Introduction to Symbolic AI

A summary for the lecture unfortunately known as "AI I"

florian.guthmann@fau.de

January 20, 2025

1 Mathematical Prolegomena

1.1 Set Theory

Set theory is usually defined in terms of first-order logic, a topic which is covered in more depth in section 4.2.

- The foundational relation between sets is that of membership. We write $x \in A$ if x to express that x is a member of
- A. The empty set containing no elements is denoted as \emptyset . The usual relations and operations are the following:
- **Set equality** Set equality is *extensional*, i.e. two sets are said to be equal iff they contain the same elements.

$$A = B \iff (\forall x. x \in A \iff x \in B)$$

Set Inclusion A set A is called a **subset** of a set B iff all elements of A are also elements of B. We write

$$A \subseteq B \iff (\forall x. x \in A \implies x \in B)$$

A set *A* is called a **proper subset** of a set *B* iff $A \subseteq B$ and $A \neq B$. We write $A \subset B$ or $A \subsetneq B$.

Union

Given two sets A and B we can form a new set, denoted as $A \cup B$, the set that contains all elements of both Aand B. Its elements can be characterised as follows:

$$x \in A \cup B \iff x \in A \text{ or } x \in B$$

Intersection

Given two sets A and B we can form a new set, denoted as $A \cap B$, the set that contains those elements which are members of both A and B. Its elements can be characterised as follows:

$$x \in A \cap B \iff x \in A \text{ and } x \in B$$

Two sets A and B are **disjoint** if their intersection $A \cap B$ is empty.

Difference

Given two sets A and B we can form a new set, denoted as $A \setminus B$ (or sometimes A - B), the set of all elements of A that are not members of B.

- **Set Comprehension** Given a set A and a formula P(x) over x we can form a new set, denoted as $\{x \in A \mid P(x)\}$, the set of all elements $x \in A$ for which P(x) holds.
- **Family of sets** Given a set *I* called the **index set**, if we can associate to any $i \in I$ a set A_i we call $(A_i)_{i \in I}$ a **family** of sets indexed over *I*.
- **Big union/ Big intersection** Given a family $(A_i)_{i \in I}$ we can form a new set, denoted as $\bigcup_{i \in I} A_i$, the set containing all elements of all A_i . Its elements can be characterised as follows:

$$x \in \bigcup_{i \in I} A_i \iff \exists i \in I. \ x \in A$$

Likewise, we can form the set $\bigcap_{i \in I} A_i$ of those elements that are members of all A_i :

$$x \in \bigcap_{i \in I} A_i \iff \forall i \in I. \, x \in A_i$$

Note how the union and intersection of two sets are just special cases of their big counterparts with a two element index set.

Disjoint Union Let $(A_i)_{i \in I}$ be a family of sets. Then

$$\biguplus_{i \in I} A_i \coloneqq \{(i, a) \mid i \in I, a \in A_i\}$$

is their **disjoint union**. For a two-element index set $I := \{0, 1\}$ we write $A_0 \uplus A_1$.

Cartesian Product Given two sets A and B we can form a new set, denoted as $A \times B$, of all pairs of elements of A and B.

 $A \times B \coloneqq \{(x, y) \mid x \in A, y \in B\}$

Power Set Given a set A, the collection of all subsets of A is also a set, denoted as $\mathcal{P}(A)$.

$$\mathcal{P}\left(A\right) \coloneqq \{B \mid B \subseteq A\}$$

One may therefore use $B \subseteq A$ and $B \in \mathcal{P}(A)$ interchangeably.

Kleene star Given a set A of, the kleene star (or free monoid) A^* is the set of "words" using "characters" of A. The empty word is denoted as $\varepsilon \in A^*$.

1.1.1 Relations and Functions

Def. A (binary) relation between two sets A and B is a subset $R \subseteq A \times B$. For $x \in A, y \in B$ one may write x R y instead of $(x, y) \in R$.

