute a set of iLets on it.

2.1.4 Life Cycle of an Invasive Computing Application

The life cycle of an Invasive application is shown in Figure 2.2, and consists of different phases. In
the beginning, an application will try to invade a certain amount of resources to get a claim on these
resources. The invade operation receives the claim as a grant to be able to use them exclusively.
One application can also request and use multiple claims, which is useful if an application consists
of different tasks that one wants to separate. The application also initializes iLets and can assort
a team of iLets7. To assort a team of these iLets means that a set of iLets is grouped together to
perform a task. Each iLet is initialized with the program snippet that is to be executed on the
computing resources. An example is matrix-vector multiplication. The team has the task to compute
the result of the multiplication, while each iLet will process one row of the matrix. This team can
now infect the resources claimed by the invade operation. The infect operation copies the entry point
for the program flow of each iLet to the resources provided by the claim and starts the execution.
To adapt to changes of resource requirement during execution, the application can retreat to free
the previously claimed resources, while the reinvade operation adds further resources to the claim
first requested with the invade operation. If additional iLets are necessary, one can create new iLets
during execution [Oec18; Rab19].

start end

claim(s)

iLet

init

assort

in
fe

ct

fin
is

he
d

reinvade

invade retreatidle resources

active control flow

Figure 2.2 – Conceptional life cycle of an Invasive Computing application.

5This means that if a program flow is started, it will run to its end and then terminate automatically [Oec18].
6One may initialize more iLets than are started at a certain time, as an iLet just embodies a control flow that can be

started on a claim at any given time.
7As iLets are efficiently created and stored, one has hardly any extra costs by creating a vast amount of iLets for a massively

parallel application.
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2.1 Invasive Computing

2.1.5 Invasive Hardware Architecture

As discussed at the beginning of Section 2.1, one problem of modern multi- and manycore systems
is memory that is shared between all cores, often with synchronized access. A solution to this is to
arrange the cores into smaller groups that act as smaller multi-core systems that can communicate
with each other. In the Invasive hardware architecture such a group of resources is called a tile. The
tiles are arranged in a grid layout and are connected to each other with a network adapter (NA)
via the network on chip (NoC). Each tile provides cache coherency for the cores on it, while no
memory synchronization occurs beyond tile boundaries. The overhead for keeping the tile local
caches coherent is smaller than having coherent caches on the entire manycore system because of
the effort to ensure cache coherency is limited to each group of cores and does not affect the rest of
the system.

The tiles of an Invasive system are not homogenous, in fact, the Invasive architecture has
different, specialized tiles, such as compute tiles, that consist of computing cores and tile local
memory (TLM) and provide the computing power of the system, memory tiles or I/O tiles, as shown
in Figure 2.3 [Oec18; Rab19]. Each application can therefore adjust the hardware components to
its needs.

CPU CPU

CPU CPU

NA TLM

CPU CPU

CPU CPU

NA TLM NA

I/O Tile

CPU CPU

CPU CPU

NA TLM NA

Memory Tile
CPU CPU

CPU CPU

NA TLM

NoC NoC NoC

NoC NoC NoC

Figure 2.3 – An example configuration of the Invasive tiled hardware architecture with four
compute tiles with four cores each, a memory tile and an I/O tile.

2.2 Privilege Separation

As the task of this thesis is to implement a system-call interface as a first step towards privilege
separation, the concept of privilege separation is explained in this section. Section 2.2.1 presents the
fundamentals and ideas of this mechanism in operating systems. A common way to overcome the
privilege separation to execute privileged functions is the use of system calls. Section 2.2.2 discusses
this concept.
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2.2 Privilege Separation

2.2.1 The Concept of Privilege Separation

A user process or program must not unintentionally access resources of other user processes or
the operating system, nor be able to perform attacks on any part of the operating system on other
applications. Common operating systems implement the principle of least privilege: in any system,
the access rights for users should be limited to the minimum permission required to perform their
work/job, but no more than that [DDC04]. The concept of privilege separation lays the fundamentals
for this principle in an operating system.

By varying the privilege modes of an operating system, different privilege levels can be used for
privileged and unprivileged programs to build a more robust and secure system based on the principle
of least privilege. In privileged mode, all operations are available and the entire hardware is usable
and can be controlled. In unprivileged mode, just a subset of the operations can be executed [TB16].

Operating systems usually have different operating modes that are supported by hardware. For
x86_64, the idea of multiple privilege levels is visualized by using rings, with the inner rings of the
system having a higher privilege level than the ones on the outside, see Figure 2.4 for a graphical
illustration. The rings visualize the concept that the inner layers are harder to reach than the outer
ones, since for entering an inner layer, a higher privilege is needed. In most operating systems
nowadays, for the x86 architecture only ring 0 (kernel mode or operating system mode) and 3 (user
mode) are in use, as other architectures, e. g. SPARC, only have two privilege levels8.

For using the operations and services provided by other rings, the program has to switch between
the different modes. To switch from a higher to a lower priority level is possible without further
checks, but if an unprivileged application wants to call a function or to use a service provided
from a lower level, a mechanism to change the privilege to a higher level to be able to call the
privileged functions is required. Solutions for this problem are call gates (on x86)9 and other special
instructions that check whether the use is allowed or not, and if so, change to privileged mode
and execute the desired functionality [Bra17]. One mechanism to execute function requests for

Kernel
Mode

User Mode

Ring 0

Ring 1

Ring 2

Ring 3

Figure 2.4 – Ring modes in x86_64 [TA14]: Each ring describes a level of privilege, with the
inner rings having a higher privilege level that the outer rings.

8The first operating system to use rings for separating different privileges was the Multiplexed Information and Computing
Service (MULTICS) in 1969. It had eight rings supported by hardware. The supervisor ran on ring 0, while ring 5 was used
as a restricted user ring [SS72; Mul].

9MULTICS also supported to switch between different rings: A gate allowed the transfer of control in a controlled fashion.
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2.2 Privilege Separation

privileged functions from a user application is the system-call mechanism, which is discussed in the
next section.

2.2.2 System Calls

For using a service from the operating system, a user program can perform a system call, as it is
done by many general-purpose operating systems. When performing a system-call instruction, the
mode switches from unprivileged to privileged, and the running process executes the requested
privileged operation [DDC04; TB16].

The operating-system services cannot be executed directly by the application since the services
require to be run in privileged mode. It would be disadvantageous if each potentially untrusted user
application had privileged rights to write to memory or manipulate the other programs, as discussed
in the previous section. Therefore, the system-call mechanism allows an untrusted application to
temporarily gain privileges to execute certain tasks, such as privileged access to hardware, in a
well-defined manner. If a system call is requested by a predefined mechanism, e. g. by using an
instruction that causes a trap, the entry point for this mechanism in the kernel is exactly known.
The kernel then can react to the system-call request and perform checks on the passed information.
It is important to note that only predefined kernel functions can be requested and executed with
a system call. Therefore, the kernel can restrict the impact of the user-space applications to the
operating-system kernel and other applications to the predefined functionalities.

User space Kernel space

App Wrapper Handler Service

(2)

function request

(1)

return result (6)

system call (3)

system call return (5)

function request

(4)

return result

Figure 2.5 – Simplified execution of a system call [Bag+18].
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Often an application uses a wrapper to simplify the execution of system calls, which is visualized
in Figure 2.5 and described in the following:

1. In the first step, the program prepares its parameters for passing them to the kernel and stores
them e. g. in specific registers or on the stack. Not all parameters have to be copied to the
intended location, but can be passed as pointers to an area. This can reduce the overhead of
calling a system call because fewer variables have to be copied.

2. A wrapper function then takes care of requesting a specific kernel service. Most systems
nowadays use a system-call number to identify each function, so the wrapper has to take care
of selecting the corresponding system-call number to the requested function. This number
has to be the same in user space and kernel space, otherwise the kernel will try to execute
a wrong function and return an arbitrary result to the user or even damage the operating
system with the execution of the function.

3. For executing a kernel service, the mode has to be changed to kernel mode. Therefore, a
special instruction is used to switch from user to kernel mode. Each architecture has its
own mechanisms. Commonly used methods are software interrupts, some architectures also
implement special instructions, such as the fast system-call instructions syscall or sysenter
for x86. When changing to kernel mode, a context switch is performed. A context contains all
information necessary for pausing the current program flow and continuing from there later
on. For system calls, the user space control flow is paused and the execution starts in kernel
space. When finished, the control flow in kernel mode is terminated and the previously paused
control flow in user mode is resumed. To be able to return to user mode, the current state,
e. g. registers, has to be saved to memory before the system-call handler routine is started so
that they can be restored from there afterwards.

4. After the execution of the system-call instruction, control is transferred to the operating system.
The software interrupt or system-call handler is triggered and prepares architecture-specific
steps to launch the system-call handling routine. It starts the execution of the system-call
handling routine, can perform checks on the given parameters, and selects the corresponding
function to the passed system-call number. This can happen in various ways. A common
method is the use of a system-call table, which maps a system-call number to the corresponding
function. The requested service is then executed in kernel mode.

5. The task of the operating system after the execution is to return the result of the requested
service to the user. Similar to passing parameters and system-call number to the kernel,
the return value can be passed in a predefined place, e. g. on the stack or in a register. The
operating system then switches back from kernel mode to user space by using the corresponding
instructions to the ones that entered the kernel before (e. g. iret, sysret or sysexit for
x86_64, rett for SPARC v8).

6. Back in user space, the wrapper takes care of passing the return value to the application that
requested the service. For the application itself, it seems like a regular function was called
instead of a system call.
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2.2 Privilege Separation

2.3 OCTOPOS and its Supported Hardware Architectures

The system-call mechanism is implemented for OCTOPOS, the operating system for Invasive Comput-
ing. OCTOPOS is a library operating system, which means that operating system services are provided
as libraries and linked together with the application to form the executable. Three architectures are
currently supported by OCTOPOS and are described throughout this section.

A hardware abstraction layer (HAL) on top of the hardware-architecture specific parts provides
an interface for higher operating-system layers. This minimizes the overhead of maintaining imple-
mentations for multiple operating systems for the different execution environments. For hardware
architectures that do not support a specific feature, an emulated device can be implemented. The
advantage of such a layer is that the rest of the software stack and the user applications can be
tested without the requirement of having expensive specialized hardware available, but by running
an emulated operating system in a familiar environment. Since InvasIC is researching a new hard-
ware design in addition to the operating system development and other subprojects, the different
architectures can be used to find out if there is a hardware or a software stack malfunction, if a
problem occurs [Rab19].

The platforms supported by OCTOPOS are:

• a guest layer as an x86 application on top of a Linux system, discussed in Section 2.3.1,

• a port to x86_64 hardware, discussed in Section 2.3.2, and

• SPARC v8 LEON as the hardware architecture of the prototype for Invasive Computing,
discussed in Section 2.3.310.

2.3.1 Linux Guest Layer

The x86guest layer is a guest layer on top of the syscall API of an x86 Linux system. A compute tile
in an Invasive system is emulated as a UNIX process; each core is emulated as a thread within a
process that represents a tile. Interrupts are emulated by using UNIX signals. UNIX signals are a way
of interprocess communication on a Linux system. They can be seen as a software interrupt sent to
a program to indicate that some event has occurred to which the program should react. Similar to
this example, all hardware concepts are recreated in software on top of the Linux system-call API.

