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Abstract

Process algebras are mathematical frameworks for modeling the behaviour of concurrent sys-
tems. Bisimilarity serves as an equivalence relation for comparing their behaviour. GSOS is a
rule format for defining the operational semantics for such process algebras, but is limited in
its ability to encode process algebras with recursion. The key semantic property of bisimilarity
being a congruence is hard to establish in the presence of recursion – the denotational methods
employed for that are notoriously involved and fragile. Higher-Order GSOS is a recently pro-
posed framework helping to resolve these limitations. This master’s thesis proposes a treatment
of process algebras with recursion via (properly) higher-order abstract GSOS, using Milner’s
Calculus of Communicating Systems as a concrete example. This is done by specifying altern-
ative operational semantics rules, showing their equivalence to the standard semantics in the
guarded case, and giving the corresponding categorical interpretation to fit into higher-order
abstract GSOS.





1 Introduction

In the field of process algebra, one of the main ways to define the concept of equivalence
between processes is (strong) bisimulation. Other notions exist, but bisimilarity serves as the
finest equivalence relation between processes. It is desirable for bisimilarity to be a congruence:
If two terms are bisimilar, they cannot be distinguished by any context. Proofs of this in
the presence of general recursion are notoriously involved, however. One possible way to deal
with this problem is denotational semantics. But since the denotational domain of labelled
transition systems necessarily involves a degree of non-determinism, domain-theoretic proofs
are made more complicated and brittle [AC98; JT98].

Operational Semantics is a different approach to tackle the issue. Proving compositionality
for such higher-order languages in the operational semantics can be a problem too. The ab-
stract GSOS framework presented by Turi and Plotkin [TP97] gives compositionality proofs for
languages covered by its rule format. This includes process algebras without fixpoints, where
compositionality ensures that bisimulation is in fact a congruence. A limitation of the rule
format is that arbitrary recursion cannot be encoded. We will therefore use the recently de-
veloped higher-order extension of their framework, presented by Goncharov et al. [Gon+24].
Their rule format allows us to encode operational semantics rules pertaining to recursion and
still obtain a compositionality result.

The goal of this thesis is to formulate the semantics of the guarded fragment of the Calculus
of Communicating Systems (CCS) with arbitrary fixpoints in the framework of higher-order
abstract GSOS in order to obtain a compositional operational model where bisimulation is a
congruence. In Chapter 2, we will begin by introducing the necessary background concerning
CCS and abstract GSOS, both first-order and higher-order. Following that, in Chapter 3 we
define an alternative operational semantics for CCS and prove its equivalence to the standard
semantics. This is then used to define the semantics in the framework of higher-order abstract
GSOS and obtain the compositional operational model we are seeking.

Large parts of this thesis are formalized in the proof assistant Agda [Agd]. Theorems and defini-
tions that are part of the formalization are marked with the Agda logo ( ) and their respective
identifiers. A more in-depth discussion of the implementation can be found in Chapter 4.
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2 Background

This section will provide the necessary background for this thesis. We will cover the basics of
process algebra using the example of the Calculus of Communicating Systems. Afterwards, the
framework of first-order abstract GSOS will be introduced along with its extension of higher-
order abstract GSOS. But first, let us review the required background in category theory.

2.1 Categorical Preliminaries

We assume the reader is familiar with basic notions of category theory such as functors, natural
transformations and monads. This section reviews some terminology and notations used in the
thesis.

Products and Coproducts Given two objects A, B in a category C we write A×B for a selected
product, i.e. an object satisfying the universal property

C

A A × B B

∃!h
fg

fst snd (2.1)

where fst : A × B → A and snd: A × B → B are the projections. Since h is uniquely determined
by f and g, we will write 〈f, g〉 instead.

Dually, we write A + B for a selected coproduct, i.e. an object satisfying the universal property

C

A A + B B

f

inl

∃!h
g

inr (2.2)

where inl : A → A + B and inr : B → A + B are the injections. Since h is uniquely determined
by f and g, we write [f, g] instead. Furthermore, we let ∇X : X +X → X denote the codiagonal
defined by ∇X := [idX , idX ].

Algebras over a Functor Given an endofunctor F : C → C on a category C, an algebra over
F (or F -algebra) is a pair (A, a) where A is an object of C (the carrier of the algebra) and
a is a morphism a : FA → A (its structure). A morphism f ∈ HomC (A, B) is an F -algebra
homomorphism between F -algebras (A, a) and (B, b) if the following diagram commutes:

FA A

FB B

a

F f f

b
(2.3)
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When the structure is clear, we often ignore the notational difference between A and (A, a)
and write an F -algebra homomorphism f : (A, a) → (B, b) as f : A → B. F -algebras and F -
algebra homomorphisms form a category alg(F ). We denote the initial object in that category,
if it exists, by (µF, ι). The unique F -algebra homomorphism from the initial F -algebra to any
F -algebra (A, a) is denoted as

it a : (µF, ι) → (A, a) (2.4)

Definition 2.1. A free F -algebra on an object X ∈ Ob (C) is an F -algebra (F ⋆X, ιX) such
that for any F -algebra (A, a) and morphism h ∈ HomC (X, A) there exists a unique F -algebra
homomorphism h⋆ : F ⋆X → A with the universal property:

FF ⋆X F ⋆X

X

FA A

ιX

F h⋆ ∃! h⋆

ηX

h
a

(2.5)

Definition 2.2. If every object X ∈ Ob (C) generates a free F -algebra, then F generates a free
monad F ⋆ : C → C [Bar70],that assigns to

• an object X ∈ Ob (C) the carrier of its free F -algebra F ⋆X

• a morphism f : X → Y the morphism (ηY ◦ f)⋆ given by the universal property of the free
F -algebra on X.

Definition 2.3. An Eilenberg-Moore algebra over a monad (T, η, µ) is a morphism â : TX → X
such that

X TX

X

ηX

â

TTX TX

TX X

µX

T â â

â
(2.6)

For a functor F that generates a free monad F ⋆, every F -algebra (A, a) induces an Eilenberg-
Moore algebra â : F ⋆A → A, given by the universal property of the free algebra on A:

FF ⋆A F ⋆A

A

FA A

ιA

F â â:=id⋆
A

ηA

idA
a

(2.7)

Signature Functors An algebraic signature consist of a set Σ of symbols and a map ar : Σ → N,
that assigns to every symbol f ∈ Σ its arity ar(f). Symbols of arity 0 are called constants,
those of arity 1 are called unary function symbols and those of arity 2 are called binary function
symbols.

Every signature Σ induces a polynomial endofunctor

Σ X =
∐
f∈Σ

Xar(f) (2.8)
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A Σ-algebra is then an object A together with a morphism fA : An → A for every n-ary function
symbol in Σ. For a set X of variables, the free algebra Σ⋆X consists of terms over the signature
Σ with variables from X. The free algebra on the empty set (or more generally, the initial
object) is the set of closed terms, i.e terms with no free variable occurrences.

Definition 2.4. A relation ∼ ⊆ A × A on a Σ-algebra (A, a) is called a Σ-congruence if for
every f ∈ Σ with ar(f) = n and ai, bi ∈ A, 1 ≤ i ≤ n,

ai ∼ bi (for all 1 ≤ i ≤ n) =⇒ fA(a1, . . . , an) ∼ fA(b1, . . . , bn) (2.9)

Intuitively, a Σ-congruence ∼ is a relation on terms such that if two terms are related, they
cannot be distinguished by any context.

Coalgebras over a Functor Given an endofunctor F : C → C on a category C, a coalgebra over
F (or F -coalgebra) is a pair (C, c) consisting of an object C (the state space of the algebra)
and a morphism c : C → FC (its structure). A morphism f ∈ HomC (A, B) is an F -coalgebra
homomorphism between F -coalgebras (A, a) and (B, b) if the following diagram commutes:

A FA

B FB

a

f F f

b
(2.10)

As with F -algebras, we will often omit the structure of coalgebras and write an F -coalgebra
homomorphism f : (A, a) → (B, b) as f : A → B. F -coalgebras and their homomorphisms form
a category coalg(F ). We denote the terminal (or final) object in that category, if it exists, by
(νF, τ). The unique F -coalgebra homomorphism from any F -coalgebra (C, c) to the terminal
coalgebra is denoted as

coit c : (C, c) → (νF, τ) (2.11)

We will use coalgebras to model state-based systems categorically. In particular, coalgebras of
the (covariant) powerset functor P : Set → Set can be used to model nondeterministic systems.
Informally, the final coalgebra νF consist of the abstract behaviours of all F -coalgebras.

Definition 2.5. A relation R ⊆ C × D on F -coalgebras (C, c) and (D, d) is a bisimulation if
there exists a coalgebraic structure r : R → FR such that

C R D

FC FR FD

c

fst|R snd|R

r d

F ( fst|R) F ( snd|R) (2.12)

The fact that the diagram above commutes corresponds to the projections fst|R, snd|R being
F -coalgebra homomorphisms.

Dinatural Transformations Natural transformations are the primary tool one can use to ensure
on an abstract level, that a map is parametrically polymorphic, i.e. that it does not inspect
the structure of its arguments. In a natural transformation α : F ⇒ G, both functors F and G
depend on some X with the same variance (either covariantly or contravariantly). If we want
F and G to be mixed-variance bifunctors, this becomes limiting: While we can state natural
transformations between F and G when either one of their arguments is fixed, we cannot abstract
over both arguments. If we restrict to families of maps where F and G depend on some X that
is used both covariantly and contravariantly, we arrive at a useful abstraction.
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Definition 2.6. Let F, G : Cop ×C → C be bifunctors of mixed variance. A dinatural transform-
ation α : F ⇒ G is a family of morphisms αX : F (X, X) → G(X, X) such that

F (X, X) G(X, X)

F (Y, X) G(X, Y )

F (Y, Y ) G(Y, Y )

αX

G(idX ,f)F (f,idX)

F (idY ,f)
αY

G(f,idY )

(2.13)

commutes for every f : X → Y .