Def (Inverse Relation). For any binary relation $R \subseteq A \times A$ there exists the inverse relation

$$R^{-} \coloneqq \{(y, x) \mid (x, y) \in R\}$$

Def. Given two binary relations $R \subseteq A \times B$, $S \subseteq B \times C$, their **composition** $(S \circ R) \subseteq A \times C$ is given by $S \circ R \coloneqq \{(x, z) \mid \exists y \in B. (x, y) \in R \land (y, z) \in S\}$

Def. Given a relation $R \subseteq A \times A$ we define for $n \in \mathbb{N} \setminus \{0\}$: $R^1 := R$

$$R^{n+1} \coloneqq R \circ R^n$$

Def (Function). A relation $f \subseteq A \times B$ is called

left total iff for any $x \in A$ there exists a $y \in B$ with x f y**right unique** iff for any $x \in A$, $y, z \in B$ with x f y and x f z it follows that y = z

A relation that is both left total and right unique is called a **function**. We denote such a relation as $f: A \to B$. For any $x \in A$ there is a uniquely determined element in B, which we denote f(x), such that $(x, f(x)) \in f$.

We denote the **domain** dom $(f) \coloneqq A$ and the **codomain** codom $(f) \coloneqq B$.

Def. Given two functions $f: A \to B$ and $g: B \to C$ their composition $(g \circ f): A \to C^1$ is the function given by $(g \circ f)(x) = g(f(x))$

Def (Image and Preimage). Let $f: A \to B$ be a function and $U \subseteq A$ a subset of A. We call the set

$$f(U) \coloneqq \{f(x) \mid x \in U\}$$

the **image** of U. Now let $W \subset B$ be a subset of B. We call the set

$$f^{-1}(W) \coloneqq \{x \in A \mid f(x) \in W\}$$

the **preimage** of W .

 \mathbf{Def} (Properties of functions). Let $f\colon A\to B$ be a function. We call f

injective iff for any $x, y \in A$ with f(x) = f(y) it follows that x = y (i.e. the preimage $f^{-1}(\{y\})$ contains at most one element for any $y \in B$)

¹Note that some authors use f; g (or even $f \circ g$) to denote the same function, switching the order of f and g from "applicative" (like in $g \circ f$) to "diagrammatic".

surjective iff for any $y \in B$ there exists a $x \in A$ such that **1.1.2** Examples: Algebraic Structures f(x) = y (i.e. f(A) = B)

bijective iff it is both injective and surjective

Def ((Co)Restriction). Let $f: A \to B$ be a function and $U \subseteq A$ a subset of its domain. The restriction $f|_U$ of fto U is the function

$$f|_U \colon U \to B$$
$$u \mapsto f(u)$$

Now let $S \subseteq B$ be a subset of f's codomain such that $f(A) \subseteq S$. Then the **corestriction** $f|^S$ is the function

$$f|^{S} \colon A \to S$$
$$a \mapsto f(a)$$

Def (Partial Function). A relation $f \subseteq A \times B$ that is right unique is called a **partial function** $f: A \rightarrow B$. For $x \in A$, if it exists, the unique $y \in B$ such that $(x, y) \in f$ is denoted as f(x).

Equivalently, a partial function $f: A \rightarrow B$ is a function $f: U \to B$ where $U \subseteq A$. The **domain** is then $\operatorname{dom}(f) \coloneqq U.$

Def (Properties of Relations). Let A be a set and $R \subseteq A \times A$ be a relation. R is called

reflexive iff $x \mathrel{R} x$ for any $x \in A$

- symmetric iff for all $x, y \in A$ with $x \in R$ it follows that y R x
- **transitive** iff for all $x, y, z \in A$ with x R y and y R z it follows that x R z
- **antisymmetric** iff forall $x, y \in A$ with x R y and y R xit follows that x = y

Def. A relation $\sim \subseteq A \times$ that is reflexive, symmetric and transitive is called an **equivalence**.

Def. A relation $\prec \subseteq A \times$ that is reflexive, antisymmetric and transitive is called a **partial order**.

Def (Reflexive Closure). Given a relation $R \subseteq A \times A$, its **reflexive closure** $R \cup id$ is the smallest reflexive relation containing R.

Def (Symmetric Closure). Given a relation $R \subseteq A \times A$, its symmetric closure $R \cup R^-$ is the smallest symmetric relation containing R.