The primary purpose of the x86guest architecture is to provide easy access for new researchers
and developers because all tools can be executed on a standard Linux operating system. New
applications can be built faster while using known debug programs, and features are developed
quickly without the overhead of using dedicated special hardware [Oec18; Rab19].

2.3.2 x86_64

There also exists a port of OCTOPOS, which can be executed on an x86_64 machine based on the
amd64 instruction set, which is already used for research in the field of high-performance computing.
All cores of the same non-uniform memory access (NUMA) domain are grouped and used to form
a tile. The central processing units (CPUs) in a NUMA domain have a single address space, but
memory access to local memory modules is much faster than to remote memory modules [TA14].
This memory can function as TLM.

10Some functionalities are implemented in hardware for SPARC as it is the target architecture. Examples for such hardware
components are Software-Defined Hardware-Managed Queues for efficient inter-tile communication [Rhe+19], i-Cores as
compute cores with an extended, configurable instruction set [Oec18] or the Core-i-let-Controller for hardware-based control
flow management by implementing a scheduler in hardware [Oec18].
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The advantage of the x86_64 port to the x86 guest layer is that it runs on bare-metal hardware
and therefore hardware mechanisms, e. g. privilege separation, can be used. There are also no side
effects from other influences as for x86guest.

2.3.3 Prototype based on SPARC v8 LEON

The hardware prototype architecture is a modified version of SPARC v8 and is currently available as
a hardware implementation running on a field programmable gate array (FPGA) in order to be able
to modify the hardware during ongoing development.

The SPARC instruction set architecture (ISA) is a fully open and simple ISA. This allows adapting
the original SPARC v8 architecture to the needs of Invasive Computing, thus reducing the overhead
required to create a specialized Invasive ISA11. The Invasive hardware port is based on a project of
the European Space Agency (ESA), later of Gaisler Research, called LEON. The LEON project was
started to test and develop high-performance processors based on SPARC v8 processors for European
space projects [AGW10]. The SPARC architecture employs some unique and uncommon features,
which had a significant impact on the implementation of this thesis and will thus be explained in
the following.

The SPARC architecture has several branch instructions that may continue the execution at an-
other memory address. To reduce branch penalty (the costs of preventing instructions from entering
the pipeline until the outcome of the branch instruction and, with this, the next program counter
is known), the architecture uses delayed branches. The instruction after the branch instruction is
placed in a delay slot. It is executed after the branch instruction and before the next instruction
from the new memory address is executed [BH92].

Since registers are preferred for storing, reading and calculating values, SPARC tries to minimize
the overhead of clearing the register set by storing them to memory and instead provides a new set
of registers for each subroutine. SPARC arranges these registers uncommonly in a register wheel.
The SPARC v8 register wheel provides several of these sets of registers, so each subroutine can use
its own set of registers by switching to the next free set of registers.

For each routine, there are 32 general-purpose registers visible to the program at any time. 24
of these registers are part of the previously-mentioned register set, a register window on the register
wheel, see Figure 2.6. For getting a new set of registers, the register window slides on the register
wheel to the next register window. When the calculations are to be continued on the previous
register set, the register wheel can be turned back to the previous register window. The other eight
registers are global registers (%g0 - %g7) and visible to the program independently of the position
of the register wheel.

The register wheel has a configurable number of register windows, while at any time exactly
one register window is visible to the program. A register window is structured in three sets of
eight registers each: input registers (%i0 - %i7), local registers (%l0 - %l7) and output registers
(%o0 - %o7). At each time, the program can see all these 24 registers of a register window and
use them for its calculations. If there is the need to have more registers available, a program on
x86_64 usually saves the contents to memory and continues on the same register set. In SPARC, the
program can use a new register window and thus a new set of registers. Since advancing to the next

11The SPARC ISA itself is based on the Berkeley RISC-II and is a reduced instruction set computer (RISC) ISA. This means
that the instruction set contains a small number of generic instructions, and aims to fill the instruction pipeline as well as
possible since all instructions take the same amount of memory. In comparison, a complex instruction set computer (CISC)
ISA contains more and more complex instructions, which have a different size depending on the complexity of the instruction.
More complex instructions of a CISC instruction set must be recreated by the compiler or programmer when using a RISC
architecture, which can result in longer code.
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Figure 2.6 – The registers of SPARC v8, arranged on the register wheel [Spa]. Global registers
have been omitted for brevity.
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register window is faster than saving all registers to memory, this is the preferred way of acquiring
more free registers.

The output registers of the current window and the input registers of the next window overlap and
therefore basically are the same registers. In Figure 2.6, the orange and the grey register windows
overlap and share eight registers, the output registers from the orange and the input registers from
the grey register window. The overlapping registers can be used to transfer parameters from the
current to the next window, or to return them via the input registers of the current window to the
output registers of the previous register window. This is convenient for reducing the overhead of
performing a function call. Instead of saving and loading the register contents to and from memory,
the program can lay or already compute the input parameters in the output registers, advance to the
next register window, perform the called subroutine, save the return value in the input registers, and
restore the previous register contents by returning to the previous register window. Since output
and input registers are overlapping and hence only appear once in the whole register set, the total
number of registers on the register wheel can be determined by 2 · 8 · n= 16 · n with n being the
number of register windows.

The current window pointer (CWP), stored in the process status register (PSR), indicates the
active window. For altering the CWP, the save and the restore instructions can be performed:

• When a program wants to call a function, the CWP is set to point to the next window. Assuming
the current window pointer points to the grey register window in Figure 2.6, the program
stores the input parameters for the called function in the output registers of the grey register
window, since these are the input registers of the next window, marked blue, when setting the
CWP to CWP - 1. The instruction for decrementing the CWP to receive a new set of registers,
e. g. for a function call, is the save instruction.

• After a function has finished its calculations, the value can be returned to the caller. Again,
the CWP points to the grey register window in Figure 2.6. For passing the return value, it is
placed in one of the input registers of the grey register window. Then the register wheel is
turned back to the preceding register window, marked orange in Figure 2.6, by setting the
CWP to CWP + 1. Now the return value is in one of the output registers of the orange register
window. The instruction to return to the previous register window by incrementing the CWP
is the restore instruction.

If save is called more often than there are free register sets, the next register window contains
values from a previous stack frame, and with the next save, the previous contents would be
overwritten. If this situation occurs, a window-overflow trap is triggered. The window-overflow
trap expects the operating system to save the contents of the next register window to memory.
When returning to the saved register window, the register contents that were previously stored to
memory are missing. A window-underflow trap occurs, causing the operating system to restore the
old registers. The window invalid mask (WIM) register saves the information about which register
windows are valid and which are not.

To ensure that there is always enough space to store the registers into, one of the out registers,
the %o6 register, is used as the stack pointer (%sp) for the current window. The stack pointer has to
point to an area where the operating system can store the input and the local registers when the
register window overflows. At compile time, memory has to be allocated for these 16 registers in
every stack frame according to [Spa], starting at %sp, if a window overflow occurs. With a save
instruction, the caller’s stack pointer (%sp, stored in %o6) becomes the callee’s frame pointer (%fp,
stored in %i6), and with a restore instruction, the callee’s frame pointer becomes the caller’s stack
pointer. The stack pointer must always contain the correct memory address for storing and reloading
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the register window from memory in the case a window overflow or window underflow occurs [Spa].
To ensure that there is enough space on the stack to save the registers, the save operation also
performs an addition, which is used to set the new stack pointer simultaneously while decrementing
the CWP.
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3A R C H I T E C T U R E

In order to implement system calls and, therefore, the first step towards privilege separation in
OCTOPOS, the application interface has to be separated from the kernel. Where this cut is made is
the topic of Section 3.1. Since OCTOPOS is a library operating system, functionalities that are part of
the operating system and the operating-system kernel itself are provided as libraries. They are linked
with the application to build the final image of user application and kernel that is executed on the
hardware. Therefore, a new library can be employed that contains all system-call-specific functions.
The idea and functionality of this library are presented in Section 3.2. As not all system calls are
implemented for different versions of OCTOPOS, Section 3.3 investigates how the implementation
detects and handles non-implemented system calls.

3.1 Decoupling the User Application Programming Interface
from the OCTOPOS Kernel

The operating-system kernel of OCTOPOS is offered as a library and provides an application pro-
gramming interface (API). Currently, all functions of OCTOPOS are usable by the application, even
those that are not part of the API, because OCTOPOS does not have any separation of user and kernel
space. For creating an executable, the application code is compiled and linked together with the
liboctopos and other libraries that depend on the liboctopos, as seen in the left in Figure 3.1.

This dependency on the operating-system kernel is to be broken and replaced by a new interface
so that the operating system can be developed independently of the application in the future.
Therefore, a new library is implemented which separates the functions for the user application from
the operating-system kernel. This makes it possible that application programs do not need to be
recompiled for new versions of OCTOPOS as long as the application interface stays the same. To
substitute the liboctopos with a new interface, the new library, libsyscall, has to provide a
wrapper for all functions from the OCTOPOS user API. The goal is that linking an application can
happen without resolving symbols from the liboctopos, as presented in the right half of Figure 3.1.

Therefore, the libsyscall has to work independently of the rest of the operating system. The
direct dependency from the user API to the operating system should be replaced with a weaker de-
pendency which identifies each function with a unique identifier. The libsyscall also encapsulates
the system-call functionality to be able to request operating system functions, marked with a dotted
arrow that crosses the separation line in Figure 3.1.
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Figure 3.1 – Linking a source file against the operating-system library. On the left-hand side, the
state of OCTOPOS before the system-call implementation, on the right side after the system-call
implementation with the system-call library.

Each function from the user API shall be implemented with a wrapper function that uses a
system call to request the original function from the operating system. So the user application
notices no direct difference, as the libsyscall forwards the requests to the previous interface in
the liboctopos.

With this, the liboctopos can be built independently of the application and system-call library,
and the application can only use the functions defined in the libsyscall. The system-call library
sends all kernel service requests to the liboctopos where the requests are processed.

3.2 System Call Library

The C interface in OCTOPOS contains all functions that an application programmer is allowed to use,
but not more than that, and is therefore suited perfectly as the basis for the new library. As shown
in Figure 3.2, it depends on and uses the deeper layers of OCTOPOS, which are not meant to be
used by the user, e. g. a user application should not have direct privileged access to the underlying
hardware or modify operating-system data structures.

To identify the same function in the kernel and the system-call library, each function that is part
of the system-call library is assigned a unique system-call number. As a user application only needs
the functions from the C interface, the system-call library only contains these functions as a subset
of all operating-system functions. Therefore, the system-call library can be seen as a layer on top of
the C interface, but with an additional barrier, the privilege separation, between them.

For requesting the execution of a kernel service, the system-call library has different tasks to
fulfill, which are visualized in Figure 3.3.

1. When the library receives a new system-call request, it prepares the parameters for the transfer
to the kernel.

2. It takes care of calling the system-call instruction with the selected number and parameters
for triggering the internal handling function in the kernel.