This concludes our review of the necessary categorical background.

2.2 Process Algebra

The field of process algebra studies the behaviour of concurrent processes in a mathematical
model. A “process” in this context is a system of which a behaviour may be observed, such as
the execution of software in a computer or the actions of a machine. We think of these beha-
viours as being comprised of discrete “actions” which are separated in time. A simple model
of a process is a mere map between inputs and outputs. In this case, automata theory serves
as an algebraic model that allows for equational reasoning over automata. In process algebra
however, the goal is to model concurrent systems, i.e. processes that interact with one another
during execution and run in parallel. This usually comes in the form of a “parallel composition”
operator that is included in the language of expressions. Examples of such process algebras in-
clude the aforementioned “Calculus of Communicating Systems” by Milner [Mil80], the theory of
“Communicating sequential processes” (CSP) by Hoare [Hoa78], the “Algebra of communicating
processes” (ACP) by Bergstra and Klop [BK82] and the π-calculus by Milner [Mil99].

We will concern ourselves only with CCS, but note that the general approach could be adapted
to any process algebra with similar features.

2.2.1 CCS

The Calculus of Communicating Systems is a process algebra introduced by Milner [Mil80;
Mil89]. Its basic construct are processes that can emit actions, stepping to a new process. For
instance, we will write P

α
Q to denote that a process P takes a step, emitting the action

α and afterwards behaves like the process Q. To describe how such processes may behave and
interact, CCS features a number of concepts:

Deadlock We will denote the deadlocked process that cannot take any steps by ∅.

Action Prefixing A process that emits an action α and afterwards behaves like some process P
is denoted by prefixing the action: α P .

Non-deterministic Choice Given two processes P and Q, the process P + Q chooses a possible
step in either P or Q to some process R and behaves like R afterwards.

Parallel Composition Given two processes P and Q, we can interleave them in the process P |Q.
This process allows either P or Q to take a step. Unlike the non-deterministic choice
operator, the resulting process is still a composition of the result of one process taking
a step and the other process, which is left untouched. If both processes take “opposing”
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steps, the composed process takes a synchronization step and emits the designated silent
action τ .

Restriction We can restrict what actions a process P is allowed to emit: The process P \ L can
only take steps with actions which are not in the set L. This is mainly used to force P to
take silent transitions.

Renaming If we want to rename the actions a process P via some function φ, the process P [φ]
comes to our aid: If P

α
Q then P [φ]

φ(α)
Q [φ].

Recursion Finally, CCS allows processes to be defined recursively. Unlike Milner, who used
recursive process equations to accomplish this, we will equivalently use a fixpoint operator,
akin to an abstraction in the λ-calculus. For instance, the process defined by the recursive
equation P = α P can be represented simply by (fix X . (α X)).

Actions Before we examine the syntax of CCS, we first need to define a set of actions over
which the language is parametric. It is required that there exists an involution (called the
complement) on actions. Therefore, we fix a set A of actions with

• τ ∈ A representing the silent action

• a map · : A \ {τ} → A \ {τ} that is an involution (i.e. α = α for any α ∈ A). We refer
to α as the complement of α.

A common interpretation is that an action α corresponds to an “input” of type α while its
complement α corresponds to an “output” of type α. Its main use, however, is to facilitate
the synchronization between processes, where a “handshake” occurs when one process emits
an action while another emits its complement. In that case, the process composed of both
subprocesses emits a silent action.

CCS also features the ability to rename the actions a process emits. This is done via a function
φ on the set of actions. However, we do require that φ interacts nicely with the complement on
actions.

Definition 2.7. A renaming function φ : A \ {τ} → A \ {τ} is a function on actions that
respects complementation:

∀α ∈ A. φ(α) = φ(α) (2.14)

We call Ren(A) the set of renaming functions on A.

Syntax Finally, we can state the syntax of CCS, which is parametric over a set V of variables:

P, Q := ∅
∣∣ X

∣∣ α P
∣∣ P + Q

∣∣ P |Q
∣∣ P \ L

∣∣ P [φ]
∣∣ fix X . P (2.15)

where X ∈ V, α ∈ A, L ⊆ A \ {τ}, φ ∈ Ren(A).

To avoid excessive use of parentheses we assume the operator precedence{
(−) [φ]
(−) \ L

}
> α (−) > (−)|(−) > (−) + (−) > fix X . (−) (2.16)

De Bruijn-Indices Instead of using this syntax with concrete variable names, we will instead
employ a commonly used formalization trick invented by de Bruijn [de 72], originally used for the
λ-calculus. This consists of fixing the set of variables to be the natural numbers. Furthermore,
we require that a fixpoint operator always binds the variable 0 ∈ N. In order for this to
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work, occurrences of variables are converted to indices: An index #m denotes that one has to
syntactically “step over” m fixpoint operators to find the corresponding binder. If exceeds all
surrounding binders, then #m is a free variable.

To utilize de Bruijn-indices, we need to slightly change the syntax:

P, Q := ∅
∣∣ #n

∣∣ α P
∣∣ P + Q

∣∣ P |Q
∣∣ P \ L

∣∣ P [φ]
∣∣ fix P (2.17)

where n ∈ N, α ∈ A, L ⊆ A \ {τ}, φ ∈ Ren(A). Notice how the fixpoint operator no longer
accepts an argument for the bound variable, since it is always #0 . The translation to and from
the concrete syntax in Equation (2.15) is straightforward: For instance, consider this example
term and its translation into the syntax with de Bruijn-indices:

fix X . fix Y . (α X)|Y ≡ fix fix (α #1 )|#0

From this point onward we will use the syntax with de Bruijn-indices exclusively. The set of
terms over the grammar in Equation (2.17) is denoted as Proc.

A substitution is a function of type m → Proc for some m ∈ N. We fix the set Subst :=∐
n∈N Procn to include all substitutions. A substitution σ ∈ Subst can be “lifted” to a substitu-

tion ↑ σ by incrementing all indices and inserting the variable #0 at 0:
(↑ σ)(0) = #0
(↑ σ)(n + 1) = σ(n) (2.18)

The most common instance of a substitution we will encounter is one that substitutes the 0th
variable with some term Q:

([0 7→ Q])(0) = Q

([0 7→ Q])(n + 1) = n (2.19)

Applying a substitution σ to a term is illustrated in Figure 2.1:

P ′ = P σ actsub
(α P )σ = α P ′

namesub
Xσ = σ(X)

Pσ = P ′ Qσ = Q′
sumsub

(P + Q)σ = P ′ + Q′
Pσ = P ′ Qσ = Q′

parsub
(P |Q)σ = P ′|Q′

Pσ = P ′
ressub

(P \ L)σ = P ′ \ L

Pσ = P ′
rensub

(P [φ])σ = P ′ [φ]

P (↑ σ) = P ′
fixsub

(fix P ) σ = fix P ′

Figure 2.1: Semantics of substitution application

We will need some meta theory about substitutions now:

Theorem 2.8 ( subst-commute ). For a substitution σ and terms P and Q the following
identity holds:

(P [0 7→ (Q σ)]) (↑ σ) = (P [0 7→ Q]) σ (2.20)

Proof. This is proven by building an algebra of substitutions and reducing the problem to iden-
tities in that algebra. The proof can be found in the Agda formalization or, in a slightly different
form, in the Substitution chapter of Programming Language Foundations in Agda [WKS22].
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Operational Semantics Now that we have defined how to syntactically build terms of CCS, it
remains to describe how these processes behave. This is done by defining a set of rules, referred
together as an operational semantics. These rules formally define our informal concepts of how
the syntactical constructs of CCS should behave. Let us highlight some of the rules shown in
Figure 2.2 that are of interest:

The act rule: As expected, a process prefixed with an action α can take an α-step without
any premises.

The sync rule: Here we see how processes can interact: A handshake is performed when P
takes an α-step to P ′ while Q takes an α-step to Q′. The parallel composition of P and
Q then takes a τ -step to P ′|Q′.

The fix rule: The most interesting rule deals with the semantics of the fixpoint operator: For a
process fix P to take a step, we need to prove that the process resulting from substituting
the bound variable #0 with the original term fix P takes the same step. This makes
intuitive sense by considering how fixpoint operators correspond to recursive equations.
The fix rule then simply unfolds one layer of the equation.

act
α P

α
P

P
α

P ′
suml

P + Q
α

P ′

Q
α

Q′
sumr

P + Q
α

Q′

P
α

P ′
parl

P |Q α
P ′|Q

Q
α

Q′
parr

P |Q α
P |Q′

P
α

P ′ Q
α

Q′
sync

P |Q τ
P ′|Q′

P
α

P ′ α, α /∈ L
res

P \ L
α

P ′

P
α

P ′
ren

P [φ]
φ(α)

P ′ [φ]

P [0 7→ fix P ] α
P ′

fix
fix P

α
P ′

Figure 2.2: Operational Semantics of CCS

We can use this operational semantics to build derivation trees, such as the one below, which
are used as proofs that a proposed step is valid for some process.

Example 2.9. Consider the CCS term P := fix (fix α #1 ). We can show that P takes an
α-step to itself:

act
((α (fix (fix α #1 ))) [0 7→ (fix α #1 )]) = (α (fix (fix α #1 ))) α fix (fix α #1 )

fix
((fix α #1 ) [0 7→ fix (fix α #1 )]) = (fix α (fix (fix α #1 ))) α fix (fix α #1 )

fix
fix (fix α #1 ) α fix (fix α #1 )

9



Definition 2.10. The rules in Figure 2.2 describe how a process correspond to a labelled
transition system (LTS). That is a tuple

(
Proc, A,

{
α

∣∣∣ α ∈ A
})

with a designated state
P ∈ Proc. We only consider the part of the LTS that is reachable via from P . An LTS is
called finitely branching if the set

{
Q′ ∈ Proc

∣∣∣ Q
α

Q′, α ∈ A
}

is finite for all Q ∈ Proc.