Def (Transitive Closure). Given a relation $R \subseteq A \times A$, its transitive closure R^+ is the smallest transitive relation containing R. It is given by

$$R^{+} \coloneqq R \cup (R \circ R) \cup (R \circ R \circ R) \cup \dots = \bigcup_{n=1}^{\infty} R^{n}$$

Def. A set A is finite with cardinality $|A| \in \mathbb{N}$ if there is a bijection $\rho: A \to \{n \in \mathbb{N} \mid n < |A|\}.$

Ex (Cardinalities).

- $|\varnothing| = 0$
- $|\{foo, bar, baz\}| = 3$

Def. A set A is countable if there is a bijection $\rho: A \to \mathbb{N}$.

Equipping sets with operations and laws for those operations leads to several natural structures. Functions between those "sets with structure" that behave well (i.e. are "structure" preserving") are called **homomorphisms**.²

Def. A magma (M, \otimes) is a set M with a binary operation $\otimes \colon M \times M \to M.$

A magma-homomorphism ρ between two magmas $(M, \otimes), (N, \oplus)$ is a function $\varrho \colon M \to N$ such that for all $a, b \in M$

$$\varrho(a \otimes b) = \varrho(a) \oplus \varrho(b)$$

Def. A monoid (M, \otimes, e) is a magma (M, \otimes) together with a **neutral element** $e \in M$ such that

• $\otimes: M \times M \to M$ is associative:

$$\forall x, y, z \in M. (x \otimes y) \otimes z = x \otimes (y \otimes z)$$

• $e \in M$ is neutral:

 $\forall x \in M. \, x \otimes e = x = e \otimes x$

A monoid homomorphism ρ between two monoids $(M, \otimes, e_M), (N, \oplus, e_N)$ is a magma-homomorphism $\varrho \colon M \to N$ such that

$$\varrho(e_M) = e_N$$

Ex (Monoids).

- A^* : For any set A, the kleene-star A^* forms a monoid with word concatenation and the empty word.
- strings: In most programming languages strings with string concatenation and the empty string form a monoid. This is in fact a special case of the above example³ with $A \coloneqq \operatorname{char}$
- endo-functions For any set A, the set of "endo"-functions $A^A := \{f : A \to A\}$ on A forms a monoid with function composition and the neutral element

$$\operatorname{id}_A \colon A \to A$$
$$a \mapsto a$$

Computability Theory 1.2

2 Rational Agents

Def. An **agent** is an entity that

- perceives (via sensors)
- acts (via actuators)

Def (Agent function). A **percept** is the perceptual input of an agent at some instant.

A **action** is an employment of actuators. Let *a* be an agent that perceives percepts from a set P and can perform actions from a set A. The **agent function** f_a of a is a function $f_a: P^* \to A$

Def. An **agent program** is an algorithm that implements an agent function.

Def. A performance measure is a function evaluating a sequence of environments.

An agent acts **rationally** if its choice of actions maximise the expected value of the performance measure.

Def (PEAS). A **task environment** is given by

- **P**erformance measure
- Environment
- Actuators
- Sensors

³shying away from any unicode shenanigans

²This would quite naturally lead to a discussion of category theory, but that is beyond the scope of this lecture and summary

Environments An environment E of an agent a is called

- fully observable if *a*'s sensors have access to the complete state of *E* (else partially observable).
- **deterministic** if the next state of *E* is completely determined by its current state and *a*'s action (else **stochastic**).
- episodic if *E* can be divided into *atomic* (where *a* perceives and performs a single action) episodes (else sequential).
- **dynamic** if *E* can change without *a* performing an action, **semidynamic** if only the performance measure changes (else **static**)
- **discrete** if the set of states of *E* and the set of actions of *a* are **countable** (else **continuous**)
- **single agent** if only one agent acts on the environment (else **multi-agent**)

2.1 Agent Types

- Simple reflex agent An agent that bases its actions only on the last percept. The agent function reduces to $f_a: P \to A$.
- **Model-based agent** A reflex agent that maintains a world model to determine its actions. The agent function depends on
 - $\bullet\,$ a set S of states
 - a sensor model $\varrho: S \times P \to S$ that determines the next state given the current state and a percept
 - a transition model $\tau \colon S \times A \to S$
 - an action function $f: S \to A$

The agent function is then given by $p \mapsto f(\tau(\varrho(s, p), a))$.