18



3.2 System Call Library

system-call library

C interface

hardware

deeper layers
of OctoPOS

privilege separation

kernel
userinfect invade retreat

sys_infect sys_invade sys_retreat

os::res os::proc os::syscall

hw::hal hw::dev

Figure 3.2 – Layers of OCTOPOS. On top of the hardware architecture, specific implementations
are built to provide a uniform interface for the upper layers. Above that, operating system
internal structures and functions are implemented, from which a small portion is usable for
the user application programmer. An additional layer, separated by the privilege separation
mechanism, is built on top as part of the system-call library.

In the operating-system kernel, the request has to be processed:

3. The program flow continues at a predefined entry point for the system-call handling routine.

4. The system-call handler function in the kernel can perform additional checks on the requested
function to provide more fine-granular access.

5. Then, the kernel handling function uses the system-call number to select and execute the right
service.

6. When execution is finished, it returns the result to the system-call library.

The system-call library receives the result of the system call and returns it to the caller.
When the system-call library requests a kernel function, a privilege-level change from the un-

privileged application to the privileged operating system has to be made, as well as back from the
operating system to the user. Also, the system-call wrapper and handler depend on the underlying
hardware configuration. The hardware-architecture-specific details for this are presented in Chap-
ter 4. In the current implementation, it is also possible to use the functions from the system-call
library to directly call the kernel handling function with the system-call number and the parameters.
All functions from the user API are still encapsulated in a separate library, but the privilege change
is omitted. It can be used for testing the system-call library implementation or for executing an
application without the system-call overhead.
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Figure 3.3 – Executing a system-call function from the system-call library.

3.3 Handling of Unsupported System Calls

OCTOPOS can be configured to enable and/or support different hardware or operating system
features. Possible configuration options are whether the system should have an I/O tile, should
emulate hardware devices, or which libraries should be built. As the C interface also depends on
these configuration options, not all functions in the C interface are always present in a configured
system, because only the selected files are built and all other files are ignored during the build
process.

The system-call implementation for OCTOPOS uses a system-call table for linking a number with
the corresponding function, which provides a mechanism to mark functions as invalid. The system-
call handler can then check whether a function for a system-call number is part of a specific build or
not by checking whether the function is marked invalid or not. OCTOPOS marks all functions invalid
in the beginning. If a function is registered to the system-call subsystem of the operating system, the
invalid marking is overwritten and a valid function pointer is registered for the corresponding system-
call number. This concept of registering and invalidating function pointers to the operating system
makes the current system-call implementation dynamically configurable, as one can reconfigure
the system-call-table entries during run time. The implementation of the mechanism to register a
function in the system-call table is discussed in Section 4.1.1.
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4I M P L E M E N TAT I O N

In the previous chapter, the separation of the system into user and kernel mode has been defined. It
also explained how the existing library operating system could be extended with a new system-call
library to support that separation.

Some parts of the implementation can be built without depending on the underlying hardware.
Section 4.1 discusses these architecture-independent functionalities implemented for the OCTOPOS
system-call handling. As each architecture has its own methods for invoking a system call and
receiving return values of system calls, Section 4.2 presents the hardware-specific implementation
details for all three supported architectures.

4.1 Architecture-Independent Handling

For the system-call implementation, a system-call library requests the execution of an operating
system internal function, while the operating system has a mechanism to receive these requests
and process them. Some required features can be implemented independently of the underlying
hardware architectures. To know which function is requested, a system-call table is set up, which is
described in Section 4.1.1. The process of calling a function using a given system-call number is
explained in Section 4.1.2.

4.1.1 Setup of the System-Call Table for OCTOPOS

As discussed in Section 3.3, the functionality and range of functions in OCTOPOS are determined by
a build-time configuration, for example the support of different hardware components or operating-
system features. To know which function is requested, a unique system-call number identifies
each function. This information is collected in a system-call table, where the functions and the
corresponding system-call numbers are registered.

By default, all functions in the system-call table are marked as invalid, as mentioned in Section 3.3.
During the build process for the chosen configuration of OCTOPOS, for each system-call function
in the processed source files of the operating system the function pointer and the corresponding
system-call number are added to a linker table12, marked blue in Figure 4.1. This ensures that only
the functions that are part of the final system are added to the linker table since only these files are
processed in the build process. In the example in Figure 4.1, the eth_open function is not part of
the current build and therefore not registered to the linker table.

12A linker table is a mechanism for collecting metadata in a special section which later on can be iterated to extract the
required information.
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(1)
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function
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Figure 4.1 – Registering functions to the linker table, from where they are exported to the
system-call table during system bootup. Only the processed source files can add their functions
to the linker table. As the eth_open function is not part of this build and therefore not processed
during the build process, it is not registered in the linker table. The get_cpu_id and the invade
functions are built in the final system, so their files are processed during the build process and
added to the linker table (1). When traversing the linker table during bootup (2), the invalid
marks in the system-call table are overwritten to point to the corresponding functions.

What remains is the initialization of the system-call table. It is initialized once at every system
start. At bootup, the linker table is iterated and, for each entry in the linker table, the function
pointer and its system-call number are registered in the system-call table. For all functions that are
not in the linker table, the system-call table entry stays invalid. To simplify the process of adding
a function to the system-call table, a preprocessor macro that adds a system-call function and its
system-call number to a linker table is added at the end of each system-call function in the source
files.

To guarantee that each number is unique, the numbers for all system calls are defined as an
enumeration. That simplifies the way to add a new and unique system-call number for new system
calls. By extending the list in an ascending fashion, one can provide backwards compatibility. By
adding an element that indicates the end of the system-call-numbers range, checks whether a number
is within range of valid system-call numbers can be implemented easily. This enumeration is shared
between the operating system internal structures and the system-call library, thus guaranteeing no
version mismatch.

To build an abstraction layer on top of the system-call table, all system-call functions registered
to the kernel have the same function type. As the functions in the C interface of OCTOPOS have at
most six parameters, system calls are limited to six arguments.

For transferring the data of a system call to the kernel and back to the application, the implemen-
tation uses registers as fast memory. For this, the arguments and return values in the system-call
interface require a datatype which matches the size of a register. A data type that fulfills this
requirement is a uintptr_t. A uintptr_t is an unsigned integer type that is capable of storing a
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data pointer [ISOb; ISOa]. For the architectures supported by OCTOPOS this is equal to the width
of a register, as data pointers are stored in registers.

So if a function is registered to the system-call table, it is cast to a function that returns an
uintptr_t and receives six uintptr_t as parameters, since the uintptr_t data type serves as a
placeholder for all different data types. In praxis, there are some functions in the C API of OCTOPOS,
which pass parameter values that do not fit into the uintptr_t data type. The system-call library
wrapper function then has to pass a pointer to user-space memory to the system-call function, which
has to be modified to dereference the given pointer before executing the system-call function, e. g.
by writing another wrapper for this system-call function.

4.1.2 System-Call Execution

When a system-call function request reaches the kernel handler, it has to find the correct function
pointer to a system-call number, execute it and return the result to the caller. The procedure
of selecting the correct function pointer and executing the function with the given parameters is
provided by the function_dispatcher function, shown in Listing 4.1. It takes a system-call number
and six uintptr_t parameters, which, as mentioned in the last section, functions as a placeholder
for all possible data types. It checks whether the system-call number is in the range of possible
values (line 5), and if so, selects the corresponding function from the system-call table (line 9).
Then it checks whether the registered function is part of the current build and marked valid in the
system-call table (line 10). If it is a valid function, it is called with the given parameters (line 15).
Otherwise, the current application will be terminated13. All six parameters are given to the functions
in the positions defined by the corresponding application binary interface (ABI) for the underlying
hardware platform. The final function will only use the parameters it needs to perform its task and
that were originally given to the system-call wrapper function in the system-call library.

The return value of the called function is returned to the function_dispatcher (line 15) and
given back to the caller. If the called function is a function that does not return anything, the return
value will be ignored by the wrapper in the system-call library.

1 uintptr_t function_dispatcher(syscall_id_t sys_id ,
2 uintptr_t p1, uintptr_t p2, uintptr_t p3,
3 uintptr_t p4, uintptr_t p5, uintptr_t p6) {
4
5 if (SyscallTable :: isValid(sys_id) == false) {
6 panic("function_dispatcher: sys_id 0x%" PRIxPTR " is no valid id\n",
7 sys_id);
8 }
9 sys_function func = SyscallTable :: getFunction(sys_id);

10 if (func == INVALID) {
11 panic("function_dispatcher: function to sys_id"
12 " 0x%" PRIxPTR " is no valid function\n", sys_id);
13 }
14
15 return func(p1, p2, p3, p4, p5, p6);
16 }

Listing 4.1 – The function_dispatcher function takes care of requesting the correct function
from the system-call table as well as executing it and returning the result.

13As OCTOPOS currently only runs exactly one application for each startup, terminating the operating system has the
same effect.
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4.2 Architecture Specific Handling

As already explained in Section 2.2.2, there are several steps to executing a system call. Most of
these steps require special hardware instructions, e. g. for changing the privilege level, or depend
on the hardware in terms of stack use or available registers. For each architecture, the following
steps are discussed:

1. the mechanism, how the system-call library can request a system call,

2. the parameter transfer to the system-call handling function in the OCTOPOS kernel, and

3. the return value transfer.

A common variant for switching to privileged mode in the context of a system call is to use
interrupt instructions to trigger interrupt handling in the operating system. A specific interrupt
number is used for handling system calls, and that number is known to the user and the kernel.

The main benefit of using an interrupt instruction for requesting a system call is that a generic
interrupt-handling routine is usually already implemented and well tested and can be used for
system-call handling with small modifications. The disadvantage is the overhead of the interrupt
handling function in the operating system. Because the interrupt mechanism is a generic approach
for all types of interrupts, the interrupt handling involves saving the entire context for each request.
Therefore, the handling routine saves the previous register contents and status information of the
running application to memory before handling the interrupt. The registers are saved, as a program
could be interrupted, which saved values in the registers. For restarting this program after the
handling routine has finished, the register contents need to be the same as before, otherwise, the
program will continue with arbitrary values written into the registers. Saving all registers adds an
overhead to the execution time and is necessary for some interrupts, but not for mode switching
as it is needed here. This is why modern operating systems preferably use alternatives to software
interrupts for requesting the execution of a system-call function. These will be discussed if there are
any for a specific hardware architecture.

4.2.1 Linux Guest Layer

In Section 2.3.1, the guest layer on top of a Linux system, called x86guest, was introduced. A
tile is emulated as a process, and each core on a tile is emulated as a thread within the process.
All interrupts are emulated with UNIX signals. The following sections discuss how a system call
can be requested and executed on the guest platform in the Linux user space, following the steps
introduced above.

4.2.1.1 System Call Mechanism

As mentioned at the beginning of this section, an interrupt instruction can be used to switch from
user mode to kernel mode. On x86guest, a software interrupt is emulated by signals. Therefore,
a signal is used to send a system call. As each signal has its own handling function, a system-call
signal with its own signal number and signal handler is established.

The signal numbering in Linux depends on the hardware architecture. For x86, all signal numbers
between 1 and 31 are occupied by signals with a specific meaning, e. g. SIGKILL, which has number
9 is the signal to kill a process, and SIGSEGV, which has number 11 signals invalid memory access.
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Apart from SIGUSR1 and SIGUSR2, the Linux kernel implements real-time signals for application-
defined purposes, starting with version 2.214 [Manb]. For our application, an unused real-time
signal number is chosen.