2.2.2 Equivalence of Processes

Now that we can describe the behaviour of processes with operational semantics, the question
of how to state that two processes behave “equivalently” naturally arises. The issue is with
finding an equivalence relation which satisfies our intuitive understanding.

Trace equivalence A simple approach is to relate processes for which the set of action se-
quences found in their behaviour is equal. We define a trace of a process P0 to be a sequence of
actions (αk)0≤k such that the transitions

P0
α0

P1
α1 · · · αk

Pk

exists. Two processes P and Q are trace-equivalent if the set of traces from P and from Q
are equal. This is an equivalence relation on processes, but it does not capture the intuitive
understanding of equivalent processes, as the following example demonstrates.

Example 2.11. Consider these trace-equivalent processes:

P := (R|S) \ {α, β, γ}
Q := (R|S′) \ {α, β, γ}

where

R := fix (α β #0 )
S := fix (α ((β #0 ) + (γ #0 )))
S′ := fix ((α β #0 ) + (α γ #0 ))

Even though P and Q are trace-equivalent, they do seem to behave differently: In both processes,
we can enforce a sync step via the restriction operator. In Q, this step already forces a choice for
the left summand. In P this choice is left for the next step. This means that trace equivalence
includes processes which intuitively behave differently.

Since trace equivalence is too coarse, we need to define a finer (or as it turns out the finest)
equivalence relation on processes:

Definition 2.12. A relation R ⊆ Proc × Proc is a strong bisimulation if for any (P, Q) ∈ R

and P ′ such that P
α

P ′ there exists a Q′ with Q
α

Q′ and the same holds for the inverse
relation R−. Diagrammatically this can be expressed via a Forth and Back condition:

P Q

P ′ Q′

R

α α

R

P Q

P ′ Q′

R

α α

R

Forth Back (2.21)

Two processes P and Q are bisimilar, if there exists a bisimulation R with (P, Q) ∈ R, which
we denote by P ∼ Q.
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Example 2.13. Consider the processes P := α (β ∅ + γ ∅) and Q := (α β ∅) + (α β ∅).
These produce the following LTS’s:

α

β γ

α α

β γ

R

R

R

It is easy to see that these LTSs are trace-equivalent. However, they are not bisimilar since
constructing a bisimulation R fails in the bottom two states in R, which do not satisfy the Back
and Forth conditions.

2.2.3 Guarded Processes

The rule for the fixpoint operator allows for a very general form of recursion. For instance, we
can state processes with infinitely many outgoing transitions:

Example 2.14. Let P := fix ((α ∅)|#0 ). Then there are infinitely many possible α-transitions:

P

(∅|P ) (α ∅|∅|P ) · · · (α ∅|α ∅|α ∅|∅|P ) · · ·

α
α α

These so-called “unguarded” processes [Mil83] pose problems in our formalization, such as
making the transition relation α undecidable [BIM95]. It is therefore sensible to work with
a subset of processes where recursion is restricted to be “productive”, i.e. recursive occurrences
of variables are only allowed under an action prefix.

Definition 2.15 ( guarded ). A term P ∈ Proc is guarded, if every occurrence of a variable
is in a subterm of an action prefix. A concrete inductive definition can be found in Figure 2.3.
Only in the rule for action prefixing does the guardedness of P not simply follow from the
guardedness of all subterms of P . Instead, P := α Q is guarded, irregardless of the guardedness
of Q.

Now we can state a fact about how guardedness interacts with substitution of variables:

Lemma 2.16 ( guarded-subst ). Guardedness is preserved under substitution, i.e. for any
guarded term P and substitution σ, the term (P σ) is guarded.

Proof. This follows directly by induction over the derivation of guarded(P ).

Let us finally prove that, when we disallow unguarded processes, we ensure that all processes
have only finitely many outgoing transitions:
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guarded(α P ) guarded(∅)
guarded(P ) guarded(Q)

guarded(P + Q)

guarded(P ) guarded(Q)
guarded(P |Q)

guarded(P )
guarded(P \ L)

guarded(P )
guarded(P [φ])

guarded(P )
guarded(fix P )

Figure 2.3: Guarded terms

Proposition 2.17. Any guarded term P produces a finitely branching LTS.

Proof. By induction over P :

If P = ∅, then the set
{

P ′
∣∣∣∅ α

P ′, α ∈ A
}

is empty and therefore finite.

If P = #m, then P is not guarded, contradicting the assumption.

If P = α Q, then the set
{

P ′
∣∣∣ α Q

α
P ′, α ∈ A

}
= {Q} is finite.

If P = Q + R, then the set{
P ′

∣∣∣ Q + R
α

P ′, α ∈ A
}

=
{

Q′
∣∣∣ Q

α
Q′, α ∈ A

}
∪

{
R′

∣∣∣ R
α

R′, α ∈ A
}

is finite by applying the induction hypothesis to both Q and R.

The cases for sum, restriction and renaming follow analogously.

If P = fix Q, then the set{
P ′

∣∣∣ fix Q
α

P ′, α ∈ A
}

=
{

P ′
∣∣∣ (Q [0 7→ fix Q]) α

P ′, α ∈ A
}

is finite by applying the induction hypothesis to Q [0 7→ fix Q], where guardedness is guar-
anteed by Lemma 2.16.

2.3 Abstract GSOS

This section introduces both the first-order and the higher-order abstract GSOS frameworks.
Both are categorical theories inspired by the GSOS rule format presented by Bloom, Istrail and
Meyer [BIM95]. This restricts rules in the operational semantics to be “well-behaved”. First-
order abstract GSOS, which was introduced by Turi and Plotkin [TP97], does so by enforcing
that the semantic rules correspond to a certain natural transformation. We will refer to their
framework as “first-order”, even though they did not use the prefix, to distinguish it from higher-
order abstract GSOS (HO-GSOS), formulated by Goncharov et al. [Gon+24]. Like first-order
GSOS, HO-GSOS models rules as certain natural transformations. Unlike the older framework,
it allows for languages with “higher-order” behaviour, i.e. languages with name binding such
as the λ-calculus and, as we will see, CCS. In both cases, by formulating the operational rules
in the required way, one obtains an operational model with compositionality for free.
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2.3.1 (First-Order) Abstract GSOS

The categorical framework of first-order abstract GSOS developed in [TP97] is a categorical
theory that reformulates and generalizes the GSOS rule format found in [BIM95]. This, in turn,
is based on the structured operational semantics (SOS) developed in [Plo04].

Definition 2.18. A GSOS rule is an operational rule of the form
(
xi

α
yα

i,j

)
1≤i≤m,1≤j≤nα

i ,α∈Ai

(
xi

β
)

1≤i≤m,β∈Bi

f(x1, . . . , xm) γ
t

(2.22)

where all variables are distinct, f ∈ Σ is an operation of arity m, Ai and Bi are subsets of some
set of labels A that also contains γ and t is a term built over variables xi, yβ

i,j .

The “abstractness” of Turi and Plotkin’s work then comes in by realizing that rules in the GSOS
format are in bijective correspondence to natural transformations of a specific form. In order
to talk categorically about operational semantics, one first has to “categorify” the syntax of the
discussed language. This is done via a signature functor Σ: C → C, as shown in Equation (2.8).
Another endofunctor B : C → C is needed to capture the behaviour of the language.

A GSOS specification, i.e. a set of GSOS rules, then corresponds to a natural transformation
ϱ, called a GSOS law:

ϱ : Σ(Id × B) ⇒ BΣ⋆ (2.23)

where Σ⋆ : C → C is the free monad induced by Σ.

From such GSOS laws we can obtain both an operational model as well as a denotational model.
They occur as ϱ-bialgebras, i.e. a Σ-algebra (X, a : ΣX → X) together with a B-coalgebra
(X, c : X → BX) such that the diagram commutes:

ΣX X BX

Σ(X × BX) BΣ⋆X

a

Σ〈idX ,c〉

c

ϱX

Bâ

(2.24)

where â : Σ⋆X → X is the Eilenberg-Moore algebra induced by a.

One such ϱ-bialgebra can be constructed by initiality of (µΣ, ι), which gives a B-coalgebra
γ : µΣ → B(µΣ). This is called the operational model of ϱ and is the initial ϱ-bialgebra. Dually,
we obtain another ϱ-bialgebra if B has a final coalgebra (νB, τ). This is called the denotational
model of ϱ and is the final ϱ-bialgebra. By initiality and finality we get a unique ϱ-bialgebra
morphism J−Kϱ : µΣ → νB that sends a closed term to its abstract behaviour:

Σ µΣ µΣ B µΣ

Σ νB νB B νB

ι

ΣJ−Kϱ J−Kϱ

γ

BJ−Kϱ

α τ
(2.25)

Compositionality of this semantics is entailed immediately by initiality of the ϱ-bialgebra on
µΣ and finality of the ϱ-bialgebra on νB.

Strong bisimulation can then be constructed by taking the pullback of J−Kϱ with itself. This
gives us a semantics of the language that is fully abstract with respect to bisimulation, at
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least if B preserves weak pullbacks. Since this semantics is compositional, our notion of strong
bisimulation is a Σ-congruence.

In the following we will formulate the operational semantics of a simple first-order language,
namely CCS without fixpoints, in the first-order abstract GSOS to illustrate the usage of the
framework and relate it to the formulation of CCS with fixpoints in Chapter 3.