- **Goal-based agent** A model-based agent with a transition model $T: S \to S$ and a set $G \subseteq S$ of goals. Its goal function f selects an action to best reach G.
- Utility-based agent An agent with a world model and a utility function that evaluates states. The agent chooses actions to maximise the expected utility.

Def. A state representation is

- **atomic** if it has no internal structure
- **factored** if each state is characterized by attributes and their values
- **structured** if each state includes representations of objects and their relationships

3 Solving Problems by Searching

Def (Search Problem). A search problem is a tuple (S, A, τ, I, G) where

• S is a set of **states**

- A is a set of **actions**
- $\tau: A \times S \to \mathcal{P}(S)$ is a **transition model** that assigns to an action and a state a set of successor states
- $I \subseteq S$ is a set of **initial states**
- $G \subseteq S$ is a set of **goal states**

A solution to a search problem (S, A, τ, I, G) is a sequence a_1, a_2, \ldots, a_n of actions such that there exists a sequence s_0, s_1, s_n of states where

- $s_0 \in I$
- $\tau(a_i, s_{i-1}) \neq \emptyset$ for all $1 \le i < n(a_i \text{ is applicable to } s_{i-1})$
- $s_i \in \tau(a_i, s_{i-1})$ for all $1 \le i < n$
- $s_n \in G$

Def. Let $\Pi := (S, A, \tau, I, G)$ be a search problem. A **cost function** is a function $c: A \to \mathbb{R}^+$ that assigns a cost to an action. The cost of a solution a_1, a_2, \ldots, a_n is given by

$$\sum_{i=1} c(a_i)$$

Def. A search problem (S, A, τ, I, G) is called **deterministic** if

- there is exactly one initial state, $I = \{s_0\}$
- $\tau(a, s)$ contains at most one successor state

Def. Let $\Pi := (S, A, \tau, I, G)$ be a search problem. A **heuristic** for Π is a function $h: S \to \mathbb{R}^+ \cup \{\infty\}$ so that h(s) = 0 for all $s \in G$.

Def. Let $\Pi := (S, A, \tau, I, G)$ be a search problem. Then the **goal distance function** $h^* \colon S \to \mathbb{R}^+ \cup \{\infty\}$ maps a state *s* to the cost of the cheapest path from from *s* to some goal state.

Def. Let $\Pi \coloneqq (S, A, \tau, I, G)$ be a search problem and $h: S \to \mathbb{R}^+ \cup \{\infty\}$ a heuristic for Π . h is called **admissible** if it always underestimates, i.e.

$$\forall s \in S. h(s) \le h^*(s)$$

3.1 Adversarial Search

3.2 Constraint Satisfaction

Def (Constraint Satisfaction Problem). A constraint satisfaction problem $(V, (D_v)_{v \in V}, C)$ consist of

- a set of **variables** V
- a **domain** D_v for each variable $v \in V$
- a set C of "constraints" (a proposition containing finitely many variables)

Def. Constraints are classified by the number of constraint variables they involve:

- Unary constraints involve a single variable
- **Binary** constraints involve two variables
- **Higher-Order** constraints involve more than two variables

A constraint network is called **binary** iff all of its constraints are binary.

Prop. Any higher-order constraint can be equivalently expressed by a finite set of binary constraints by introducing additional variables.

Def. Given a binary CSP, a constraint network $(V, (D_v)_{v \in V}, C)$ consist of

- a set V of variables
- a domain D_v for each variable $v \in V$
- a set of constraints

$$C \coloneqq \{C_{u,v} \subseteq D_u \times D_v \mid u, v \in V, u \neq v\}$$

Def. Let $\gamma := (V, (D_v)_{v \in V}, C)$ be a constraint network. A variable assignment is a partial function $\varphi \colon V \rightharpoonup \bigcup_{v \in V} D_v$ such that $\varphi(v) \in D_v$ for all $v \in \operatorname{dom}(\varphi)$. If φ is left total, we call it a **total** variable assignment.

Def. Let $\gamma \coloneqq (V, (D_v)_{v \in V}, C)$ be a constraint network and $\varphi \colon V \rightharpoonup \bigcup_{v \in V} D_v$ a variable assignment.

 φ satisifies a constraint $C_{u,v}$ iff $u, v \in \operatorname{dom}(\varphi)$ and $(\varphi(u), \varphi(v)) \in C_{u,v}$

 φ is **consistent** with γ iff it satisfies all constraints in γ .