4.2.1.2 Parameter Transfer

To execute a system-call function in privileged mode, the system-call parameters as well as the
system-call number are required. Therefore, the system-call signal has to send data to the signal
handler.

Sending signals with data to a thread can be implemented in Linux using the rt_tgsigqueueinfo
system call, which takes a process id, a thread id, a signal number, and a siginfo_t struct. The
siginfo_t struct, marked blue in Figure 4.2, is sent to the signal handler for the system-call signal
and contains several fields, with one available for transferring data to the signal handler. For passing
parameters, the following entries of the siginfo_t struct are of interest:

• si_signo is the signal number, which is set to the system-call signal number. S_SIGSYS is the
identifier for this number in OCTOPOS.

• si_code is the signal code that indicates why a signal was sent. For this field, SI_QUEUE
is selected, which means that the signal was sent by sigqueue. Since the sigqueue func-
tion is implemented with the rt_sigqueueinfo system call, which is the same function as
rt_tgsigqueueinfo but sends a signal to a process instead of a thread within a process,
SI_QUEUE is used as the signal code for the rt_tgsigqueueinfo system call.

• the si_value struct, marked grey in Figure 4.2, contains an integer and a pointer. The pointer
points to the data structure where the six parameters and the system-call number are saved,
which is marked orange in Figure 4.2. This data structure also contains space for a return
value.

In the OCTOPOS kernel, a signal handler for the S_SIGSYS signal is registered during bootup.
When the system call for rt_tgsigqueueinfo is sent, the signal reaches this signal handler. In the

rt_tgsigqueueinfo( process_id, thread_id, S_SIGSYS, siginfo_t )

siginfo {
si_signo = S_SIGSYS;
si_code = SI_QUEUE;
si_value =

}

si_value {
sival_ptr =

}

syscall_info {
a1 = param1;
a2 = param1;
...
a6 = param1;
sysno = sys_no;

}

Figure 4.2 – Passing parameters to the signal handler in x86guestwith the rt_tgsigqueueinfo
system call. Only the relevant components are shown, the others have been omitted for clarity.

14This version was released in 1999. In 2020 most operating systems use Linux kernel version 4.19 (current Debian stable
release version, Buster) and newer, so a kernel version that supports real-time signals can be assumed. Besides that, other
features in OCTOPOS require a newer kernel version than 2.2, e. g. the already used epoll functionality, which is available
since kernel version 2.5.44 [Mana].
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kernel, each signal handler for x86guest receives the siginfo_t struct, where the system-call signal
handler can extract the system-call number and parameters saved in the data structure pointed to
by the pointer in the si_value union. With this information available, the function_dispatcher
function is called with the correct system-call number and parameters. The signal handler also
unblocks the S_SIGSYS to be able to receive and handle further system calls.

Figure 4.3 shows the process schematically. The function executes the system-call wrapper
function with the system-call number and the parameters, which prepares the siginfo_t struct
by storing these in the syscall_info struct. The system-call wrapper then raises the system-call
signal with rt_tgsigqueueinfo. In the kernel, the system-call handler is executed. It unblocks the
system-call signal and calls the function_dispatcher, which searches the corresponding function
to the system-call number and executes it.

syscall library

kernel

function(param1, param2, ...)

call(NR_function, param1, ...)

raise_sys
(NR_function, param1, ...)

rt_tgsigqueueinfo
(pid, tid, S_SIGSYS, info)

IRQ_SYS::handler

unBlockSignal(S_SIGSYS)
call_func(info)

function_dispatcher
(NR_function, param1, ...)

sys_function(param1, param2, ...)

Figure 4.3 – Calling a function from the syscall library in x86guest.

4.2.1.3 Return Value Transfer

When the requested function has finished executing and the function_dispatcher has returned
the result to the signal handler, this result is saved in the result field of the syscall_info struct.
After the system-call signal handler is finished, the user-space-program flow continues and the return
value can be read from the result field in the syscall_info struct in the wrapper function for the
system-call request.
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4.2.2 x86_64

Next, the implementation of system calls for x86_64 is discussed. The x86_64 architecture provides
at least two mechanisms to switch from user to kernel mode for a system call [Int16]. One of these
is to use the interrupt instruction to trigger a software interrupt, the other is to execute special
instructions for fast system calls. These fast system-call instructions are preferably used in other
operating systems, but are no option for OCTOPOS. The next section elaborates on why this is
currently not possible.

4.2.2.1 Fast System Calls for the x64native Port on OCTOPOS

Fast system calls are special hardware instructions that only save the most important register
contents for returning to the previous context and set the privilege mode to "privileged". These
instructions come in pairs for entering and leaving kernel mode: sysenter and sysexit (Intel
hardware architecture) or syscall and sysret (AMD hardware architecture).

For a 32-bit kernel, sysenter/sysexit are compatible for both Intel and AMD processors,
but syscall/sysret are not. For a 64-bit kernel in long mode15, syscall/sysret is the only
compatible pair [Amd; Int16]. The system-call implementation for the x86_64 port of OCTOPOS has
to use the syscall/sysret instructions since OCTOPOS runs in long mode and OCTOPOS should
stay compatible with Intel and AMD machines, as there are test systems from both brands.

Right now, OCTOPOS runs in ring 0, also known as privileged or kernel mode, exclusively. The
sysret function forces the privilege level to a value of 3. This means that the privilege level changes
to user mode, which is no problem for regular operating systems since these switched into the kernel
mode from user mode respectively ring 3 on x86_64. Right now, OCTOPOS and all applications run
in privileged mode or ring 0. When sysret tries to switch to user mode in ring 3, the control flow
tries to continue executing the code of the application that issued the system call. This is not allowed
since it runs on ring level 3, but the code is only accessible for programs with ring level 0. It is not
possible to prevent sysret from changing the privilege level to user mode. Since OCTOPOS does
not support real privilege separation as of writing this thesis, it is not possible to use the sysret
instruction.

Building fast system calls that work on AMD and Intel is the final goal for system calls in the
x86_64 port, but will not be possible until OCTOPOS supports different hardware supported privilege
levels for kernel and user. Therefore, as fast system calls are no option for the x64native platform
on OCTOPOS, system calls are built with the interrupt instruction, which is discussed in the following
section.

4.2.2.2 System Call Mechanism

An interrupt instruction is used to trigger a software interrupt to switch to the privileged operating-
system kernel. As each interrupt instruction on x86_64 uses an interrupt number to identify the
corresponding handler, a free interrupt number in OCTOPOS is set as the system call interrupt number.
0x30 was selected, as it is the first number after the 16 OCTOPOS specific interrupt numbers.

4.2.2.3 Parameter Transfer

For system-call number and parameter transfer, registers are used. The x86_64 architecture has
enough registers to fulfill the demand of the system-call implementation, which needs seven registers:

15With long mode, also known as 64-bit mode, an operating system can use 64-bit adresses and use 64-bit instruc-
tions [Int16].
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one for the system-call number, and six for parameters. For a normal C function, the first parameters
are usually passed in the registers rdi, rsi, rdx, rcx, r8 and r9, according to the calling convention
presented in the System V ABI [Sys].

This convention is modified for executing a system call in OCTOPOS. The rcx register would be
used when the syscall instruction for a fast system call is executed16. As this remains the final goal
for OCTOPOS despite not being possible right now, the rcx register is swapped with the rax register.
The seventh register is the r10 register. So the seven registers used for the system-call parameter
passing are rdi, rsi, rdx, rax, r8, r9 and r10.

Executing the int 0x30 instruction transfers the control flow after storing the registers onto the
stack to the c_irq_wrapper function, as for most of the current interrupt handlers in OCTOPOS.
For executing the function_dispatcher to request the execution of the system-call function, the
parameters for this function can be accessed via the registers stored onto the stack.

A graphical illustration of the different steps described above is shown in Figure 4.4. The function
calls the call function, which is the system-call wrapper, with the corresponding system-call number
to the requested function and all parameters. The system-call wrapper in the system-call library
then prepares the parameters by loading them into registers and executes an interrupt instruction
to switch to kernel mode. The interrupt handler then extracts the parameters from the registers and
starts the function_dispatcher function. The requested function is selected with the system-call
number and is executed.

syscall library

kernel

function(param1, param2, ...)

call(NR_function, param1, ...)

mov NR_function, %r10; ...
int 0x30

irq_handler 0x30

c_irq_wrapper(irqcontext, 0x30)

function_dispatcher
(NR_function, param1, ...)

sys_function(param1, param2, ...)

Figure 4.4 – Calling a function from the system-call library in x64native.

4.2.2.4 Return Value Transfer

After the function_dispatcher has returned the result, it is saved at the position on the stack
that will restore the rax register. Since the interrupt-handler function restores the context that was
active before the interrupt instruction was executed from the stack, the modified rax value is copied
instead of the original rax register content. The wrapper in user space returns the return value
stored in the rax register to the application.

16The syscall instruction saves the address of the instruction following the syscall instruction into rcx and the rflags
into r11 [Int16]. The OCTOPOS routine makes sure not to use these for parameter passing to simplify the rewrite for a fast
system-call implementation.
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4.2.3 Prototype based on SPARC v8 LEON

The architecture of the hardware prototype is SPARC v8 LEON. For entering the kernel from user
mode, a trap instruction has to be executed. Section 4.2.3.1 inspects the trap instruction in detail.
Section 4.2.3.2 describes the parameter passing procedure for SPARC v8 LEON, followed by the
system-call handling in OCTOPOS. In the end, Section 4.2.3.3 explains how the return value reaches
the system-call wrapper function that requested the system-call execution.

4.2.3.1 System Call Mechanism

A trap in SPARC v8 can be triggered by either hardware or software. The first 128 traps are reserved
for hardware traps, the other 128 traps for software traps generated by software trap instructions.
With a trap, the control is transferred to the corresponding trap handler, which is defined in a trap
table. The entry number for software traps is specified relative to the beginning of the software trap
handlers. When a software trap occurs, the entry number for the trap table is therefore calculated by
adding the start address of the software-trap handlers in the trap table to the provided trap number.

The instruction to unconditionally trigger a software trap is the ta instruction17. It is used to
trigger a system call and, when executed, causes a precise software trap to occur18. All other traps
are disabled, the previous supervisor mode is saved, and the supervisor mode is set to privileged.
Then, the current window pointer (CWP) is decremented, so the CPU advances to the next register
window. The instruction that caused the trap and the next instruction after that are saved into the
local registers of the new window, and the program counters are set to the instructions in the trap
table.

4.2.3.2 Parameter Transfer

With the ta instruction, data has to be passed to the kernel so the system-call function can be
executed. As the register windows overlap, function-call parameter passing is done via the output
registers of the caller, which are the input registers of the callee. The same can be used for system calls:
The overlapping output/input registers pass the parameters for the system call to the system-call
handling routine in privileged mode.

A closer look at the usage of the SPARC v8 register set is depicted in Figure 4.5. The first six
registers of the input and output registers are used for passing parameters. The first register returns
or receives the result of the called function. The other two registers have a special purpose, the %o6
is used as the stack pointer, while the %i6 is the previous stack pointer or the frame pointer. The
last register, %o7, is also used: the call instruction writes the program counter (PC) into the %o7
register so that it points to the address of the call instruction itself [Spa]. This is important for the
ret and retl instructions, which return from a subroutine, e. g. a function call.