Example 2.19 (CCS without fixpoints). Consider the operational semantics of CCS given in
Figure 2.2 but without the fix rule. We can encode these rules using first-order abstract GSOS.
Firstly, we need to give a categorical formulation of the syntax by means of a signature functor

ΣX =
∐
f∈Σ

Xar(f) (2.26)

where Σ := N∪{∅, +, |} ∪ {actα | α ∈ A} ∪ {restrL | L ⊆ A} ∪ {renφ | φ ∈ Ren(A)}. The arity
function ar : Σ → N is then given by

ar(f) =


0 f ∈ N∪{∅}
1 f ∈ {actα | α ∈ A} ∪ {restrL | L ⊆ A} ∪ {renφ | φ ∈ Ren(A)}
2 f ∈ {+, |}

(2.27)

To match the syntax of CCS more closely, we will afford ourselves some notational liberty, e.g.
writing α P to denote inactα(P ).

Now that we have the syntax of CCS without fixpoints in categorical terms, we need to tackle
their behaviour. As discussed in Section 2.2.1, the semantics of CCS processes can be described
with labelled transition systems. Therefore, we need to find an endofunctor B such that LTS’s
over some set A are the final coalgebra νB. It is well-known that BX = P (A × X) serves that
purpose. Since we only deal with binary sums and therefore countable branching in the LTS,
we can instead use the countable powerset functor:

BX = Pω1 (A × X) (2.28)

The operational rules in Figure 2.2 (without the fix rule) now give rise to a family (ϱX)X∈Set
of maps:

ϱX : Σ(X × BX) → BΣ⋆X

ϱX(∅) = ∅
ϱX(#m) = ∅
ϱX(α (P, bP )) = {(α, ηX(P ))}
ϱX((P, bP ) + (Q, bQ)) =

{
(α, ηX(P ′))

∣∣ (α, P ′) ∈ bP

}
∪

{
(α, ηX(Q′))

∣∣ (α, Q′) ∈ bQ

}
ϱX((P, bP )|(Q, bQ)) =

{
(α, (ηX(P ′))|(ηX(Q)))

∣∣ (α, P ′) ∈ bP

}
∪

{
(α, (ηX(P ))|(ηX(Q′)))

∣∣ (α, Q′) ∈ bQ

}
∪

{
(τ, (ηX(P ′))|(ηX(Q′)))

∣∣∣ (α, P ′) ∈ bP , (β, Q′) ∈ bQ, α = β
}

ϱX((P, bP ) \ L) =
{
(α, (ηX(P ′)) \ L)

∣∣ (α, P ′) ∈ bP , α, α 6∈ L
}

ϱX(P [φ]) =
{
(φ(α), ηX(P ′) [φ])

∣∣ (α, P ′) ∈ bP

}
The framework of first-order abstract GSOS requires that the family (ϱX)x∈Set forms a natural
transformation, so let us prove that it is the case:
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Proposition 2.20. ϱ : Σ(Id×B) ⇒ BΣ⋆ is a natural transformation with component morphisms
ϱX , i.e. the following diagram commutes for all f : X → Y :

Σ(X × B(X)) B(Σ⋆(X))

Σ(Y × B(Y )) B(Σ⋆(Y ))

ϱX

Σ(f×B(f)) BΣ⋆(f)
ϱY

(2.29)

Proof. Let f : X → Y . The proof proceeds on elements by case distinction on x ∈ Σ(X × B X):

If x = ∅, then (BΣ⋆(f))(ϱX(∅)) = (BΣ⋆(f))(∅) = ∅ = ϱY (∅) = ϱY (Σ(f × B(f))(∅)).

If x = α (P, bP ), then

(BΣ⋆(f))(ϱX(α (P, bP )))
= (BΣ⋆ f)({(α, ηX(P ))})
= {(α, ηY (f(P )))}
= ϱY (α (f(P ), B(f)(bP )))
= ϱY (Σ(f × B(f))(α (P, bP )))

If x = (P, bP ) + (Q, bQ), then

(BΣ⋆(f))(ϱX((P, bP ) + (Q, bQ)))
= (BΣ⋆(f))(

{
(α, ηX(P ′))

∣∣ (α, P ′) ∈ bP

}
∪

{
(α, ηX(Q′))

∣∣ (α, Q′) ∈ bQ

}
)

=
{
(α, ηY (f(P ′)))

∣∣ (α, P ′) ∈ (bP )
}

∪
{
(α, ηY (f(Q′)))

∣∣ (α, Q′) ∈ (bQ)
}

=
{
(α, ηY (P ′))

∣∣ (α, P ′) ∈ B(f)(bP )
}

∪
{
(α, ηY (Q′))

∣∣ (α, Q′) ∈ B(f)(bQ)
}

= ϱY ((f(P ), B(f)(bP )) + (f(Q), B(f)(bQ)))
= ϱY (Σ(f × B(f))((P, bP ) + (Q, bQ)))

If x = (P, bP )|(Q, bQ), then

(BΣ⋆(f))(ϱX((P, bP )|(Q, bQ)))
= (BΣ⋆(f))

({
(α, (ηX(P ′))|(ηX(Q)))

∣∣ (α, P ′) ∈ bP

}
∪

{
(α, (ηX(P ))|(ηX(Q′)))

∣∣ (α, Q′) ∈ bQ

}
∪

{
(τ, (ηX(P ′))|(ηX(Q′)))

∣∣∣ (α, P ′) ∈ bP , (β, Q′) ∈ bQ, α = β
})

=
{
(α, (ηY (f(P ′)))|(ηY (f(Q))))

∣∣ (α, P ′) ∈ bP

}
∪

{
(α, (ηY (f(P )))|(ηY (f(Q′))))

∣∣ (α, Q′) ∈ bQ

}
∪

{
(τ, (ηY (f(P ′)))|(ηY (f(Q′))))

∣∣∣ (α, P ′) ∈ bP , (β, Q′) ∈ bQ, α = β
}

=
{
(α, (ηY (P ′))|(ηY (Q)))

∣∣ (α, P ′) ∈ B(f)(bP )
}

∪
{
(α, (ηY (P ))|(ηY (Q′)))

∣∣ (α, Q′) ∈ B(f)(bQ)
}

∪
{

(τ, (ηY (P ′))|(ηY (Q′)))
∣∣∣ (α, P ′) ∈ B(f)(bP ), (β, Q′) ∈ B(f)(bQ), α = β

}
= ϱY ((f(P ), B(f)(bP ))|(f(Q), B(f)(bQ)))
= ϱY (Σ(f × B(f))((P, bP )|(Q, bQ)))
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If x = (P, bP ) \ φ, then

(BΣ⋆(f))(ϱX((P, bP ) \ L))
= (BΣ⋆(f))(

{
(α, (ηX(P ′)) \ L)

∣∣ (α, P ′) ∈ bP , α, α 6∈ L
}
)

=
{
(α, (ηY (f(P ′))) \ L)

∣∣ (α, P ′) ∈ bP , α, α 6∈ L
}

=
{
(α, (ηY (P ′)) \ L)

∣∣ (α, P ′) ∈ B(f)(bP ), α, α 6∈ L
}

= ϱY ((f(P ), B(f)(bP )) \ L)
= ϱY (Σ(f × B(f))(P \ L))

If x = (P, bP ) [φ], then

(BΣ⋆(f))(ϱX((P, bP ) [φ]))
= (BΣ⋆(f))(

{
(φ(α), (ηX(P ′)) [φ])

∣∣ (α, P ′) ∈ bP

}
)

=
{
(φ(α), (ηY (f(P ′))) [φ])

∣∣ (α, P ′) ∈ bP

}
=

{
(φ(α), (ηY (P ′)) [φ])

∣∣ (α, P ′) ∈ B(f)(bP )
}

= ϱY ((f(P ), B(f)(bP )) [φ])
= ϱY (Σ(f × B(f))(P [φ]))

By the previously outlined steps we can obtain from ϱ a compositional operational semantics
with bisimulation as a congruence.

2.3.2 Higher-Order Abstract GSOS

In the previous section, we have seen how first-order abstract GSOS allows us to obtain a
compositional operational model of a language with a suited operational semantics. However,
we cannot encode “higher-order” languages, where we allow for programs to be passed as values.
The HO-GSOS framework introduced by Goncharov et al. [Gon+24] remedies this restriction
by giving a theory that provides compositionality results such as those obtained by first-order
abstract GSOS. In this section, we will review the part of the framework that is relevant for
the later development of this thesis.

Again, there is a rule format that specifies those rules that fit the framework:

(xj yj)j∈W

(
xi

z
yz

i

)
i∈W ,z∈{x1,...,xn}

f(x1, . . . , xn) t

(2.30)

(xj yj)j∈W

(
xi

z
yz

i

)
i∈W ,z∈{x,x1,...,xn}

f(x1, . . . , xn) x
t

(2.31)

where f ∈ Σ is an operator of arity n, W ⊆ {1, . . . , n}, W = {1, . . . , n} \ W and t is a term
built over variables V := {x, xi, yi, y

xj

i }, i.e. t ∈ Σ⋆(V ).

Rules of this rule format now correspond to families of maps

ϱX,Y : Σ(X × B(X, Y )) → B(X, Σ⋆(X + Y )) (2.32)

which are dinatural in X and natural in Y , which we will call a HO-GSOS law.
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A HO-GSOS law induces an operational model as a B(µΣ, −)-coalgebra ι♣ : µΣ → B(µΣ, µΣ)
given by initiality of (µΣ, ι):

ΣµΣ µΣ

Σ(µΣ × B(µΣ, µΣ)) µΣ × B(µΣ, Σ⋆(µΣ + µΣ)) µΣ × B(µΣ, µΣ)

ι

Σ(〈idµΣ,ι♣〉) 〈idµΣ,ι♣〉
〈ι◦Σ(fst),ϱµΣ,µΣ〉 idµΣ×B(idµΣ,ι̂◦Σ⋆(∇µΣ))

(2.33)

If B(µΣ, −) has a final coalgebra, then we can obtain strong bisimulation via the following
pullback:

∼ µΣ

µΣ νγ. B(µΣ, γ)

fst|∼

snd|∼

⌟
coit ι♣

coit ι♣

(2.34)

By compositionality, this strong bisimulation is a congruence with respect to Σ.
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3 CCS in Higher-Order Abstract GSOS

This section contains the encoding of guarded CCS with fixpoints in the framework of higher-
order abstract GSOS. For the simpler case of CCS without fixpoints, see Example 2.19, where
we give the formulation in first-order abstract GSOS. From Section 3.1 to Section 3.3 we will
see how one can reformulate the standard operational semantics of CCS given in Figure 2.2 to
obtain an equivalent semantics that fits into the rule format of HO-GSOS. In Section 3.4 this
operational semantics is used to define a dinatural transformation ϱ which allows us to apply
the HO-GSOS framework and obtain a compositional operational model of guarded CCS.