Def. Let φ, ϱ be variable assignments. φ extends ϱ iff $\operatorname{dom}(\varrho) \subseteq \operatorname{dom}(\varphi)$ and $\varphi|_{\operatorname{dom} \varrho} = \varrho$ (i.e. ϱ agrees with the restriction of φ to ϱ 's domain)

Def. A solution of a constraint-network γ is a consistent (total) variable assignment.

Constraint Propagation 3.2.1

Def. Two constraint networks $\gamma \coloneqq (V, (D_v)_{v \in V}, C)$ and $\gamma' \coloneqq (V, (D'_v)_{v \in V}, C')$ are **equivalent** iff they have the same solutions. We write $\gamma \equiv \gamma'$

- γ' is **tighter** than γ iff
- $D'_v \subseteq D_v$ for all $v \in V$ $C'_{u,v} \notin C$ or $C'_{u,v} \subseteq C_{u,v}$ for all $u, v \in V, u \neq v$ and $C'_{u,v} \in C'$

We write $\gamma' \sqsubseteq \gamma$.

Prop. Let γ, γ' be constraint networks such that $\gamma' \sqsubseteq \gamma$ and $\gamma \equiv \gamma'$. Then γ' has the same solutions, but fewer consistent assignments than γ .

Def (Forward Checking). Let $\gamma := (V, (D_v)_{v \in V}, C)$ be a constraint network, $u \in V$ a variable and φ be a variable assignment for γ such that $u \in \operatorname{dom}(\varphi)$. The process of obtaining an equivalent constraint network

$$\begin{split} \gamma' &\coloneqq (V, (D'_v)_{v \in V}, C) \text{ where } \\ D'_v &= \{ d \in D_v \mid C_{u,v} \in C \implies (\varphi(u), d) \in C_{u,v} \} \end{split}$$
is called forward checking.

Def (Arc Consistency). Let $\gamma \coloneqq (V, (D_v)_{v \in V}, C)$ be a constraint network. A variable $u \in V$ is **arc consistent** relative to $v \in V$ if either $C_{u,v} \notin C$ or for every $d \in D_u$ there exists a $t \in D_v$ such that $(d, t) \in C_{u,v}$. γ is arc consistent if every variable $u \in V$ is arc consistent to every variable $v \in V$.

The process of obtaining an equivalent constraint network $\gamma' \coloneqq (V, (D'_v)_{v \in V}, C)$ where

 $D'_v = \bigcap \{d \in D_v \mid C_{v,u} \in C \implies \exists d' \in D_u. (d, d') \in C_{v,u}\} \text{defined inductively, i.e. via a set } C \text{ of inference rules like}$ $u \in V$

is called **arc consistency**.

4 Logic

4.1 Propositional Logic

The set $P(\mathcal{V})$ of formulae of propositional logic are given by A, B

variable	$= \Lambda$:=
truth	T	
falsity	$ \perp$	
negation	$ \neg A$	
conjunction	$ A \wedge B$	
disjunction	$ A \lor B$	
implication	$ A \implies B$	
equivalence	$A \iff B$	

where $X \in \mathcal{V}$ is in the set of variables \mathcal{V} .

Def. A model $(\mathcal{D}, [-])$ for propositional logic consist of

- a **universe** \mathcal{D} (typically the two-element boolean algebra) • an interpretation function [-] that assigns meaning to
- all connectives • a family of value functions $\llbracket - \rrbracket_{\omega} : \mathrm{P}(\mathcal{V}) \to \mathcal{D}$ where $\varphi \colon \mathcal{V} \to \mathcal{D}$ is a variable assignment.

It is defined recursively using the interpretation function:

$$\begin{split} \llbracket X \rrbracket_{\varphi} &= \varphi(X) \\ \llbracket \neg A \rrbracket_{\varphi} &= \llbracket \neg \rrbracket \left(\llbracket A \rrbracket_{\varphi} \right) \\ \llbracket A \land B \rrbracket_{\varphi} &= \llbracket \land \rrbracket \left(\llbracket A \rrbracket_{\varphi} , \llbracket B \rrbracket_{\varphi} \right) \\ &\vdots \end{split}$$

Two formulae A and B are called **equivalent** iff $\llbracket A \rrbracket_{\varphi} = \llbracket B \rrbracket_{\varphi}$ for all assignments φ .