A system call needs to pass seven registers, one for the system call number and six for the
parameters, but there are only six registers available for this purpose. Therefore the seventh
parameter is passed on the stack. On the stack, other variables are stored besides function parameters.
For example, there has to be space for the input and local registers, starting from %sp, as explained
in Section 2.3.3, so that the operating system can store the input and the local registers to memory

17The more general instruction for causing a trap on SPARC is the Ticc instruction. The icc stands for integer condition
code and only executes the trap instruction if the integer condition code is fulfilled. For the ta instruction, the integer
condition code is set to 1, which means that the trap instruction is always executed. As this behaviour is wanted for requesting
a system call, this version of the Ticc instruction is used.

18Precise because the occurrence happens due to the execution of the trap instruction and it can be precisely determined
that the trap will happen when that code is executed, and software because no hardware component triggered the trap, but
the software instruction ta.
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Figure 4.5 – SPARC v8 register window with a detailed description of the register contents [Spa].
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in case of a window overflow. The place where the parameters past the sixth one are stored starts at
%sp+92, so the seventh parameter is stored at %sp+92. If there is an eighth parameter, it would be
at %sp+96 and so on.

If a function with seven parameters is called and the control flow advances to the next register
window with the ta instruction, the previous stack pointer is now the frame pointer, stored in
the %i6 register. This means that the seventh parameter is now located at %fp+92. Therefore, all
seven parameters required for a system call, the system call number and the six parameters for the
system-call function, can be accessed from the next register window.

For the system-call trap, the software trap 0x10 is chosen. If ta 0x10 is executed, the control
flow continues at the trap handler instructions for this trap number. The handling routine first saves
the process status register (PSR) in a register, since it contains important information about the
previous supervisor state, the processor interrupt level (PIL) and other processor status information.
When the trap routine finishes, the old state has to be restored, and saving the PSR before simplifies
that process.

Since traps are disabled before the CWP advances to the next window in the ta instruction, a
window-overflow trap, that would have occurred if traps were enabled, can not occur and can not
be handled. Therefore, the routine begins with checking manually for a window overflow, and, if
one would have occurred, takes care of handling it if necessary.

The parameters are now, after the ta instruction advanced to the next register window for the
_syscall_handler in Figure 4.6, located at %i0 to %i5 and %fp+92. As for the other architectures, the
function_dispatcher takes care of selecting the right function from the given system-call number.
The handler function has to ensure that the parameters for the function_dispatcher are found
in the expected positions19. The first six are in the output registers of the caller’s register window
and the seventh one on the stack. All input parameters are copied from the input to the output
positions20. The copying process is visualized by the red arrows in Figure 4.6.

Before continuing with the function_dispatcher, traps are enabled, so that all further func-
tions can trap again, e. g. if a window overflow or underflow trap must be handled. If the
function_dispatcher is called, the first six parameters are, as the callee expects it, saved in
the input registers and the seventh parameter on the stack at %fp+92. The function_dispatcher,
which uses the active register window marked blue in Figure 4.6, can now continue as a normal
function, which takes seven parameters.

The control flow of all the different functions that work together until the requested privileged
service is executed is shown in Figure 4.7. First, the function wrapper executes the call function,
which is the wrapper that prepares the parameters in the correct registers and traps in the kernel by
executing the ta instruction. Then, the trap table branches to the system-call trap handler, copies
the parameters from the input to the output registers and calls the function_dispatcher. Now
the requested function is determined with the system-call number and then executed.

19This would also apply for the other architectures, but as the function_dispatcher is called from a C environment for
x86guest and x64native, the compiler takes care of preparing the parameters for the function call.

20All input registers are copied to the output registers, while the stack pointer in the system-call trap handler is set to
%fp-96 to have enough space available to copy the seventh parameter from %fp+92 to %sp+92.
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syscall library

kernel

function(param1, param2, ...)

call(NR_function, param1, ...)

ta 0x10 traptable: software trap 0x10

_syscall_handler

function_dispatcher
(NR_function, param1, ...)

sys_function(param1, param2, ...)

Figure 4.7 – Calling a function from the system-call library in SPARC.

4.2.3.3 Return Value Transfer

For returning from the trap handling routine and switching back to the previous control flow, the
trap handler must execute the rett instruction. The rett instruction decrements the CWP, goes
to the target address provided as parameter to the rett instruction, restores the supervisor mode
from the PSR and reenables traps [Spa]. With the decrement, the original window before the ta
instruction is reached again and the normal control flow can continue.

After the function_dispatcher is finished, the return value is written into the %i0 register of
the function_dispatcher window, which is the %o0 register of the system-call trap-handling routine,
marked orange in Figure 4.6. For forwarding the return value to the user-space caller, the registers
of the overlapping register windows are used. The return value is copied from %o0 into %i0 in
the _syscall_handler register window in Figure 4.6. This value will be in the %o0 register of the
function_wrapper register window in Figure 4.6 after the rett instruction is executed to increment
the CWP.

Before executing the rett instruction to return to user space, the previously saved PSR must be
restored. In the system-call function it can happen that a context switch is executed, i. e. if a function
waits for signals before continuing with the original control flow. There, as for all architectures, the
current context is saved to memory and a new context is brought to execution. When this control
flow has finished, the previous context is restored and continued. For a context switch, the contents
of the register wheel are stored on the stack before the new context is loaded21.

If a saved context is restarted, the registers are restored from the stack. The stack pointer is
loaded and the first register set on the stack is saved in the current register window. The remaining
register wheel is not yet restored, but the window invalid mask (WIM) register, which controls
whether a window overflow/underflow trap will happen, is prepared so that the next restore
instruction will cause a window underflow trap. The window underflow trap will load the register
contents from the stack where they were saved to previously.

Due to emptying and filling the register wheel as well as context switch preparing routines, the
current window pointer can point to a different active register window than before. Therefore, the
CWP stored in the saved PSR can mismatch the actual CWP. The system-call handler modifies the

21For this, the register wheel is emptied and all registers are saved to the stack by calling restore until the window
invalid mask (WIM) marks that all valid registers are already saved to memory.
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...
current

psr PIL S PS ET CWP

31 12 11 8 4 0

...saved
psr PIL S PS ET CWP

31 12 11 8 4 0

...final
psr PIL S PS ET CWP

31 12 11 8 4 0

Figure 4.8 – Modifying the PSR for a correct CWP in the system-call trap handling routine, as
the CWP can change during the system-call handling routine as context changes can occur.

saved PSR so that the CWP points to the current active window as the current state, as shown in
Figure 4.8. Although the PSR that was saved previously is altered, setting the CWP to the current
window is part of the state restoring routine. The register contents may reside on a different register
window, but are the same contents as when the PSR was saved. So pointing to the current active
register window when restoring the PSR is necessary to restore the state.

With the restored PSR, traps are disabled again, because the PSR was saved after the ta 0x10
instruction and before the traps were reenabled for the function_dispatcher22. But, with traps
disabled, a potential window underflow trap when the rett instruction increments the CWP would
not be detected and register contents would be overwritten. In order to avoid this, the trap handler
manually checks whether a window underflow trap would occur, and if so, restores the contents of
the register window manually.

The rett instruction returns from the trap handler to the user space caller. Further care has
to be taken when returning from the trap handler. It must, according to [Spa], execute a jmpl
instruction to the next address in unprivileged mode, and in the delay slot of the jmpl instruction,
the rett instruction is executed to change the privilege level back to the previous mode.

For continuing with the instruction after the ta instruction, the jmpl instruction has to jump to
the next program counter (nPC) from when the ta instruction was executed. The PC and the nPC of
the caller were saved in %l1 and %l2 by the ta instruction, so the jmpl can use %l2 as address. The
rett instruction also needs an address to continue at. Therefore, the instruction after the nPC is
used. Since all instructions consist of 4 bytes, the next instruction is %l2+4. The code for returning
from the trap handler is shown in Listing 4.2.

1 jmpl %l2, %g0 ! old nPC
2 rett %l2 + 4 ! old nPC + 4

Listing 4.2 – Returning from a Trap in SPARC, with the goal to continue at the instruction after
the one that caused the trap23 [Spa]. The ! character indicates the beginning of a line comment.

22This is important, because if traps are enabled and the processor is in supervisor mode when the rett instruction
is executed to return from the trap handling routine to the previous program flow, an illegal instruction trap occurs and
terminates the system [Spa].
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5E VA LUAT I O N

This section presents the evaluation of the system-call layer for OCTOPOS. As the system-call
mechanism adds an overhead to each function from the user API, it is expected that the system-call
version of an application takes longer than the original version of OCTOPOS.

First, the evaluation environment and the time measurement methods for all architectures are
discussed in Section 5.1. After that, a set of microbenchmarks is analyzed in Section 5.2, before a
set of benchmarks is evaluated in Section 5.3. A short summary of the results is given in Section 5.4.

5.1 Evaluation Environment

For comparing the new library and the system call implementation with the setup before, every test
set or benchmark is run in three configurations. These will be referred to as:

• vanilla: the state of OCTOPOS before the system call library and system call mechanism
were added to the operating system.

• sys-lib-no: the system call library without the system call functionality. The system call li-
brary wrapper function calls the function_dispatcher function directly, without performing
a privilege change.

• sys-lib-yes: the system call library with the system call mechanism. The system-call-library
wrapper function performs the hardware-specific system-call instructions to change to kernel
mode.

The exact version of each variant is specified in Appendix A.1.
For generating the executables for the x86 emulation and the x86_64 port, the C, C++ and

Fortran compilers from the GNU compiler collection (GCC) 7.4.0 and the linker from the GNU
Binutils, version 2.30, were used. These compilers were available as current releases on an Ubuntu
Linux with version 18.04. For the SPARC v8 executables, the compilers for SPARC from GCC 8.20 and
the linker from the GNU Binutils, version 2.31.1, are used. These are separate builds as the default
compilers of the development system do not support the SPARC architecture. The different compiler
versions do not affect the results because the results are only compared within one architecture. Since
OCTOPOS uses AspectC++24, the ac++ 2.2 and the ag++ 0.9 are used for all three architectures.

Each architecture has its own execution platform, as well as each architecture needs its own
mechanism for measuring the time spent in a test or benchmark. Therefore, tests for each architecture
with a separate execution environment are necessary.

24https://www.aspectc.org/
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5.1 Evaluation Environment

Time measurements have been performed with the stopwatch mechanism, which measures the
time between a start point and an end point as accurately as possible, and the wallclock mechanism,
which returns a timestamp since a certain point in time.

The start time and stop timer functions for the stopwatch as well as the clock function for the
wallclock are part of the user API, and so are part of the system call interface in the system call
library now and use a system call to reach the system call function in the kernel for the sys-lib-yes
version. To minimize the timer overhead, and to not use a system call to measure the time of a
system call, all benchmarks and tests use the kernel-internal functions for time measurements. A
separate implementation exists for each architecture, which is discussed briefly in the following
sections.

5.1.1 Linux Guest Layer

For the guest layer, x86guest, all test cases and benchmarks are executed on a system running
Ubuntu 18.04.4 with Linux kernel version 4.15.0-91 on an Intel® Core™i5-4590 at a clock rate of
3.30 GHz with four cores and 16 GiB of DDR3 random access memory (RAM).

