MBProg Summary

Florian Guthmann florian.guthmann@fau.de

2022-03-28

 $\frac{p \rightarrow p'}{pq \rightarrow p'q}$

 $\frac{q \Downarrow \lambda x.p' \quad p'[q/x] \Downarrow v}{pq \Downarrow v}$

Semantics for Computation

Evaluation Strategies

 α -conversion $C[\lambda x.t] \rightarrow_{\alpha} C[\lambda y.t[y/x]]$ β -reduction $C[(\lambda x.t)s] \rightarrow_{\beta} C(t[s/x])$

$$\beta$$
 -reduction $C[(\lambda x.\iota)s] \rightarrow_{\beta} C(\iota[s/s])$

 η -reduction $C[\lambda x.fx \rightarrow_{\eta} C[f]]$

Confluence (Church-Rosser) Independent reductions starting from the same term can always be joined.

Church Numerals

 $0 = \lambda f \cdot \lambda z \cdot z$ $1 = \lambda f \cdot \lambda z \cdot f z$ $2 = \lambda f \cdot \lambda z \cdot f f z$

Standard

We impose a *left-most-outermost* evaluation order.

Standardization Theorem If $s \rightarrow^*_{\alpha\beta} t$ and t is $\alpha\beta$ -normal, then $s \rightarrow^*_{so} t$ and t is so-normal.

Call-by-Name (lazy)

small-step

- no more rewriting under λ
- all terms are closed

$$\overline{(\lambda x.p)q \to p[q/x]}$$

big-step

 $\overline{\lambda x.p \Downarrow \lambda x.p}$

Call-by-Value (eager)

Value A value is a term of the form $\lambda x.t$

small-step

$p \rightarrow p'$	$q \rightarrow q' p \text{ is a value}$	e			q is a value
$\overline{pq \rightarrow p'q}$	$pq \rightarrow pq'$	_		$\overline{(\lambda x)}$	$(x.p)q \rightarrow p[q/x]$
g-step					
	Ĩ	$p \Downarrow \lambda x. p'$	$q \Downarrow q'$	$p'[q'/x] \Downarrow c$	
$\overline{\lambda x.p \Downarrow \lambda x.p}$			$pq\Downarrow c$;	

big-

$$\lambda x.p \Downarrow \lambda x.p$$

PCF

Simply-Typed Lambda-Calculus

 $Type:=\underbrace{A,B,C,\dots}_{\text{base types unit type}} \underbrace{1}_{|A \times B|A \to B}$

 $\Omega = (\lambda x.xx)(\lambda x.xx)$ is not typable. Thus, $\rightarrow_{\alpha\beta}$ is strongly normalising for simply-typed lambda-calculus. We obtain PCF by:

• adding the fixpoint combinator $Y_A: (A \to A) \to A$ for every type A

• fixing Nat and Bool as the base types

• postulating the arithmetic and logical operations

Contextual Equivalence A term context C is of ground type if its type is either Nat, Bool or 1. Two PCF terms $\Gamma \vdash s: A$ and $\Gamma \vdash t: A$ are contextually equivalent, if for all contexts C of ground type and for all values v, $C[s] \Downarrow v$ iff $C[t] \Downarrow v$

Operational Semantics

Call-by-Name A value is

- a term of base or unit type
- a pair of closed terms
- a closed term of the form $\lambda x.t$

Call-by-Value

- a term of base or unit type
- a pair of values
- a closed term of the form $\lambda x.t$

Denotational Semantics

Partial Order A partial order (A, \sqsubseteq) is a relation, such that:

- $a \sqsubseteq a$ (reflexivity)
- $a \sqsubseteq b \land b \sqsubseteq c \Rightarrow a \sqsubseteq c$ (transitivity)
- $a \sqsubseteq b \land b \sqsubseteq a \Rightarrow a = b$ (antisymmetry)

Complete Partial Order A complete partial order (pre-domain) is a partial order (A, \Box) such that for any infinite chain $a_1 \sqsubseteq a_2 \sqsubseteq \dots$

there is a least upper bound a such that

• $\forall i.a_i \sqsubseteq a$

• $\forall i. a_i \sqsubseteq b \Rightarrow a \sqsubseteq b$

We denote such a by $\bigsqcup_i a_i$

Domain A pointed cpo (*domain*) is a cpo that contains an element \perp such that $\forall a \in A \perp \Box a$

Monotonicity A function $f: A \rightarrow B$ between partial orders is *monotone* if $a \sqsubseteq b \Rightarrow f(a) \sqsubseteq f(b)$