\wedge	⊥	T	V		Т	\implies	\perp	T
		L	 \perp	\perp	Т	\perp	Т	Т
Т		Т	Т	Т	Т	Т		Т

Def (Entailment). Let φ be a variable assignment, A a propositional formula. We write $\varphi \vDash A$ for $\llbracket A \rrbracket_{\varphi} = \top$.

Now let B be a propositional formula. If it holds that for all φ such that $\varphi \vDash A$ it is also the case that $\varphi \vDash B$, then we write $A \vDash B$.

Def. Let $\mathcal{M} \coloneqq (\mathcal{D}, \llbracket - \rrbracket)$ be a model. A formula A is called

- true under φ if $\llbracket A \rrbracket_{\varphi} = \top$
- false under φ if $\llbracket A \rrbracket_{\varphi} = \bot$
- satisfiable in \mathcal{M} if there exists a φ such that $\llbracket A \rrbracket_{\varphi} = \top$
- **valid** in \mathcal{M} if $\llbracket A \rrbracket_{\varphi} = \top$ for all φ
- falsifiable in \mathcal{M} if there exists a φ such that $\llbracket A \rrbracket_{\varphi} = \bot$
- **unsatisfiable** in \mathcal{M} if $\llbracket A \rrbracket_{\varphi} = \bot$ for all φ

Def (Deduction). A relation $\vdash_C \subseteq \mathcal{P}(\mathcal{P}(\mathcal{V})) \times \mathcal{P}(\mathcal{V})$ is called a derivation relation iff

- $\Gamma \vdash_C A$ if $A \in \Gamma$
- if $\Gamma \vdash_C A$ and $\Gamma' \cup \{A\} \vdash_C B$ then $\Gamma \cup \Gamma' \vdash_C B$
- if $\Gamma \vdash_C A$ and $\Gamma \subseteq \Gamma'$ then $\Gamma' \vdash_C A$

Def. A formula A is called a **theorem** in a calculus C if there exists a **proof** $\vdash_C A$.

Def (Inference Rule). Derivation relations are typically

$$\frac{\Gamma \vdash_C A \quad \Gamma \vdash_C A \implies B}{\Gamma \vdash_C B}$$

An inference rule $\frac{\Gamma \vdash A_1 \dots \Gamma \vdash A_n}{C}$ is called **derivable** in a calculus \vdash_C if there is a derivation $A_1, \dots, A_n \vdash_C C$.

An inference rule is called **admissible** in a calculus Cif its addition does not produce new theorems.

Def. Let \vdash_C be a derivation relation. There are two ways to relate deduction and entailment:

Soundness \vdash_C is sound if whenever $A \vdash_C B$ then $A \models B$. **Completeness** \vdash_C is **complete** if whenever $A \vDash B$ then $A \vdash_C B$

4.1.1 Propositional Natural Deduction

A bracketed formula like [A] indicates that its proof is in **context**. A context is a set of formulae that we currently assume to be true. Taking the introduction rule for implication as an example, we can see that this means that to prove $A \implies B$ we must provide a proof of B, assuming A.

Sequent Style We can make this more explicit by switching to "sequent-style" natural deduction. This introduces the operator \vdash , which takes as its left argument a context and as its right argument a formula. $\Gamma \vdash A$ asserts that A can be proven using only the context Γ . We can change most natural deduction rules that do not involve contexts quite easily, i.e. $\wedge_{\rm I}$ becomes

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \land_{\mathrm{I}}$$

Those rules where we previously used bracketed formulae to indicate contexts are changed as follows:

$$\frac{\Gamma \vdash A \lor B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash C}{C} \lor_{\mathrm{E}}$$

$$\frac{\Gamma, A \vdash B}{A \Longrightarrow B} \Longrightarrow_{\mathrm{I}} \quad \frac{\Gamma, A \vdash C \quad \Gamma, A \vdash \neg C}{\neg A} \neg_{\mathrm{I}}$$
Sequent-style propositional rules of natural deduction

Def (Test calculus). One can exploit the fact that A valid $\iff \neg A$ unsatisfiable

This means that to prove a formula A valid, it suffices to show that $\neg A \vdash_T \bot$.