The time measurement for x86guest uses, as it is a guest layer on top of the Linux system call
API, a system call to get a timestamp from the underlying hardware for both stopwatch and wallclock
timer. The corresponding system call is clock_gettime25, which returns the time in seconds and
nanoseconds since 01.01.1970, also known as the UNIX epoch.

There are other applications running on the underlying Linux system, whose influences on the
tests are difficult to be determined and influenced. For getting a rough idea of the runtime behaviour
of the system-call implementation, the implementation for x86guest is also evaluated, even though
the results might not be as meaningful as on the other architectures.

5.1.2 x86_64

For performance evaluation, the benchmarks were executed on a multi-CPU-socket server. It provides
four Intel® Xeon® E7-4830 v3 Haswell processors running at 2.1 GHz, each having twelve physical
cores. The processors also feature simultaneous multithreading, also referred to as hyper-threading,
and have 24 logical cores each. This sums up to a total of 48 physical cores or 96 logical cores. Each
processor has its own NUMA domain with 128 GiB, so the server has 512 GiB RAM in total.

Since the Intel® Pentium processors, most processors support out-of-order execution to optimize
the performance and avoid pipeline stalling [Pao10]. For performance measurements, one has to
ensure that no code is reordered to happen before or after the measurement is started or stopped.
Otherwise, the measurement can be incorrect because it does count too many or fewer instructions.
The stopwatch implementation in OCTOPOS follows the Intel technical report [Pao10] and uses the
proposed arrangement of the rdtsc, cpuid and rdtscp assembler instructions. First, a serializing
instruction, here cpuid, is executed before starting the time measurement with rdtsc to make sure
all previous instructions have finished before continuing. For stopping the measurement, the rdtscp
instruction waits until all instructions have finished before it reads the time stamp [Pao10]. The
wallclock uses the rdtsc assembler instruction to determine the current timestamp, which gives
no guarantees regarding out-of-execution. As the purpose of the wallclock is to return the current
timestamp and not to measure the exact time between two points, this is acceptable.

25The current implementation of the clock_gettime functionality in OCTOPOS does not yet use the faster vDSO variant,
but a system call to request the current time stamp.
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5.1.3 Prototype based on SPARC v8 LEON

The SPARC v8 LEON architecture is implemented on an FPGA and provides up to 16 tiles in a 4x4
design, each one with four compute cores and one system core. All cores run at 50 MHz and have
a tile local memory (TLM) of 8 MiB. For evaluation, a 2x2 design with four tiles and therefore 16
compute cores was used.

For time measurement, a stopwatch timer and a wallclock timer are implemented. The stopwatch
timer reads the cycle counter of the NoC [Hei14]26. The wallclock timer uses the general-purpose
timer implementation [Gri]. It is configured to be updated every microsecond, which limits the
accuracy of the wallclock timer to microseconds27.

5.2 Microbenchmarks

First, a set of microbenchmarks was executed to show the minimal overheads of some system
operations, assuming a warm system state, with respect to caches. Each measurement is executed
100 000 times and the time is stored in an array during execution. Only the last 1000 runs are
measured as the previous iterations are meant to warm up the system. When all tests are finished,
the measurements are bundled and written to the terminal.

For these measurements, the most fine-grained measurement infrastructure per architecture
was chosen, which is provided by the stopwatch implementation. The stopwatch is started with
timer_start and stopped with timer_stop.

5.2.1 Timer Overhead

For time measurement, additional instructions are performed. The overhead of the time measurement
instructions is measured for each architecture by starting and stopping the stopwatch in close
succession and is shown in Table 5.1.

Since measuring time actually takes time itself, these effects were measured and subtracted from
all measurements in this section.

Table 5.1 – Time measurement overhead for all architectures supported by OCTOPOS.

architecture timer overhead
[t] = ticks

x86guest 536± 3
x64native 36± 0
leon 21± 0

5.2.2 System-Call Overhead

For determining the overhead of the system-call mechanism, seven empty system-call functions are
registered in the system-call table. These take between 0 and 6 parameters and all return an integer
value, 42. All figures show the return values with the average value and the standard deviation. It
has to be noted that the standard deviation is often close to zero and barely visible in the plot.

26This value is stored in a double word located at 0x80f02000 [Hei14].
27As the prototype cores run at 50 MHz, an update every microsecond corresponds to 50 MHz · 1µs= 50 ticks.
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Figure 5.1 – Time for 0 to 6 parameters for an empty system call.
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As one can see in Figure 5.1a, the overhead for the system-call procedure on x86guest is very
high, about 3300 ns. This is because each OCTOPOS system call has to send three system calls to
the underlying Linux kernel. The first one is to determine the current thread identifier, the second
one for the current process identifier, while the third one uses the result of the previous two to
send the OCTOPOS system-call signal to the OCTOPOS kernel running on the previously determined
thread in its process. One improvement would be intermediate storage of these values for each
CPU. In comparison to the system-call overhead, the additional time for passing more parameters is
negligible, as Figure 5.1a shows.

The x86_64 port also has a large overhead for executing a system call of around 700 ticks,
which equals 330 ns on the test system, visualized in Figure 5.1b. As one system call is exactly one
interrupt, the overhead is much smaller than for the guest layer implementation. Adding more
parameters does not make a significant difference for the time a system call needs.

As the system-call mechanism in SPARC mainly causes the current window pointer (CWP) to
be decremented without saving a context to memory, a system call does take longer, but far less
than on x86guest or x64native, visualized in Figure 5.1c. Because the system-call library uses
a system-call number and the function_dispatcher to request the execution of a function, no
matter whether the trap instruction is executed or not, an additional register window is used. Also,
the corresponding function pointer to a given system-call number has to be searched to execute
the requested function. This results in the difference between vanilla and the system-call library
without system calls with 46 ticks or 920 ns. The overhead from system-call library without and
with a trap instruction is the additional register window decrementing in combination with the
system-call handler. The system call takes 127 ticks or 2540 ns longer than the direct call of the
function in the vanilla version. The number of parameters transferred has a recognizable effect
on the runtime here. For all three tests adding one parameter took exactly one tick longer. Table 5.2
presents the exact results for all architectures and configurations.

Table 5.2 – Results for the system-call parameter tests for 0 to 6 parameters without the timer
overhead in ticks, presenting the average and the standard deviation.

version 0 param 1 param 2 param 3 param 4 param 5 param 6 param

x8
6g
ue
st

vanilla 0± 3 0± 3 17± 2 16± 1 31± 3 1± 3 16± 1

sys-lib-no 24± 53 9± 3 8± 3 9± 3 9± 3 11± 3 9± 3

sys-lib-yes 3319± 54 3319± 50 3316± 45 3316± 37 3319± 48 3321± 49 3318± 48

x6
4n
at
iv
e vanilla 2± 2 2± 2 3± 2 3± 2 3± 2 4± 0 4± 0

sys-lib-no 9± 2 10± 2 9± 2 10± 2 11± 2 10± 2 10± 2

sys-lib-yes 703± 2 696± 2 702± 2 702± 2 700± 2 700± 2 699± 2

le
on

vanilla 6± 0 7± 0 8± 0 9± 0 10± 0 11± 0 12± 0

sys-lib-no 52± 0 53± 0 54± 0 55± 0 56± 0 57± 0 58± 0

sys-lib-yes 133± 0 134± 0 135± 0 136± 0 137± 0 138± 0 139± 0

5.2.3 Selected Functions

As noted previously, the system call library contains all functions from the OCTOPOS user API, which
has at most 300 individual functions at the time of writing. To benchmark each and every one of
these functions is not feasible. Thus, based on experience, the most frequently used functions are
used to perform time measurements.
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The first functions that were evaluated are three functions, which return a current state of
the execution context. These are the get_cpu_id function, the get_tile_id function and the
get_compute_tile_count function. Furthermore, two functions that initialize variables are ana-
lyzed. As iLets and signals are often used to create new control flows and signal the termination of
these, the simple_ilet_init and the simple_signal_init functions were measured as part of a
small test program, shown in Listing 5.128.

For a typical program flow, the previously mentioned invade, infect and retreat functions
are required. So a small test program, Listing 5.1, was executed to determine the time these
functions take29. It invades one core on the current tile (line 9), and infects this resource with
an iLet (line 20). This iLet is initialized with a control flow that sends a signal back to the main
control flow. A simple_signal_wait (line 22) waits for that signal to return to the main program
flow and then retreats from the allocated claim.

The following sections discuss the results for each architecture. As the figures are similar for
all three architectures, the graphics for two of the architectures, x86guest and x64native, are not
shown in this section, but in Appendix A.2, as leon is the target architecture of OCTOPOS.

1 void signal(void* local_signal) {
2 simple_signal* sig = reinterpret_cast <simple_signal *>( local_signal);
3 simple_signal_signal_and_exit(sig);
4 }
5
6 static void single_tile_func_calls(claim_t newClaim) {
7 claim_t newClaim = claim_construct ();
8
9 int invadus = invade_simple(newClaim , 1);

10 if(-1 == invadus) {
11 printf("invade_simple failed\n"); abort ();
12 }
13
14 simple_signal sync;
15 simple_signal_init (&sync , 1);
16
17 simple_ilet code;
18 simple_ilet_init (&code , signal , &sync);
19
20 infect(newClaim , &code , 1);
21
22 simple_signal_wait (&sync);
23
24 retreat(newClaim , 1);
25 }

Listing 5.1 – A small test program to evaluate often used functions in OCTOPOS.

5.2.3.1 Linux Guest Layer

The simple functions show a similar behaviour to the empty system call stubs. While the vanilla
and the sys-lib-no versions take about the same time, while the sys-lib-yes variant is about

28These functions currently are part of the C interface for OCTOPOS and therefore perform a system call in the current
system-call-library implementation, although it is not necessary.

29The timer_start and timer_stop function calls were omitted for reasons of readability.
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3300 ticks slower. This is the overhead of a system call on x86guest. A similar behaviour is seen
for the typical OCTOPOS functions invade, infect and retreat, visualized in Appendix A.2.1.

5.2.3.2 x86_64

Similar to x86guest, each tested function takes about 700 ticks longer for the system call variant
than the variants without system calls, the time needed for sending and handling one system call.
The graphical representations can be found in Appendix A.2.2.

5.2.3.3 Prototype based on SPARC v8 LEON

Figure 5.2 and Figure 5.3 demonstrate the same behaviour as already seen in Figure 5.1c. The
vanilla is the fastest, while sys-lib-no takes a little bit longer because of the additional function
call, the parameter copying and the jump into the system call table. The sys-lib-yes is the slowest
variant, as the trap instruction and its handling have to be executed in addition to the overhead for
the sys-lib-no variant.
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Figure 5.2 – Time for simple functions on leon. A similar behaviour to the empty system calls
is seen here.
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5.3 Application Benchmarks

For application benchmarks, the NAS Parallel Benchmarks (NPB)30 are used. This test suite is
designed to help evaluate the performance of a parallel supercomputer [Bai+91] and consists of
computational fluid dynamics applications. Each test comes with different classes that identify the
problem size: S for small tests, W for (a 90s) workstation, A-C for standard test problems, and D-F
for large test cases. For this evaluation, the eight original tests, namely IS, EP, CG, MG, FT, BT, SP
and LU, were used. A brief description for each one of the benchmarks is found in Table 5.3. The
NPB are built on top of the message passing interface (MPI), where OCTOPOS has an interface that
uses the user API. For vanilla, this is the C interface, for the other two variants the system-call
interface in the system-call library. For testing the system call library version, the functions in the
MPI library are resolved with the libsyscall instead of the C interface as part of the liboctopos.
The time-measurement functions in the MPI implementation use the wallclock implementation of
OCTOPOS. This measurement method is accurate enough, as each test takes several seconds.