3.1 Semantics of the Fixpoint operator

Recall the standard semantics of the fixpoint operator given in Figure 2.2:

P [0 7→ fix P ] α
P ′

fix
fix P

α
P ′

(3.1)

This does not fit into the rule format of higher-order GSOS. In particular, we cannot encode
the term P [0 7→ fix P ] containing a substitution in the left-hand side of the premise since it is
not a subterm of fix P in the conclusion. Therefore, the standard operational semantics is not
directly suitable for encoding in HO-GSOS.

Let us therefore consider an alternative rule for the fixpoint:

P
α

P ′
fix’

fix P
α

P ′ [0 7→ fix P ]
(3.2)

The main idea is to move the substitution down into the right-hand side of the premise, where
the HO-GSOS rule format is more lenient. To illustrate that this move is in fact valid, consider
this example derivation:

Example 3.1 (Revisiting Example 2.9). Let us reconsider the term P := fix (fix α #1 ). We
can show that in the alternative fixpoint semantics, P also takes an α-step to itself:

act
α #1 α

fix′ #1
fix’

fix α #1 α
fix′ (#1 [0 7→ fix α #1 ]) = #0

fix’
fix fix α #1 α

fix′ (#0 [0 7→ fix fix α #1 ]) = fix fix α #1

To show that one may use both versions of the fixpoint rule interchangeably, we first need to
examine how substitutions interact with the standard step relation. In the following, let fix′

denote the operational semantics with the alternative rule for the fixpoint.

First, let us show that we can apply a substitution to both sides of the step relation:

Lemma 3.2 ( step-subst ). Let P , P ′ be processes, σ a substitution. If P takes an α-step
to P ′ then Pσ takes an α-step to P ′σ:

P
α

P ′ =⇒ Pσ
α

P ′σ
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Proof. By induction over the derivation. The cases for non-fixpoint steps are trivial. In the fix
case we get

P [0 7→ fix P ] α
P ′

fix
fix P

α
P ′

Now by the induction hypothesis we have (P [0 7→ fix P ]) σ
α

P ′ σ. By Theorem 2.8 we get
(P [0 7→ fix P ]) σ = (P (↑ σ)) [0 7→ fix (P (↑ σ))] and thus

(P (↑ σ)) [0 7→ fix (P (↑ σ))]
fix

(fix P ) σ = fix (P (↑ σ)) α
P ′ σ

Now we can state the equivalence of the two operational semantics. This equivalence comes
with a caveat: It only holds if the process taking a step is guarded. To see why this is the case,
consider this counterexample:

Example 3.3 (An unguarded term). Let P := fix (#0 |α ∅ + α ∅). P is an unguarded term,
since the variable #0 is not prefixed by any action. Nevertheless, one can show that P takes a
τ -step in the standard semantics:

act
α ∅ α ∅ suml

α ∅ + α ∅ α ∅ parr
P |α ∅ + α ∅ α

P |∅
fix

fix (#0 |α ∅ + α ∅) α
P |∅

act
α ∅ α ∅ sumr

α ∅ + α ∅ α ∅
sync

P |α ∅ + α ∅ τ (P |∅)|∅
fix

fix (#0 |α ∅ + α ∅) τ (P |∅)|∅

Trying to derive the same τ -step in the alternative fixpoint semantics fails: The unguarded
variable on the left-hand side of the parallel composition cannot take a step:

#0

fix’
α| ∅ α ∅

sumr
α ∅ + α ∅ α ∅

sync
#0 |α ∅ + α ∅ τ (P |∅)|∅

fix’
fix (#0 |α ∅ + α ∅) τ

fix′ (P |∅)|∅

This shows that for an unguarded process like P the standard semantics allows behaviour which
our alternative semantics cannot. Thus we will restrict ourselves to guarded processes in the
following.

Let us now prove a property relating guarded terms with substitutions in the standard opera-
tional semantics that we are going to need later on:

Lemma 3.4 ( subst-fix-swap ). Let P be a guarded term, T and P ′ arbitrary terms. If
P [0 7→ T ] α

P ′ then there exists a term Q such that P
α

Q and P ′ = Q [0 7→ T ].

Proof. We proceed by simultaneous induction over the derivation of P [0 7→ T ] α
P ′ and over

P itself.
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If P = #n, then P is not guarded and the case holds vacuously. If we left out the guardedness
assumption, the proposition would not hold: Consider the case where P := #0 and
T := α ∅. Then clearly P [0 7→ T ] = α ∅ α ∅, but there cannot exist a term Q such
that P

α
Q.

In the remaining non-fixpoint cases the goal follows directly:

If P = R + S and R + S
τ

R′ + S′, then . Since P is guarded, so are R and S. We can
therefore apply the induction hypothesis to both and obtain terms R′′ and S′′ such that
R

α
R′′, R′ = R′′ [0 7→ T ] and S

α
S′′, S′ = S′′ [0 7→ T ]. Then there exists R′′|S′′

such that
R′′ α

R′ S′′ α
S′

sync
R′′|S′′ τ

R′|S′

and R′|S′ = (R′′|S′′) [0 7→ T ] holds directly from the above equalities.

If P = fix R and (fix R) [0 7→ T ] = fix (R [1 7→ T ]) α
P ′, then we know that since P is guarded,

so is R. By Lemma 2.16 we know that R [0 7→ fix R] is guarded. Furthermore we can ob-
tain

(R [1 7→ T ]) [0 7→ fix (R [1 7→ T ])] α
P ′

fix
fix (R [1 7→ T ]) α

P ′

From Theorem 2.8 we know that

(R [1 7→ T ]) [0 7→ fix (R [1 7→ T ])] = (R [0 7→ fix R]) [0 7→ T ]

With this we can apply the induction hypothesis to obtain a term Q such that R [0 7→ fix R] α

Q and therefore
R [0 7→ fix R] α

Q
fix

fix R
α

Q

Now we can state the main equivalence:

Theorem 3.5 ( fix⇔fix' ). For guarded terms, the alternative fixpoint semantics is
equivalent to the standard semantics.

guarded(P ) =⇒ (P α
P ′ ⇐⇒ P

α
fix′ P ′)

for all α ∈ A, P, P ′ ∈ Proc

Proof. Since the two semantics share all rules except the ones corresponding to the fixpoint
operator, it is sufficient to prove the property for the corresponding rules.

“=⇒” We proceed by induction over the derivation of fix P
α

P ′. We assume

P [0 7→ fix P ] α
P ′

fix
fix P

α
P ′

We can now apply Lemma 3.4 to obtain a term Q such that P
α

Q and P ′ = Q [0 7→ fix P ].
By the induction hypothesis we get P

α
fix′ Q and thus

P
α

fix′ Q
fix’

fix P
α

fix′ Q [0 7→ fix P ]

By the above equality we finally obtain fix P
α

fix′ P ′.
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“⇐=” Here we induct over the fix′-derivation of fix P
α

fix′ P ′ [0 7→ fix P ]. We assume

P
α

fix′ P ′
fix’

fix P
α

fix′ P ′ [0 7→ fix P ]

By the induction hypothesis we get P
α

P ′, which we can apply to Lemma 3.2 with
σ := [0 7→ fix P ] to get

P [0 7→ fix P ] α
P ′ [0 7→ fix P ]

fix
fix P

α
P ′ [0 7→ fix P ]

This equivalence allows us to avoid the problematic substitution in the premise, at least if we
restrict to guarded terms. We are not out of the woods yet: Recall that in the HO-GSOS
format, the right-hand side of the conclusion should be in Σ⋆(X + Y ) for some objects X and
Y , which is not the case for P ′ [0 7→ fix P ] in our current rule. We will therefore need to move
the substitution again, so that it finally fits the HO-GSOS format. Our efforts here were not in
vain, since we will be using the alternative fixpoint semantics as a intermediate when proving
the equivalence of a new semantics to the standard semantics.

3.2 Labelling with Substitutions

In the previous section we have seen how the occurrences of substitutions in the operational
semantics that are necessary to define the behaviour of the fixpoint operator are problematic.
Even after moving the substitution from the premise into the conclusion, it is still not clear how
this translates into the categorical framework of higher-order abstract GSOS. A position that
has remained untouched so far presents itself now: Instead of labelling steps just by actions
from a set A, we can add a substitution that should be applied to the resulting term.

We will denote this new operational semantics as α
σ where α ∈ A and σ is a substitution.

Since we have changed the set of labels, we need a different notion of equivalence between the
standard semantics and this new one:

(∃ P ′. P
α

P ′ ∧ P ′′ = P ′ σ) ⇐⇒ P
α

σ P ′′ (3.3)

Figure 3.1 lays out the rules for this new operational semantics. Most non-fixpoint rules behave
analogously to the standard semantics, except when a term from the left side is reused on the
right side. In these cases, the substitution needs to be applied to the term. This happens in the
act rule, where σ is applied to P and in the parl and parr rules. There one can see that σ is
only applied respectively to the right and left sides of the parallel composition, i.e. the terms
that do not take a step in their respective rules.