4.1.2 Propositional Tableau

Def (Tableau). A tree produces by the above inference rules of is called a **tableau**. A tableau is **saturated** if no rule adds new material. A branch is **closed** if it ends in \perp . A tableau is **closed** if all of its branches are.

4.1.3 Resolution

Resolution is a test calculus that operates on formulae in conjunctive normal form.

Unification

$$S \cup \{x \doteq x\} \to S \qquad (\text{delete})$$

$$S \cup \{f(E_1, \dots, E_n) \doteq f(D_1, \dots, D_n)\} \qquad (\text{decomp})$$

$$\to S \cup \{E_1 \doteq D_1, \dots, E_n \doteq D_n\}$$

$$S \cup \{f(E_1, \dots, E_n) \doteq q(D_1, \dots, D_m)\} \to \bot \qquad (\text{conflict})$$

$$S \cup \{f(E_1, \dots, E_n) = g(D_1, \dots, D_m)\} \to \bot$$
 (conflict)
$$S \cup \{E \doteq x\} \to S \cup \{x \doteq E\}$$
 (orient)

 $S \cup \{x \doteq E\} \rightarrow$

$$\begin{cases} \bot & x \in \mathrm{FV}(E), x \neq E \\ S \ [E/x] \cup \{x \doteq E\} & x \notin \mathrm{FV}(E), x \in \mathrm{FV}(S) \end{cases}$$

(occurs/elim)

The calculus then consist of just two rules:

$$\frac{(A)^{\top} \vee C \quad (B)^{\perp} \vee D \quad \sigma = \mathrm{mgu}(A, B)}{\sigma(C) \vee \sigma(D)}$$

$$\frac{A^{\alpha} \vee B^{\alpha} \vee C \quad \sigma = \mathrm{mgu}(A, B)}{\sigma(A) \vee \sigma(C)}$$

4.2 First-Order Logic

Def (Signature). A signature is a tuple Σ^{f} , Σ^{p} , ar where

- Σ^{f} is a set of **function symbols**
- Σ^{p} is a set of **predicate symbols**
- ar: $\Sigma^f \uplus \Sigma^p \to \mathbb{N}$ is a function assigning each symbol an arity

We write Σ_n^f and Σ^p for the sets of *n*-ary function and predicate symbols, respectively.

Def (Terms). Let \mathcal{V} be a set of variables, Σ a signature. The set of **terms** wf_{ι}(\mathcal{V}, Σ) is defined by

• $\mathcal{V} \subseteq \mathrm{wf}_{\iota}(\mathcal{V}, \Sigma)$ • if $f \in \Sigma_n^{\mathrm{f}}$ and $A_1, \dots A_n \in \mathrm{wf}_{\iota}(\mathcal{V}, \Sigma)$ then $f(A_1, \dots, A_n) \in \mathrm{wf}_{\iota}(\mathcal{V}, \Sigma)$

Def (Propositions). Let \mathcal{V} be a set of variables, Σ a signature. The set of **propositions** wf(\mathcal{V}, Σ) is defined by

- if $P \in \Sigma_n^p$ and $A_1, \ldots, A_n \in wf_{\iota}(\mathcal{V}, \Sigma)$ then $P(A_1, \ldots, A_n) \in wf(\mathcal{V}, \Sigma)$
- if $A, B \in wf(\mathcal{V}, \Sigma)$ then $\neg A, A \land B, A \lor B, A \implies B \in wf(\mathcal{V}, \Sigma)$
- $\top, \bot \in wf(\mathcal{V}, \Sigma)$

c ()

• if $v \in \mathcal{V}$ and $A \in wf(\mathcal{V}, \Sigma)$ then $\forall v. A, \exists v. A \in wf(\mathcal{V}, \Sigma)$

Def (Free Variables). Given a formula A, the set free $(A) \subset \mathcal{V}$ of **free** variables of A contains those variables in A that are not **bound** by a quantifier.