For the guest layer, x86guest, class A with 16 MPI processes is used for the BT, CG, EP, IS,
LU and SP. For FT and MG, class W with 16 MPI processes is used, since class A is too large for
these benchmarks on the test machine. On OCTOPOS for x86_64, class C and class D is used,
following the criteria from [Erh20]. Class D is chosen if the data fits into memory and a single run
is finished in less than 1000 seconds, otherwise class C. Since the LU benchmark crashes due to an
unknown bug [Erh20], the LU benchmark was not be measured for x86_64. For each benchmark,
the maximum amount of MPI processes smaller than the total number of logical cores on the test
server is used. As the constraints for the number of processes differ for the benchmarks, the number
of MPI processes varies. This does not influence the performance measurements, as each benchmark
is compared for three configurations with the same number of MPI processes. On OCTOPOS for
SPARC the benchmarks were executed for class S with 16 MPI processes, the number of computing
cores on the prototype configuration. The FT benchmark for class S, the smallest size available,
requires more memory per tile than available on the prototype. Therefore, this benchmark is not
executed for leon.

Table 5.3 – A brief description of the eight NAS Benchmarks, consisting of five kernels and three
pseudo-applications [Bai+91].

Name Description

IS Parallel Integer Sort, tests both integer computation speed and communication perfor-
mance

EP Embarassingly Parallel kernel, provides an upper achievable limit for floating-point
performance

CG Conjugate Gradient method, computes the smallest eigenvalue of a sparce, symmetric
positive definite matrix

MG Multi-Grid kernel, tests data communication
FT 3-D partial differential equation solution using Fast Fourier Transformations

BT Block Tri-diagonal solver for nonlinear partial differential equations
SP Scalar Penta-diagonal solver for nonlinear partial differential equations
LU Lower-Upper Gauss-Seidel solver for nonlinear partial differential equations

30https://www.nas.nasa.gov/publications/npb.html

42



5.3 Application Benchmarks

Table 5.4 – Problem sizes and number of MPI processes for the NPB on the three supported
architectures of OCTOPOS.

Architecture BT CG EP FT IS LU MG SP

x86guest
class A A A W A A W A

nprocs 16 16 16 16 16 16 16 16

x64native
class C D D C D - D C

nprocs 81 64 96 64 64 - 64 81

leon
class S S S - S S S S

nprocs 16 16 16 - 16 16 16 16

Table 5.4 summarizes the test class and the number of MPI processes for each architecture and
benchmark. Each benchmark is executed 20 times on each architecture. A separate run counts the
amount of system calls for each benchmark and architecture31.

As the benchmark results all show similar results, one time measurement is shown here, while the
figures for all other benchmarks can be found in Appendix A. For demonstration, the CG benchmark
was selected. The time measurements are visualized with a boxplot in Figure 5.4.

Similar to the microbenchmark tests, the vanilla version, as comparison to the new feature,
stays the fastest one for all architectures. On x86guest the difference between vanilla and
sys-lib-no is close to zero, while the sys-lib-yes makes a huge jump in comparison to the
baseline. This is reasonable, as each system call takes over 3000 ns. When adding the number of
system calls multiplied with the overhead of a single system call to the vanilla median32, the time
required by the sys-lib-yes variant is in a reasonable error range of the calculated time result.

The same applies for x64native. The vanilla and sys-lib-no do not differ much, while the
sys-lib-yes variant is slower on average, but not as clear as for x86guest, as each system call
has an overhead of 330 ns. When doing the same calculation as for x86guest33, the result for
sys-lib-yes is near the median shown in Figure 5.4b.

On leon, the difference between vanilla and sys-lib-no is visible, as it was for the mi-
crobenchmarks. The increased distance between sys-lib-no and sys-lib-yes in comparison to
the previous tests happens due to the additional active register window change when calling the
ta 0x10 function. This leads to window overflow and the corresponding window underflow traps
that did not happen for the vanilla or sys-lib-no variant:

• The compute cores for the vanilla variant performed approximately 291 000 window over-
flow and 252 000 window underflow traps.

• For the sys-lib-no variant, 597 500 window overflow and 474 001 window underflow traps
were counted.

• For the sys-lib-yes variant, traps are disabled during system-call trap handling, so a po-
tentional window overflow or window underflow would not be detected. Therefore, the
manual handling routines in the system call handler are also added to the total number of

31The table presenting this data can be found in Appendix A.3.
32The CG benchmark for x86guest performs 1486877 system calls, therefore a time of 1.2s+ 1486877 · 3300ns = 6.1s is

reasonable.
33The theoretical result for the CG benchmark on x64native, which performs 33584381 system calls, is 493s+33584381 ·

330ns = 504.1s
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window overflow and underflow traps. This results in approximately 653 000 window over-
and 529 500 window underflows.

So in addition to the trap handling routine, additional window over- and window underflows have
to be handled for the sys-lib-yes variant, which results in the increased time difference to the
other two variants.

Again, one can calculate the expected time needed for the benchmark with system calls34, which
is near the measured results.
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Figure 5.4 – CG benchmark for OCTOPOS, visualized with boxplots. The range of values on the
y-axis is limited to the relevant part in order to be able to recognize the differences as good as
possible.

5.4 Summary

As the previous sections demonstrated, the system-call mechanism adds an overhead to each function
from the C interface, which is, depending on the architecture, not negligible. The biggest overhead
for all architectures is measured for x86guest. For the other two architectures, which run directly on
the hardware, the system-call version is also slower, but within an acceptable range for the measured
benchmark suite. As the main reason for the x86guest is to provide an easy testing platform in the
Linux user space, the additional expenditure can be tolerated.

The system-call mechanism provides a way to implement privilege separation and therefore
ensures a safer and more secure system. Also, the application and the operating system can be
developed independently, as long as the system-call table stays the same. In the opinion of the
author of this thesis, the advantages of separation outweigh the increased effort of sending and
handling a system call. Furthermore, there are quite some optimization possibilities that remain yet
to be explored. For naming an example, the C interface contains functions that do not need a system
call for executing the desired functionality. Therefore, execution time could be reduced easily by
implementing these in the system-call library.

34The theoretical result for the CG benchmark for leon with 649244 system calls is 14.7s+ 649244 · 2540ns = 16.3s.
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6R E L AT E D W O R K

System calls have been the state-of-the-art concept for over 40 years to request a kernel service from
user mode [SS72; Mul]. As this concept was not part of OCTOPOS, a system-call mechanism as a
first step towards privilege separation was implemented in this thesis. Since the concept is not new
in the world of operating systems, system calls have been a subject of research for operating systems
with the goal of improving their performance.

How the presented system-call mechanism can be extended to be faster than before in current
operating systems is discussed in Section 6.1. Also, there are other mechanisms besides synchronous
system calls to request a kernel service to be executed. A few mechanisms for that are presented in
Section 6.2. To compare the implementation in this thesis to another operating system, Section 6.3
takes a brief look into the system call handling in the Linux kernel.

6.1 Faster System Calls

One of the major issues with system calls is that they significantly impact performance. This has
been shown in the evaluation of this thesis, but is a known problem in the area of operating-system
research. Different approaches try to minimize the system-call overhead [Tri+10] or completely
avoid the execution of system calls as far as possible [Fle17]. This section discusses a few of the
mechanisms and methods that deal with the minimization of the system-call overhead.

For x86_64, special hardware instructions take care of performing the privilege level change
without the overhead of complete and generic context saving and restoring. These instructions
are the pairs of syscall/sysret or sysenter/sysleave. This approach was implemented for
ATROPOS, another research-driven operating system based on OCTOPOS, besides other features,
e. g. dynamically reconfigurable privilege separation [Erh20].

Another approach to reduce the time spent on the privilege change is to make functions that are
used very often available to the user mode directly without the need to cross the user mode/kernel
mode barrier. This is what the legacy vsyscall and the vDSO mechanisms try to achieve [Cor11].
The first one maps a page of kernel memory to user space memory, while the second describes a small
shared library that is mapped into the user space address space of each application automatically.
In both cases, the memory area contains a subset of all system calls. As this memory is mapped
into user space, the user space application can use the contents of these without sending a system
call and without the overhead to cross the border between user and kernel space. This approach is
already used in the Linux kernel, and for x86_64 the vDSO functionality provides the often-used
functions clock_gettime, getcpu, gettimeofday and time since Linux kernel version 2.6 [Manc].
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6.2 Other Mechanisms to Execute a System Call

Although all previous parts of this thesis focused on using a system call to request and perform a
kernel function, this is not the only way to start the execution of a kernel service from user space. In
this thesis, a synchronous system-call mechanism is described and implemented: the system-call
handler waits for the returning of the executed system-call function before returning to user space
itself.

Other implementations of system calls also feature asynchronous system calls, for example the
previously mentioned ATROPOS [Erh20]. If an asynchronous system call is handled in the kernel, it
immediately returns to user space instead of blocking in the kernel. Later, a notification is sent to
the user space to signal the completion of the system call. In ATROPOS, the notification mechanism
is implemented with a shared event queue, where the kernel can put data into the queue, and the
application can read it from the queue.

In [Tri+10] the user and kernel space is split by using dedicated user and kernel CPUs. Under
the assumption that there are enough processing cores, each process is assigned two cores instead of
a single one. One runs the user application, while the other core executes the system-call functions
in kernel mode. With this concept, each of the processors can keep their contexts and do not have
to switch from user to kernel mode and vice versa.

Another different approach to system calls is presented in FlexSC [SS10]. It proposes a mechanism
for requesting kernel services without the need of a synchronous exception by writing system-call
requests in a system-call page, from where a kernel thread can read the tasks and execute them
asynchronously. It is called exception-less system call, as storing arguments in the system-call page
is done with regular store instructions and therefore without an interrupt or a similar concept,
which triggers an exception handler in the kernel. Further improvement to this concept is that the
system-call kernel threads, which take care of the system-call handling in privileged mode, run on a
separate processor. This allows batch handling for system calls and cuts down on the direct and the
indirect costs of system calls [SS10].

A similar approach was presented in [Mai+19]. It introduces the concept of an Asynchronous
Abstract Machine (AAM), which groups tasks together and executes them on a set of computing
resources. These can be dynamically adapted to the current workload. For communication between
different AAMs, an asynchronous, task-based interface is used to trigger predefined tasks on other
AAMs. This is also used for communication across isolation boundaries, e. g. for communication be-
tween an application, composed of one or more AAMs, and the operating system kernel, represented
as at least one AAM.