Scott-continuity A monotone function $f: A \to B$ between cpos is continuous if for any chain $a_1 \sqsubseteq a_2 \sqsubseteq ...$

$$f\left(\bigsqcup_{i} a_{i}\right) = \bigsqcup_{i} f(a_{i})$$

Strictness A function $f: a \to B$ is strict if $f(\perp) = \perp$

Products of Predomains

 $A \times B = \{(a,b) | a \in A, b \in B\}$ $(a_1,b_1) \sqsubseteq (a_2,b_2)$ if $a_1 \sqsubseteq a_2 \land b_1 \sqsubseteq b_2$ Pairing is continuous: $\bigsqcup_i (a_i, b_i) = \left(\bigsqcup_i a_i, \bigsqcup_j b_j \right)$

Lifting predomains and functions

 $A_{\perp} = A \uplus \bot = (\star, a) | a \in A \cup (\bot, \star)$

$$\sqsubseteq b$$
 if $a = \bot$ or $a \in A, b \in A$ and $a \sqsubseteq b$

 $f^*(x) \!=\! \begin{cases} f(y) & \text{if } x \!=\! \lfloor y \rfloor \\ \bot & \text{if } x \!=\! \bot \end{cases}$ **Function Spaces** Let $(A, \sqsubseteq), (B, \sqsubseteq)$ be predomains. $(A \rightarrow B, \sqsubseteq)$ is the function space predomain where: $A \rightarrow B = \{f : A \rightarrow B \mid f \text{ is continuous}\}$ $f \Box q \Leftrightarrow \forall x. f(x) \Box q(x)$

a

We define: curry: $(A \times B \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C))$ uncurry: $(A \rightarrow (B \rightarrow C)) \rightarrow (A \times B \rightarrow C)$ $ev: (A \rightarrow B) \times A \rightarrow B$

If B is a domain, so is $A \rightarrow B$ with the bottom element being $\lambda x \perp$

Kleene's Fixpoint Theorem Let f be a continuous function $f: D \rightarrow D$ over a domain D

- least fixpoint: $\exists \mu f \in D$ such that $f(\mu f) = \mu f$ and $\forall x \in D.f(x) = x \Rightarrow \mu f \sqsubseteq x$ $\mu f = \bigsqcup_i f^i(\bot)$, where $f^0(x) = \bot, f^{i+1}(x) = f(f^i(x))$
- least prefixpoint: $f(\mu f) \sqsubseteq \mu f$ and $\forall x \in D.f(x) \sqsubseteq x \Rightarrow \mu f \sqsubseteq x$

CBN

Soundness A denotational semantics is sound if $p \Downarrow v \Rightarrow \llbracket p \rrbracket = v$

Adequacy A denotational semantics is *adequate* if for *p* of ground type $\llbracket p \rrbracket = v \Rightarrow p \Downarrow v$

for every value v

Compositionality

 $\begin{bmatrix} C[t] \end{bmatrix} = \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} t \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix} = 1_{\perp}$ $\begin{bmatrix} Nat \end{bmatrix} = Nat_{\perp}$ $\begin{bmatrix} Bool \end{bmatrix} = Bool_{\perp}$ $\begin{bmatrix} A \times B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \times \begin{bmatrix} B \end{bmatrix}$ $\begin{bmatrix} A \to B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \to \begin{bmatrix} B \end{bmatrix}$

Given a term in context $\Gamma \vdash t : A$ where $\Gamma = x_1 : A_1, \dots, x_n : A_n$ the semantics $\llbracket \Gamma \vdash t : A \rrbracket$ is a continuous function $\llbracket A_1 \rrbracket \times \dots \times \llbracket A_n \rrbracket \to \llbracket A_{\rrbracket} \rrbracket \to \llbracket A_{\rrbracket} \rrbracket (\llbracket \dots \rrbracket \rho = \llbracket \dots \rrbracket (\rho))$

$$\begin{split} \|\Gamma \vdash x_i : A_i\|_{\rho} &= \operatorname{proj}_i(\rho) \\ \|\Gamma \vdash x : 1\|_{\rho} &= \lfloor \star \rfloor \\ &\vdots \\ \|\Gamma \lambda x.t : A \to B\|_{\rho} &= (\operatorname{curry} [\![\Gamma, x : A \vdash t : B]\!])(\rho) \\ &\|\Gamma st : B\|_{\rho} &= \operatorname{ev}([\![\Gamma \vdash s : A \to B]\!]_{\rho},]\!]\Gamma \vdash t : A]\!]_{\rho} \\ &\|\Gamma \vdash Y_A\| = \mu \end{split}$$

 \mathbf{CBV}

Full Abstraction

The implication $p =_{ctx} q \Rightarrow \llbracket p \rrbracket = \llbracket q \rrbracket$ is called full abstraction. It would mean that operational semantics and denotational semantics agree as far as program equivalence. However consider the **por** function. It is not definable in PCF, but it is a continuous function and thus can be used in the denotational semantics.

por(True,x) = Truepor(x,True) = Truepor(False,False) = False $por(x,y) = \bot$

We can construct a function $t: Bool \rightarrow (Bool \rightarrow Bool \rightarrow Bool) \rightarrow Bool$ in PCF that tests if a given function is por.