Let us illustrate how this new operational semantics works:

Example 3.6 (Revisiting Example 2.9, again). We can show that the term P := fix (fix α #1 )
takes an α-step to itself, as we did in Examples 2.9 and 3.1:

(#1 [0 7→ fix α #1 ]) [0 7→ fix fix α #1 ] = #0 [0 7→ fix fix α #1 ] = fix fix α #1
act

α #1 α
[0 7→fix fix α #1 ]◦[0 7→fix α #1 ] fix fix α #1

fix
fix α #1 α

[0 7→fix fix α #1 ] fix fix α #1
fix

fix fix α #1 α
id fix fix α #1
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P ′ = Pσ act
α P

α
σ P ′

P
α

σ P ′
suml

P + Q
α

σ P ′

Q
α

σ Q′
sumr

P + Q
α

σ Q′

P
α

σ P ′
parl

P |Q α
σ P ′|Q σ

Q
α

σ Q′
parr

P |Q α
σ P σ|Q′

P
α

σ P ′ Q
α

σ Q′
sync

P |Q τ
σ P ′|Q′

P
α

σ P ′ α, α /∈ L
res

P \ L
α

σ P ′

P
α

σ P ′
ren

P [φ]
φ(α)

σ P ′ [φ]

P
α

(σ◦[0 7→fix P]) P ′

fix
fix P

α
σ P ′

Figure 3.1: Operational Semantics labelled with substitutions

Now let us prove that the equivalence holds for the alternative fixpoint semantics:

Theorem 3.7 ( subst-step⇔fix' ). The substitution-labelled operational semantics is
equivalent to the alternative fixpoint semantics:

(∃ P ′. P
α

fix′ P ′ ∧ P ′′ = P ′ σ) ⇐⇒ P
α

σ P ′′

for all α ∈ A, P, P ′′ ∈ Proc, σ ∈ Subst.

Proof. We consider both directions of the equivalence separately:

“=⇒” Let P ′ be a process such that P
α

fix′ P ′ and P ′′ = P ′σ. We proceed by induction over
the derivation of P

α
fix′ P ′:

If P = α P ′, then P takes an act step:

act
α Q

α
fix′ P ′

Since P ′′ = P ′σ we need to show that P takes an α-step to P ′′ in the substitution-
labelled semantics, which it does by:

P ′′ = P ′σ act
α P ′ α

σ P ′′

If P = R|T and P takes a parl step, then

R
α

fix′ R′
parl

(R|T ) α
fix′ (R′|T ) = P ′
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Since P ′′ = P ′σ = (R′σ)|(Tσ), we can apply the induction hypothesis to obtain
R

α
σ R′σ and therefore:

R
α

σ R′σ parl
R|T α

σ R′σ|(Tσ) = P ′′

The remaining non-fixpoint cases are equally trivial, so let us move on:

If P = fix Q, then P takes a fix′ step:

Q
α

fix′ Q′
fix’

fix Q
α

fix′ Q′ [0 7→ fix Q] = P ′

By the induction hypothesis, we get Q
α

σ◦[0 7→fix Q] P ′(σ ◦ [0 7→ fix Q]) and there-
fore:

Q
α

σ◦[0 7→fix Q] P ′(σ ◦ [0 7→ fix Q])
fix

fix Q
α

σ P ′(σ ◦ [0 7→ fix Q]) = P ′′

“⇐=” This direction follows immediately by induction over the derivation of P
α

σ P ′′.

Corollary 3.8 ( subst-step⇔fix ). For guarded processes, the standard operational se-
mantics is equivalent to the substitution-labelled operational semantics.

(∃ P ′. P
α

P ′ ∧ P ′′ = P ′ σ) ⇐⇒ P
α

σ P ′′

for all α ∈ A, P, P ′′ ∈ Proc, σ ∈ Subst.

Proof. This follows directly from Theorem 3.5 and Theorem 3.7.

3.3 Labelling with Finite Term Sequences

We should clarify how substitutions are modelled categorically: One approach is to use objects
of type ∐

n∈N
Y (Σ⋆X)n

(3.4)

where X and Y are sets of variables. This would model arbitrary substitutions. In our case
however, we can get away with using a more restrictive model. In Figure 3.1 we can see that
the fix rule is the only rule modifying the labelled substitution. Then we compose with a sub-
stitution [0 7→ fix P ]. This means that all substitutions that occur in labels are the composition
of substitutions of that shape.

We can model these substitutions in a simpler way as objects of type

Y (1+X)∗ (3.5)

We will use ε ∈ (1+X)∗ to denote the empty sequence. For a sequence ξ and element x ∈ 1+X,
we denote by x :: ξ the sequence given by adding x to the beginning of ξ. Since we use the left
summand of 1+X to designate a “hole” in the substitution, let us use some suggestive notation
by denoting □ := inl(∗).

Figure 3.2 illustrates how such a substitution is applied to the terms of CCS. Notice how in the
name1 rule, we wrap the variable Pi obtained from ξ in a fixpoint operator.
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P ′ = P [ξ]
actsub

(α P )[ξ] = α P ′

Pi 6= □
name1

#i [P0, P1, . . . , Pn] = fix Pi

Pi = □ name2
#i [P0, P1, . . . , Pn] = #i

P [ξ] = P ′ Q[ξ] = Q′
sumsub

(P + Q)[ξ] = P ′ + Q′

P [ξ] = P ′ Q[ξ] = Q′
parsub

(P |Q)[ξ] = P ′|Q′

P [ξ] = P ′
ressub

(P \ L)[ξ] = P ′ \ L

P [ξ] = P ′
rensub

(P [φ])[ξ] = P ′ [φ]

P [□, ξ] = P ′
fixsub

(fix P )[ξ] = fix P ′

Figure 3.2: Semantics of term sequence application

The operational semantics labelled with term sequences can be found in Figure 3.3. Observe
that this mirrors the operational semantics labelled with substitutions from Figure 3.1 very
closely.

Theorem 3.9. The operational semantics labelled with finite term sequences is equivalent to
the labelling with substitutions.

Proof. This follows directly since the rules only differ in the type of substitutions.

Then finally we can state that this operational semantics is equivalent to the standard semantics:

Corollary 3.10. For guarded processes, the operational semantics labelled with finite term
sequences is equivalent to the standard operational semantics.

Proof. This follows from Corollary 3.8 and theorem 3.9.

3.4 Abstract Modeling of the Semantics

Now that we have defined an operational semantics that fits the HO-GSOS rule format, we
can proceed with modelling this semantics categorically. Recall from Equation (2.32), that a
higher-order GSOS law is a family of maps

ϱX,Y : Σ(X × B(X, Y )) → B(X, Σ⋆(X + Y ))

dinatural in X and natural in Y . To give meaning to this, we first need to define what the
functors Σ and B are. We define Σ by the standard construction for signature functors as

Σ X =
∐
f∈Σ

Xar(f) (3.6)
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P ′ = P [ξ]
act

α P
α

ξ P ′

P
α

ξ P ′
suml

P + Q
α

ξ P ′

Q
α

ξ Q′
sumr

P + Q
α

ξ Q′

P
α

ξ P ′
parl

P |Q α
ξ P ′|Q[ξ]

Q
α

ξ Q′
parr

P |Q α
ξ P [ξ]|Q′

P
α

ξ P ′ Q
α

ξ Q′
sync

P |Q τ
ξ P ′|Q′

P
α

ξ P ′ α, α /∈ L
res

P \ L
α

ξ P ′

P
α

σ P ′
ren

P [φ]
φ(α)

ξ P ′ [φ]

P
α

P,P0,...,Pn P ′
fix

fix P
α

P0,...,Pn P ′

Figure 3.3: Operational Semantics labelled with term sequences

where Σ := N∪{∅, +, |, fix } ∪ {actα | α ∈ A} ∪ {restrL | L ⊆ A} ∪ {renφ | φ ∈ Ren(A)}

In order for this to match the syntax of CCS more closely we will again afford ourselves some
notational liberty, e.g. writing α P to denote inactα(P ).

With the syntax covered, we need to consider the behaviour functor. With the operational
semantics labelled with term sequences, the behaviour of a process P consists of two parts: One
that captures the behaviour of the term sequence label on P and another part that corresponds
to the LTS obtained from applying the operational semantics rules on P . In the second part,
we again need to label any process that P can take a step to with the behaviour of the labelled
term sequence on that process. Our behaviour functor is therefore given by:

B(X, Y ) = Y (1+X)∗ × Pω1
(
A × Y (1+X)∗)

(3.7)

The operational semantics given in Figure 3.3 then corresponds to a dinatural transformation

ϱX,Y : Σ(X × B(X, Y )) → B(X, Σ⋆(X + Y ))

where ϱX,Y := 〈ϱl, ϱr〉 is given by

ϱl : Σ(X × B(X, Y )) → (Σ⋆(X + Y ))(1+X)∗

ϱl(∅) = λ ξ. ιX+Y (∅)

ϱl(#m) = λ (P1 , . . . , Pn).