<u>ر</u> ر

$$free(v) = \{v\}$$

$$free(f(A_1, \dots, A_n)) = \bigcup_{i=1}^n free(A_i)$$

$$free(P(A_1, \dots, A_n)) = \bigcup_{i=1}^n free(A_i)$$

$$free(\bot) = free(\top) = \varnothing$$

$$free(A \land B) = free(A) \cup free(B)$$
:

$$free(\forall v. A) = free(A) \setminus \{v\}$$

Def (Substitution). A substitution is a function $\sigma: \mathcal{V} \to wf_{\iota}(\mathcal{V})$ with finite support (i.e the set $\{x \mid x \neq \sigma(x)\}$ is finite).

Applying a substition σ to a term/formula is done via recursion over the syntatic structure:

On terms

$$v \ \sigma = \sigma(v) \qquad \text{where } (v \in \mathcal{V})$$
$$f(A_1, \dots, A_n) \ \sigma = f(A_1 \ \sigma, \dots, A_n \ \sigma) \qquad \text{where } (f \in \Sigma_n^{\mathrm{f}}, A_1, \dots, A_n \in \mathrm{wf}_{\iota}(\mathcal{V}))$$

4.2.1 First-Order Natural Deduction

We extend propositional natural deduction with the following rules:

$$\begin{array}{c|c} \displaystyle \frac{\Gamma \vdash A \ [C/X] & C \not\in \operatorname{free}(\Gamma)}{\Gamma \vdash \forall X. A} \ \forall_{\mathrm{I}} & \displaystyle \frac{\Gamma \vdash \forall X. A}{\Gamma \vdash A \ [B/X]} \ \forall_{\mathrm{E}} \\ \\ \displaystyle \frac{\Gamma \vdash A \ [E/X]}{\Gamma \vdash \exists X. A} \ \exists_{\mathrm{I}} & \displaystyle \frac{\Gamma \vdash \exists X. A \quad \Gamma, (A \ [c/X]) \vdash C \quad c \in \Sigma_{0}^{\mathrm{sk}} \ \mathrm{new}}{\Gamma \vdash C} \ \exists_{\mathrm{E}} \\ \\ & \mathrm{Additional \ Rules \ of \ FO \ Natural \ Deduction} \end{array}$$

4.2.2 Free Variable Tableau

This tableau calculus extends the propositional tableau with the following rules:

$$\frac{(\forall X. A)^{\top} \quad Y \text{ fresh}}{(A \ [Y/X])^{\top}}$$

$$\frac{(\forall X. A)^{\perp} \quad \{X_1, \dots, X_k\} = \text{free}(\forall X. A) \quad f \in \Sigma_k^{\text{sk}} \text{ new}}{(A \ [f(X_1, \dots, X_k)/X])^{\perp}}$$

$$\frac{(\exists X. A)^{\top} \quad \{X_1, \dots, X_k\} = \text{free}(\exists X. A) \quad f \in \Sigma_k^{\text{sk}} \text{ new}}{(A \ [f(X_1, \dots, X_k)/X])^{\top}}$$

$$\frac{(\exists X. A)^{\perp} \quad Y \text{ fresh}}{(A \ [Y/X])^{\perp}}$$
Additional Rules of the Free Variable Tableau

4.2.3 First-Order Resolution

$$\begin{split} \frac{\{\forall X. A \lor C\} \quad Z \not\in (\operatorname{free}(A) \cup \operatorname{free}(C))}{\{(A \ [Z/X]) \lor C\}} \\ \\ \frac{\{\exists X. A \lor C\} \quad \{X_1, \dots, X_k\} = \operatorname{free}(\exists X. A) \quad f \in \Sigma_k^{\operatorname{sk}}}{\{(A \ [f(X_1, \dots, X_k)/X]) \lor C\}} \\ \\ \end{array}$$

4.3 Knowledge Representation

4.3.1 Semantic Networks

Def. A **semantic network** is a directed graph where **nodes** represent objects and concepts **edges** represent relations between nodes

$4.3.2 \quad \mathcal{ALC}$

4.4 Planning

References

- Gerhard Gentzen. "Untersuchungen über das logische Schließen I". In: Mathematische Zeitschrift 39 (1935), pp. 176–210.
- [2] Stuart Russell and Peter Norvig. Artificial Intelligence, Global Edition A Modern Approach. Pearson Deutschland, 2021, p. 1168. ISBN: 9781292401133. URL: https:// elibrary.pearson.de/book/99.150005/9781292401171.