Category Theory

Category A Category \mathcal{C} consist of a collection of objects $Ob(\mathcal{C})$ and a collection of morphisms $Hom_{\mathcal{C}}(A,B)$ for any $A, B \in Ob(\mathcal{C})$ such that:

- for every $A \in Ob(\mathcal{C})$ there is an *identity morphism* $id_A \in Hom_{\mathcal{C}}(A, A)$
- for any $f \in \operatorname{Hom}_{\mathcal{C}}(B,C)$ and $g \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ we can form a *composition* $f \circ g \in \operatorname{Hom}_{\mathcal{C}}(A,C)$
- $id \circ f = f$ (left identity)
- $f \circ id = f$ (right identity)
- $(f \circ g) \circ h = f \circ (g \circ h)$ (associativity)

Terminal Object A terminal object is an object $1 \in Ob(\mathcal{C})$ such that for any $A \in Ob(\mathcal{C})$, there is a unique morphism $!_A: A \to 1$. **Initial Object** An initial object is an object $0 \in Ob(\mathcal{C})$ such that for any $A \in Ob(\mathcal{C})$, there is a unique morphism $i_A: 0 \to A$. **Isomorphism** An *isomorphism* between objects A and B in a category \mathcal{C} is a pair of morphisms $f: A \to B, g: B \to A$ such that:

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B \\ & & & \downarrow^{g} & \stackrel{\mathrm{id}_{B}}{\longrightarrow} \\ & & & A & \stackrel{f}{\longrightarrow} & B \end{array}$$

Cartesian Category A *cartesian category* is a category with a terminal object an binary products

Products and Coproducts

Binary Products

A product of objects A, B in a category C is a triple $(A \times B, \text{fst}, \text{snd})$ such that for any $C \in \text{Ob}(C)$ and $f: C \to A$ and $g: C \to B$ there is a *unique* morphism $\langle f, g \rangle: C \to A \times B$:

$$A \xleftarrow[f_{\mathrm{f}}]{f} (f,g) \downarrow \qquad g \\ A \xleftarrow[f_{\mathrm{f}}]{f} A \times B \xrightarrow[]{\mathrm{snd}} B$$

Coproducts

A coproduct of objects A,B in a category C is a triple (A+B,inl,inr) such that for any $f: A \to C$ and $g: B \to C$ there is a $unique \text{ morphism } [f,g] \colon \! A \! + \! B \! \to \! C \! :$

$$A \xrightarrow[\operatorname{inl}]{f} A + B \xleftarrow[\operatorname{inr}]{f} B$$

Functor

A covariant Functor F between categories \mathcal{C} and \mathcal{D} is a correspondence sending any $A \in Ob(\mathcal{C})$ to $FA \in Ob(\mathcal{D})$ and any $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ to $Ff \in \operatorname{Hom}_{\mathcal{D}}(FA,FB)$ such that: $F(f \circ q) = F(f) \circ F(q)$

$$F(\mathrm{id}_A) = \mathrm{id}_{FA}$$

Example: Forgetful Functor

 $G: \operatorname{Cpo} \to \operatorname{Set}$

G(f) = f

Example: Endofunctor An endofunctor is a functor from a category into itself.

Contravariant Functor A functor $F: \mathcal{C}^{\mathrm{op}} \to D$ is a contravariant functor from \mathcal{C} to \mathcal{D} .

Bifunctor A bifunctor is a functor $C \times D \rightarrow E$.