{
ιX+Y (fix (ηX+Y (inl(P )))) m ≤ n ∧ Pm = inl(P )
ιX+Y (m) otherwise

ϱl(α (P, σ, b)) = λ ξ. ιX+Y (α ηX+Y (inr(σ(ξ))))
ϱl((P, σP , bP ) + (Q, σQ, bQ)) = λ ξ. ιX+Y ((ηX+Y (inr(σP (ξ)))) + (ηX+Y (inr(σQ(ξ)))))
ϱl((P, σP , bP )|(Q, σQ, bQ)) = λ ξ. ιX+Y ((ηX+Y (inr(σP (ξ))))|(ηX+Y (inr(σQ(ξ)))))
ϱl((P, σP , bP ) \ L) = λ ξ. ιX+Y (ηX+Y (inr(σP (ξ))) \ L)
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ϱl((P, σP , bP ) [L]) = λ ξ. ιX+Y (ηX+Y (inr(σP (ξ))) [φ])
ϱl(fix (P, σP , bP )) = λ ξ. ιX+Y (fix (ηX+Y (inr(σP (□ :: ξ)))))

and

ϱr : Σ(X × B(X, Y )) → Pω1

(
A × Y (1+X)∗

)
ϱr(∅) = ∅
ϱr(#m) = ∅
ϱr(α (P, σ, b)) = {(α, ηX+Y ◦ inr ◦ σ)}
ϱr((P, σP , bP ) + (Q, σQ, bQ)) = {(α, ηX+Y ◦ inr ◦ σ) | (α, σ) ∈ bP }

∪ {(α, ηX+Y ◦ inr ◦ σ) | (α, σ) ∈ bQ}
ϱr((P, σP , bP )|(Q, σQ, bQ)) = {(α, λ ξ. ιX+Y ((ηX+Y (inr(σ(ξ))))|(ηX+Y (inr(σQ(ξ)))))) | (α, σ) ∈ bP }

∪ {(α, λ ξ. ιX+Y ((ηX+Y (inr(σP (ξ))))|(ηX+Y (inr(σ(ξ)))))) | (α, σ) ∈ bQ}
∪

{
(τ, λ ξ. ιX+Y ((ηX+Y (inr(σ(ξ))))|(ηX+Y (inr(σ′(ξ))))))

∣∣ (α, σ) ∈ bP , (β, σ′), α = β
}

ϱr((P, σP , b) \ L) = {(α, ηX+Y ◦ inr ◦ σ) | (α, σ) ∈ b, α 6∈ L}
ϱr((P, σ, b) [φ]) = {(φ(α), ηX+Y ◦ inr ◦ σ) | (α, σ) ∈ b}
ϱr(fix (P, σP , b)) = {(α, λ ξ. ηX+Y (inr(σ(□ :: ξ)))) | (α, σ) ∈ b}

Theorem 3.11. ϱ is dinatural in X and natural in Y .

Proof. We will consider the two conditions separately:

ϱ is dinatural in X, which means the following diagram commutes for all X, Y, Z ∈ Set and
f : X → Z:

Σ(X, B(X, Y )) B(X, Σ⋆(X + Y ))

Σ(X × B(Z, Y )) B(X, Σ⋆(Z + Y ))

Σ(Z, B(Z, Y )) B(Z, Σ(Z + Y )⋆)

ϱX,Y

B(idX ,Σ⋆(f+idY ))Σ(idX×B(f,idY ))

Σ(f×B(idZ ,idY ))
ϱZ,Y

B(f,Σ⋆(idZ+idY ))

(3.8)
We show this on elements and by case distinction on x ∈ Σ(X × B(Z, Y )):

If x = ∅, then

B(idX , Σ⋆(f + idY ))(ϱX,Y (Σ(idX × B(f, idY ))(∅)))
= B(idX , Σ⋆(f + idY ))(ϱX,Y (∅))
= B(idX , Σ⋆(f + idY ))((λ ξ. ιX+Y (∅)), ∅)
= (Σ⋆(f + idY ) ◦ (λ ξ. ιX+Y (∅)), ∅)
= (Σ⋆(idZ + idY ) ◦ (λ ξ. ιX+Y (∅)) ◦ f, ∅)
= B(f, Σ⋆(idZ + idY ))((λ ξ. ιX+Y (∅)), ∅)
= B(f, Σ⋆(idZ + idY ))(ϱZ,Y (∅))
= B(f, Σ⋆(idZ + idY ))(ϱZ,Y (Σ(f × B(idZ , idY ))(∅)))

If x = #m, then we fix

g := λ (P1 , . . . , Pn).
{

ιX+Y (fix (ηX+Y (inl(P )))) m ≤ n ∧ Pm = inl(P )
ιX+Y (m) otherwise
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and then

B(idX , Σ⋆(f + idY ))(ϱX,Y (Σ(idX × B(f, idY ))(#m)))
= B(idX , Σ⋆(f + idY ))(ϱX,Y (#m))
= B(idX , Σ⋆(f + idY ))(g, ∅)
= (Σ⋆(f + idY ) ◦ g, ∅)
= (Σ⋆(idZ + idY ) ◦ g ◦∗ (f), ∅)
= B(f, Σ⋆(idZ + idY )) (g, ∅)
= B(f, Σ⋆(idZ + idY ))(ϱZ,Y (#m))
= B(f, Σ⋆(idZ + idY ))(ϱZ,Y (Σ(f × B(idZ , idY ))(#m)))

If x = α (P, σ, b), then

B(idX , Σ⋆(f + idY ))(ϱX,Y (Σ(idX × B(f, idY ))(α (P, σ, b))))
= B(idX , Σ⋆(f + idY ))(ϱX,Y (α (P, σP ◦∗ (f), {(β, σ ◦∗ (f)) | (β, σ) ∈ b})))
= B(idX , Σ⋆(f + idY ))((λ ξ. ιX+Y (α (ηX+Y (inr(σ(x)))))), {(α, ηX+Y ◦ inr ◦ σ)})
= (Σ⋆(f + idY ) ◦ (λ ξ. ιX+Y (α (ηX+Y (inr(σ(x)))))), {(α, ηX+Y ◦ inr ◦ σ)})
= (Σ⋆(idZ + idY ) ◦ (λ ξ. ιX+Y (α (ηX+Y (inr(σ(x)))))) ◦ f, {(α, ηX+Y ◦ inr ◦ σ)})
= B(f, Σ⋆(idZ + idY ))((λ ξ. ιX+Y (α (ηX+Y (inr(σ(x)))))), {(α, ηX+Y ◦ inr ◦ σ)})
= B(f, Σ⋆(idZ + idY ))(ϱZ,Y (α (f(P ), σ, b)))
= B(f, Σ⋆(idZ + idY ))(ϱZ,Y (Σ(f × B(idZ , idY ))(α (P, σ, b))))

If x = (P, σP , bP )|(Q, σQ, bQ), then
B(idX , Σ⋆(f + idY ))(ϱX,Y (Σ(idX × B(f, idY ))((P, σP , bP )|(Q, σQ, bQ))))

= B(idX , Σ⋆(f + idY ))(ϱX,Y ((P, σP ◦∗ (f), {(β, σ ◦∗ (f)) | (β, σ) ∈ bP })
| (Q, σQ ◦∗ (f), {(β, σ ◦∗ (f)) | (β, σ) ∈ bQ})))

= B(idX , Σ⋆(f + idY ))
((λ ξ. ιX+Y ((ηX+Y (inr(σP (∗(f)(ξ)))))|(ηX+Y (inr(σQ(∗(f)(ξ))))))),

( {(α, λ ξ. ιX+Y ((ηX+Y (inr(σ(∗(f)(ξ)))))|(ηX+Y (inr(σQ(∗(f)(ξ))))))) | (α, σ) ∈ bP }
∪ {(α, λ ξ. ιX+Y ((ηX+Y (inr(σP (∗(f)(ξ)))))|(ηX+Y (inr(σ(∗(f)(ξ))))))) | (α, σ) ∈ bQ}
∪

{
(τ, λ ξ. ιX+Y ((ηX+Y (inr(σ(∗(f)(ξ)))))|(ηX+Y (inr(σ′(∗(f)(ξ)))))))

∣∣ (α, σ) ∈ bP , (β, σ′), α = β
}

))

= (Σ⋆(f + idY ) ◦ (λ ξ. ιX+Y ((ηX+Y (inr(σP (∗(f)(ξ)))))|(ηX+Y (inr(σQ(∗(f)(ξ))))))),
({(α, λ ξ. ιX+Y ((ηX+Y (inr(σ(∗(f)(ξ)))))|(ηX+Y (inr(σQ(∗(f)(ξ))))))) | (α, σ) ∈ bP }
∪ {(α, λ ξ. ιX+Y ((ηX+Y (inr(σP (∗(f)(ξ)))))|(ηX+Y (inr(σ(∗(f)(ξ))))))) | (α, σ) ∈ bQ}
∪

{
(τ, λ ξ. ιX+Y ((ηX+Y (inr(σ(∗(f)(ξ)))))|(ηX+Y (inr(σ′(∗(f)(ξ)))))))

∣∣ (α, σ) ∈ bP , (β, σ′), α = β
}

))

= (Σ⋆(idZ + idY ) ◦ (λ ξ. ιX+Y ((ηX+Y (inr(σP (∗(f)(ξ)))))|(ηX+Y (inr(σQ(∗(f)(ξ))))))) ◦ f,

({(α, λ ξ. ιX+Y ((ηX+Y (inr(σ(∗(f)(ξ)))))|(ηX+Y (inr(σQ(∗(f)(ξ))))))) | (α, σ) ∈ bP }
∪ {(α, λ ξ. ιX+Y ((ηX+Y (inr(σP (∗(f)(ξ)))))|(ηX+Y (inr(σ(∗(f)(ξ))))))) | (α, σ) ∈ bQ}
∪

{
(τ, λ ξ. ιX+Y ((ηX+Y (inr(σ(∗(f)(ξ)))))|(ηX+Y (inr(σ′(∗(f)(ξ)))))))

∣∣ (α, σ) ∈ bP , (β, σ′), α = β
}

))

= B(f, Σ⋆(idZ + idY ))((λ ξ. ιX+Y ((ηX+Y (inr(σP (∗(f)(ξ)))))|(ηX+Y (inr(σQ(∗(f)(ξ))))))),
({(α, λ ξ. ιX+Y ((ηX+Y (inr(σ(∗(f)(ξ)))))|(ηX+Y (inr(σQ(∗(f)(ξ))))))) | (α, σ) ∈ bP }
∪ {(α, λ ξ. ιX+Y ((ηX+Y (inr(σP (∗(f)(ξ)))))|(ηX+Y (inr(σ(∗(f)(ξ))))))) | (α, σ) ∈ bQ}
∪