A new subsystem for reducing the overhead of I/O operations was recently added to the Linux
kernel with an asynchronous, efficient and extendable implementation for I/O instructions without
system calls, called io_uring. User application and operating system kernel share two single
producer and single consumer ring buffers, of which one is for submitting requests, called submission
queue, while the other one contains information about the outcome of the requested I/O, called
completion queue [Cor19; Cor20].
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6.3 System Calls in the Linux Operating System

Finally, the system-call implementation is compared to other widely used operating systems. Now
that some concepts are known about how system calls can be implemented, an insight follows into
how current operating systems implement system calls. One popular open-source operating system
is Linux [TB16].

For a short analysis, the Debian stable release kernel, version 4.19.89 of the Linux kernel as of
this writing, is used [Org; Tor]. As OCTOPOS runs on x86_64 and SPARC v8 hardware, the following
sections inspect the implementations for these two hardware architectures in the Linux kernel.

6.3.1 x86_64

For executing a system call on an x86_64 Linux, the syscall instruction is used. The syscall
instruction enables fast context switching from user to supervisor mode [Int16].

The system-call initialization function sets the instruction pointer that is loaded from the
IA32_LSTAR model-specific register (MSR), as well as other MSRs, so that the syscall instruction
knows the entry point in the kernel. For the OCTOPOS implementation, the entry point was the
interrupt handler for the system-call interrupt number. The system-call handler prepares the param-
eters by pushing all necessary register contents onto the stack. OCTOPOS does the same, but in the
interrupt handling routine.

The requested system-call function is determined by a system-call table. All entries in the
table are first initialized with sys_ni_syscall, a function that returns an error code denoting that
there is no such system call available. The system-call table entries are generated from the file
arch/x86/entry/syscalls/syscall_64.tbl. This file contains, amongst other information, the
system-call number and the entry point of each function. By using preprocessor macros, all entries of
the syscall_64.tbl are extended to a table entry in the system-call table that maps the system-call
number to the function pointer. All system calls that are defined in the syscall_64.tbl are part of
the table, while all other functions result in a not implemented system call error. For mapping all
system-call functions to a system-call number, the SYSCALL_DEFINE macro automatically registers a
function in the kernel and takes care of passing the required parameters saved on the stack before.
This part is done in OCTOPOS with the system-call linker table, which is iterated in the system startup
code. All system-call functions use a preprocessor macro to register their function and system-call
number to that linker table.

When the system-call function is finished, the return value is written into the position of the rax
register on the stack, from where the saved context is restored. This value is written into the rax
register of the processor before returning to user space with the sysret instruction, as this is the
return value register for a function according to the System V ABI [Sys].

6.3.2 SPARC

SPARC has, as mentioned in Section 2.3.3, a trap table that contains the first instructions for each trap
number that are executed after a trap occurred. The important part of the trap table for executing
system calls are the software interrupts, because a user program triggers software traps with the
Ticc instructions.

In arch/sparc/include/uapi/asm/traps.h, the trap numbers are mapped to the correspond-
ing trap functions. Trap number 0x90, that is invoked with the ta 0x10 instruction, is the trap
number for the Linux system call.
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The 0x90th trap-table entry calls the linux_sparc_syscall function that copies the parameters
from the input registers to the output registers. The linux_sparc_syscall function calculates the
entry point of the invoked Linux system call with the help of the system-call table and calls that
function. The system-call table itself is automatically generated, similar to the one for Linux x86_64.

After saving the return value in the input registers that will be the output registers in the user
space function, the rett instruction switches back from kernel to user space and to the wrapper
function that invoked the system call, as it is done in OCTOPOS.
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7C O N C LU S I O N

This thesis describes the implementation of system calls as a first step towards privilege separation
for OCTOPOS. OCTOPOS is supported for three platforms: a guest layer on top of the Linux system
call API, a port for x86_64, and an implementation for a modified SPARC v8, running on an FPGA.

The system-call functionality is implemented for all architectures with a uniform interface. It
is part of a system-call library, which also contains all functions from the user API, that were part
of the kernel before. Each function sends a system call from unprivileged application mode to
privileged kernel mode, where the system-call function is executed and the return value is sent back
to the application running in user mode. The system-call library and the corresponding system-call
interface can be extended easily with new system calls. As long as the system-call numbers stay the
same for each function once added to the interface, backwards compatibility is guaranteed.

The OCTOPOS kernel and the applications for OCTOPOS are now loosely coupled, as the only
shared components are the system-call numbers to identify each system-call function uniquely. So,
all applications can be linked without having access to the kernel code, or even use kernel code,
which is not specified by the system-call functions. This makes the new system more secure than the
previous version of OCTOPOS, where each application was able to use and modify all functions and
data that is available to OCTOPOS.

The disadvantage of the system-call mechanism is an overhead for changing from user to
kernel mode before executing the function. For the bare-metal architectures, the additional cost
of the system-call library is in the single-digit percentage range, except for a few exceptions. This
justifies its practical use. The overhead can be reduced even further with the additionally proposed
improvements.

One goal is to support the privilege separation with special hardware mechanisms, e. g. by
using the requestor privilege level (RPL) on x86_64 or the supervisor bit for SPARC. For speed
improvement, the x86_64 implementation could use fast system-call instructions, which is only
possible when the privilege separation is supported by hardware and the sysret function can return
to code in ring 3. Also, not all functions require privileged access to kernel internal memory or
information about the current system state, which is not accessible from user space. These functions
can be executed without the system-call overhead and shall be implemented in the system-call
library. For functions that are blocking inside the kernel, one can consider to adapt the system-call
mechanism to the Invasive concept and implement it asynchronously. Another step could be to load
the OCTOPOS kernel and the user applications separately. Currently, only the user application that
is built together with the kernel can be executed before OCTOPOS shuts down. OCTOPOS could
receive and load additional user-space binaries over the network and execute them since now all
symbols are resolved with the system-call library during the build process of the application and
one does not need the kernel code to build the final application.
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AA P P E N D I X

Appendix A.1 presents the exact versions of the source code used for evaluating the system call
implementation. As all microbenchmark runs showed similar results for all three architectures, not
all figures were presented in Section 5.2. The remaining visualizations, showing the average result
with an error bar for the standard deviation, can be found in Appendix A.2. Similarly, the NAS
Benchmarks showed a similar behaviour for all benchmarks, so only one was presented in Section 5.3.
The seven other benchmark results, visualized as boxplots, can be found in Appendix A.3, along
with a table with the amount of system calls each benchmark configuration requested and executed.

A.1 Evaluation Environment

The OCTOPOS source code is organized in a git repository. The source code versions for the three
different test environments are listed below:

• vanilla: the git branch baseline with the git commit hash e43bfce6 was used. This is the
commit where the system call library branch diverged from the main development branch.

• sys-lib-no: the git branch hrzd-syscall-lib-eval with the git commit hash ae1d8152
was used for these tests.

• sys-lib-yes: as the system call functionality can be activated with a configuration option,
the same version as for sys-lib-no was used for this variant.
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A.2 Microbenchmarks

This section presents the figures that were omitted in Section 5.2.

A.2.1 Linux Guest Layer

As already mentioned in Section 5.1.1, the time measurements are influenced by the underlying
Linux system, where the tests were executed. Therefore, the standard deviation is higher than for
the microbenchmarks on the other two hardware architectures.
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Figure A.1 – Time for simple functions on x86guest.
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Figure A.2 – Time for infect, invade and retreat on x86guest.
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A.2.2 x86_64

The high standard deviation of the simple_signal_init and the simple_ilet_init functions
for sys-lib-yes is caused by a few extreme outliers. Most of the time measurements are near
the average shown in Figure A.3. Table A.1 lists, how often each time was measured. For
simple_signal_init, over 98% of the values are ≤ 744, for simple_ilet_init over 98% are
≤ 740.
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Figure A.3 – Time for simple functions on x64native.
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Figure A.4 – Time for infect, invade and retreat on x64native.
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Table A.1 – Time measurement for simple_signal_init and simple_ilet_init in more
detail. The timestamp numbers are first the time needed in ticks followed by the number of
occurrences from a total number of 1000 measurements.

function all timestamps, with the amount of how often each one occurred in brackets
[t] = ticks

simple_signal_init 744(985), 1302(8), 1309(2), 740(1), 768(1), 1295(1), 1344(1), 29647(1)

simple_ilet_init 740(500), 736(485), 1295(5), 1288(4), 732(1), 748(1), 840(1), 1281(1), 28864(1), 29486(1)

A.3 Application Benchmarks

As in Figure 5.4, the range of values on the y-axis is limited to the relevant part in order to be able to
recognize the differences as good as possible. All benchmark results are visualized with a boxplot.

Table A.2 – The amount of system calls for the NPB on the three supported architectures of
OCTOPOS.

Architecture BT CG EP FT IS LU MG SP

x86guest 2683091 1486877 9502 78571 197506 24451474 478132 5330606

x64native 21737760 33584381 47951 1856170 1838573 - 1114253 43275185

leon 367503 649244 4308 - 85977 324066 161197 600838
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Figure A.5 – BT benchmark.

As the BT benchmark performs a high amount of system calls, a difference between the vanilla
and the sys-lib-yes variant is clearly visible. For x64native, the measurements for sys-lib-no
are a little bit faster than vanilla, but do not differ significantly.
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Figure A.6 – EP benchmark.

The amount of system calls for the EP benchmark is small in comparison to the other benchmarks.
Therefore, all variants do not differ much from each other, as shown by the small y-axis range.
However, a trend towards a longer runtime with system calls is discernible.
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Figure A.7 – FT benchmark.

For the FT benchmark on x86guest, the same behaviour than for the other benchmarks is visible. The
sys-lib-no variant again seems to be slightly faster for x64native, but does not differ significantly
from the vanilla variant.
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Figure A.8 – IS benchmark.

The IS benchmark shows the different overheads of the system-call mechanism for all architectures.
For x86guest, the relative overhead is very high, while it is in a reasonable and acceptable range
for the other two architectures.
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Figure A.9 – LU benchmark.

Again, the system-call overhead is visible, and much lower for leon than for x86guest.
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Figure A.10 – MG benchmark.

For the MG benchmark, the sys-lib-no variant is the slowest for all architectures. The relative
difference to the vanilla variant is small for x64native and leon, in comparison, the overhead
for sys-lib-no for x86guest is really high as it takes four times as long as vanilla.
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Figure A.11 – SP benchmark.

The SP benchmark also shows the same results as all previous benchmarks. For x86guest, the
system-call variant takes twice as long as the baseline. An overhead for the system-call variant in
comparison to the vanilla variant is also seen for the other two architectures, but is much smaller.
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AAM Asynchronous Abstract Machine

ABI application binary interface

API application programming interface

CISC complex instruction set computer

CPU central processing unit

CWP current window pointer

DFG German Research Foundation

ESA European Space Agency

FPGA field programmable gate array

GCC GNU compiler collection

GPU graphics processing unit

HAL hardware abstraction layer

ISA instruction set architecture

MPI message passing interface

MSR model-specific register

MULTICS Multiplexed Information and Computing Service

NA network adapter

NPB NAS Parallel Benchmarks

nPC next program counter

NoC network on chip

NUMA non-uniform memory access

PC program counter

PIL processor interrupt level
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PSR process status register

RAM random access memory

RISC reduced instruction set computer

RPL requestor privilege level

TLM tile local memory

WIM window invalid mask
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