Natural Transformations

Let \mathcal{C},\mathcal{D} be categories and $F,G:\mathcal{C}\to\mathcal{D}$ be functors. A natural transformation $\vartheta:F\to G$ is a family of morphisms $(\vartheta_C: FC \to GC)_{c \in Ob(\mathcal{C})}$ that $\forall f: C \to C' \text{ in } \mathcal{C}:$ such th

 $G(A, \Box) = A$

that
$$\forall f: C \to C'$$
 in C
 $FC \xrightarrow{Ff} FC'$
 $\downarrow_{\vartheta_C} \qquad \qquad \downarrow_{\vartheta_{C'}}$
 $GC \xrightarrow{Gf} GC'$

Monad

Kleisli Triple

A Monad in a category \mathcal{C} is given by a triple $(T,\eta,-^*)$ where:

- $T: Ob(\mathcal{C}) \to Ob(\mathcal{C})$
- unit: η is a family $(\eta_X : X \to TX)_{x \in Ob(\mathcal{C})}$

• Kleisli lifting: for any $f: A \rightarrow TB$, $f^*: TA \rightarrow TB$ such that:

$$\eta^* = \mathrm{id}$$

$$(f^*g)^* = f^*g^*$$

Kleisli Category

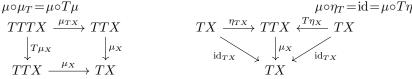
From Endofunctor and Natural Transformation

A Monad in a category \mathcal{C} consists of an endofunctor $T: \mathcal{C} \to \mathcal{C}$ an natural transformations

 $f^*\eta = f$

- unit: $\eta: \mathrm{Id} \to T$
- multiplication: $\mu:TT \to T$

such that:



Tensorial Strength

Cartesian Closure A category C is cartesian closed (CCC) if it is cartesian, and for any objects B and C there is an object B^C , called an exponential, for which

curry: $\operatorname{Hom}(A \times B, C) \cong \operatorname{Hom}(A, C^B)$

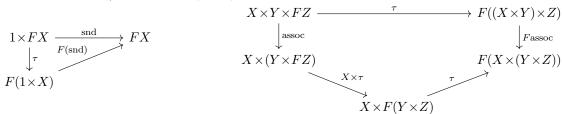
which is natural in A such that

$$\begin{array}{ccc} \operatorname{Hom}(A \times B, C) & \xrightarrow{\operatorname{curry}} & \operatorname{Hom}(A, C^B) \\ & & & \downarrow \operatorname{Hom}(f \times B, C) & & & \downarrow \operatorname{Hom}(f, C^B) \\ & & & \operatorname{Hom}(A' \times B, C) & \xrightarrow{\operatorname{curry}} & \operatorname{Hom}(A', C^B) \end{array}$$

We can generalize the CBV semantics of PCF by:

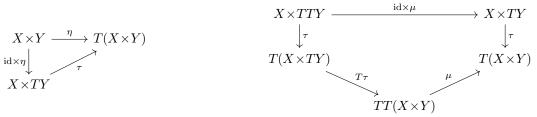
- replace $(-)_{\perp}$ with T
- replace "let" with "do"
- replace |-| with return

Strong Functor A strong Functor is a functor $F: \mathcal{C} \to \mathcal{D}$ between cartesian categories \mathcal{C} and \mathcal{D} , plus *strength*, which is a natural transformation $\tau_{A,B}: A \times FB \to F(A \times B)$ such that

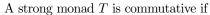


Strong Monads

A monad is *strong* if it is strong as a functor and η, μ are strong natural transformations.



Commutative Monads



$$\begin{array}{cccc} TA \times TB & \stackrel{\tau}{\longrightarrow} T(TA \times B) & \stackrel{T\hat{\tau}}{\longrightarrow} TT(A \times B) \\ & & & \downarrow^{\hat{\tau}} & & & \downarrow^{\mu} \\ T(A \times TB) & & & \downarrow^{\mu} \\ & & & \downarrow^{T\tau} & & & \downarrow^{\mu} \\ TT(A \times B) & \stackrel{\mu}{\longrightarrow} T(A \times B) \end{array}$$

 $do x = p; do y = q; return \langle x, y \rangle == do y = q; do x = p; return \langle x, y \rangle$

Monoidal Categories

A category ${\mathcal C}$ is monoidal if there exists:

- a bifunctor $C \times C \rightarrow C$ (tensor product)
- an object I (unit object)
- natural transformations

 $\begin{array}{ccc} \alpha_{A,B,C}:A\otimes (B\otimes C)\cong (A\otimes B)\otimes C & \lambda_A:I\otimes A\cong A & \rho_A:A\otimes I\cong A \\ \text{A monoid in a monoidal Category } \mathcal{C} \text{ is a triple } (M,\varepsilon,\odot) \text{ where } M \text{ is an object in } \mathcal{C}, \odot \text{ is a morphism } M\otimes M \to M \text{ and } \varepsilon \text{ is a morphism } I \to M \text{ such that:} \end{array}$