{
(τ, λ ξ. ιX+Y ((ηX+Y (inr(σ(∗(f)(ξ)))))|(ηX+Y (inr(σ′(∗(f)(ξ)))))))

∣∣ (α, σ) ∈ bP , (β, σ′), α = β
}

))
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= B(f, Σ⋆(idZ + idY ))(ϱZ,Y ((f(P ), σP , bP )|(f(Q), σQ, bQ)))
= B(f, Σ⋆(idZ + idY ))(ϱZ,Y (Σ(f × B(idZ , idY ))((P, σP , bP )|(Q, σQ, bQ))))

The cases for sum, restriction and renaming follow analogously, so let us finally consider the
fixpoint operator:

If x = fix (P, σP , b), then

B(idX , Σ⋆(f + idY ))(ϱX,Y (Σ(idX × B(f, idY ))(fix (P, σ, b))))
= B(idX , Σ⋆(f + idY ))(ϱX,Y (fix (P, σ ◦∗ (f), {(β, σ ◦∗ (f)) | (β, σP ) ∈ b})))
= B(idX , Σ⋆(f + idY ))((λ ξ. ιX+Y (fix (ηX+Y (inr(σ(∗(f)(□ :: ξ))))))),

{(α, λ ξ. ηX+Y (inr(σ(∗(f)(□ :: ξ))))) | (α, σ) ∈ b})
= (Σ⋆(f + idY ) ◦ (λ ξ. ιX+Y (fix (ηX+Y (inr(σ(∗(f)(□ :: ξ))))))),

{(α, λ ξ. ηX+Y (inr(σ(∗(f)(□ :: ξ))))) | (α, σ) ∈ b})
= (Σ⋆(idZ + idY ) ◦ (λ ξ. ιX+Y (fix (ηX+Y (inr(σ(∗(f)(□ :: ξ))))))) ◦ f,

{(α, λ ξ. ηX+Y (inr(σ(∗(f)(□ :: ξ))))) | (α, σ) ∈ b})
= B(f, Σ⋆(idZ + idY ))((λ ξ. ιX+Y (fix (ηX+Y (inr(σ(∗(f)(□ :: ξ))))))),

{(α, λ ξ. ηX+Y (inr(σ(∗(f)(□ :: ξ))))) | (α, σ) ∈ b})
= B(f, Σ⋆(idZ + idY ))(ϱZ,Y (fix (f(P ), σ, b)))
= B(f, Σ⋆(idZ + idY ))(ϱZ,Y (Σ(f × B(idZ , idY ))(fix (P, σ, b))))

ϱ is natural in Y , i.e. the following diagram commutes for all g : Y → W :

Σ(X × B(X, Y )) B(X, Σ⋆(X + Y ))

Σ(X × B(X, W )) B(X, Σ⋆(X + W ))

ϱX,Y

Σ(idX×B(idX ,g)) B(idX ,Σ⋆(idX+g))
ϱX,W

(3.9)

Again, we show this on elements by case distinction on x ∈ Σ(X × B(X, Y )):

If x = ∅, then

B(idX , Σ⋆(idX + g))(ϱX,Y (∅))
= B(idX , Σ⋆(idX + g))((λ ξ. ιX+Y (∅)), ∅)
= ((Σ⋆(idX + g)(λ ξ. ιX+Y (∅)) ◦∗ (idX)), ∅)
= ((λ ξ. ιX+Y (∅)), ∅)
= ϱX,W (∅)
= ϱX,W (Σ(idX × B(idX , g))(∅))

If x = #m, then we fix

h := λ (P1 , . . . , Pn).
{

ιX+Y (fix (ηX+Y (inl(P )))) m ≤ n ∧ Pm = inl(P )
ιX+Y (m) otherwise

and then

B(idX , Σ⋆(idX + g))(ϱX,Y (#m))
= B(idX , Σ⋆(idX + g))(h, ∅)
= (Σ⋆(idX + g) ◦ h, ∅)
= ϱX,W (#m)
= ϱX,W (Σ(idX + B(idX , g))(#m))
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If x = α (P, σ, b), then

B(idX , Σ⋆(idX + g))(ϱX,Y (α (P, σ, b)))
= B(idX , Σ⋆(idX + g))((λ ξ. ιX+Y (α (ηX+Y (inr(σ(ξ)))))), {(α, ηX+Y ◦ inr ◦ σ)})
= (Σ⋆(idX + g) ◦ (λ ξ. ιX+Y (α (ηX+Y (inr(σ(ξ)))))), {(α, Σ⋆(idX + g) ◦ ηX+Y ◦ inr ◦ σ)})
= ((λ ξ. ιX+W (α ηX+W (inr(g(σ(ξ)))))), {(α, ηX+W ◦ inr ◦ g ◦ σ)})
= ϱX,W (α (P, g ◦ σ,

{
(β, g ◦ σ′)

∣∣ (β, σ′) ∈ b
}
))

= ϱX,W (Σ(idX × B(idX , g))(α (P, σ, b)))

The cases for parallel composition, sum, restriction and renaming follow analogously,
so let us finally consider the fixpoint operator:

If x = fix (P, σ, b), then

B(idX , Σ⋆(idX + g))(ϱX,Y (fix (P, σ, b)))
= B(idX , Σ⋆(idX + g))((λ ξ. ιX+Y (fix (ηX+Y (inr(σ(□ :: ξ)))))),

{(α, λ ξ. ηX+Y (inr(σP (□ :: ξ)))) | (α, σP ) ∈ b})
= (Σ⋆(idX + g) ◦ (λ ξ. ιX+Y (fix (ηX+Y (inr(σ(□ :: ξ)))))),

{(α, λ ξ. Σ⋆(idX + g)(ηX+Y (inr(σP (□ :: ξ))))) | (α, σP ) ∈ b})
= ((λ ξ. ιX+Y (fix (ηX+W (inr(g(σ(□ :: ξ))))))),{

(α, λ ξ. ηX+Y (inr(σP (□ :: ξ))))
∣∣ (α, σP ) ∈

{
(β, g ◦ σ′)

∣∣ (β, σ′) ∈ b
}}

)
= ϱX,W (fix (P, g ◦ σ,

{
(β, g ◦ σ′)

∣∣ (β, σ′) ∈ b
}
))

= ϱX,W (Σ(idX × B(idX , g))(fix (P, σ, b)))

Now that we have defined ϱ, we plug it into the framework of HO-GSOS, as discussed in
Section 2.3.2. That means that we obtain a B(µΣ, −)-coalgebra γ : µΣ → B(µΣ, µΣ). Taking
the pullback of coit γ with itself we get strong bisimulation on guarded CCS processes with
fixpoints as a Σ-congruence.
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4 Notes on the Agda-Formalization

Much of this thesis has been formalized in the proof assistant Agda [Agd]. The implementation
can be found on the WWW at https://github.com/flogth/ccs. This section will highlight
some of the choices made and difficulties encountered.

Representation of the Syntax The formalization takes an approach to representing the syntax
of CCS that is slightly different from the one presented in this thesis: Instead of having a fixed
type Proc of terms, we define a family (Proc n)n∈N of types where P : Proc n is a term with
at most n free variables. This idea was adapted from Programming Language Foundations in
Agda (PLFA) [WKS22], were it is used to implement the simply-typed λ-calculus. While they
index their family of terms over lists of types (contexts), the untyped nature of CCS allows us
to simplify the index to just natural numbers. Sticking to this representation of terms allows
us to easily adapt large parts of the meta theory regarding substitutions from PLFA.

The two constructors of the Proc family where this becomes relevant are the ones for variables
and fixpoints. The variable constructor #_ ensures that we cannot refer to any variable greater
than n:

#_ : ∀ {n} → (x : Fin n) → Proc n

The type Fin n is given in the standard library [The24] and corresponds to the set {0, 1, . . . , n−
1}.

For the fixpoint operator, we need to ensure that the body of the term is allowed to reference
exactly one more variable than the whole term, namely the variable being bound:

fix : ∀ {n} → (P : Proc (suc n)) → Proc n

Some of the meta theory around substitutions, first and foremost the subst-commute the-
orem are again adapted from PLFA. That formalization relies heavily on the axiom of functional
extensionality, which is not given by the type theory of Agda and has to be assumed separately.
Fortunately, one can work around this by simply restructuring the proof such that no propos-
itional equality between functions is needed. Instead, the pointwise equality defined in the
standard library suffices.

Definition of ϱ In order to implement the map ϱ in our formalization, we first need to define
a few categorical preliminaries that are not present by default. For instance, we need to give
a signature functor Σ as in Equation (3.6). We also need to give the free algebra Σ⋆X for any
type X. Fortunately we can adapt this from Goncharov and Vatthauer [GV25].

Since the type of terms is now a family, we need to give a separate type for the initial algebra
of Σ: ∐

n∈N
Proc n

In Agda, this corresponds to the type

31



µΣ : Set ℓ
µΣ = Σ N λ n → Proc n

This slightly complicates some inductive definitions, since the Agda termination checker cannot
infer when a definition is guarded on the second projection of type Proc n. To be able to state
these definitions, one first has to “curry” the dependent pair, so the termination checker can
validate the arguments separately.
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5 Summary

We have presented how to encode the operational semantics of guarded CCS in the framework
of higher-order GSOS. This involved finding an operational semantics that fits the HO-GSOS
rule format and proving its equivalence to the standard operational semantics. This was done by
defining several intermediate operational semantics to construct a chain of equivalences. Here
is also the point where the guardedness assumption comes into play since the equivalence only
holds for guarded terms.

The operational semantics was then encoded as a dinatural transformation that captures the
operational rules. By the framework of HO-GSOS we obtained a coalgebraic structure on the
initial algebra that allowed us to define strong bisimulation on CCS processes. This notion of
strong bisimulation is a Σ-congruence, a result which we obtain for free by compositionality of
our semantics.
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