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This paper aims at examining undirected graphs and directed graphs and defining
for both the notion of a graph that behaves in a “tree-like” manner. We will define
several properties of undirected and directed graphs and examine the definitions for
trees as they are presented in Donald Knuth’s The Art of Computer Programming
[3]. We will then see how these notions help us by looking at eulerian circuits in
directed graphs. First, by proving their existence in directed graphs that have the
right properties, and then by showing how an eulerian circuit can be constructed in
such a graph.
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1 Fundamentals in Graph Theory

We will first examine some rudimentary properties in graph theory, looking both at
undirected and directed graphs.

1.1 Undirected Graphs

Definition. A finite undirected graph G = 〈V,E〉 consists of

• a finite set of vertices V

• a finite set of edges E

This definition is best illustrated by the example undirected graph in Figure1.1:
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Figure 1.1: An undirected graph

We can see that the set V of vertices is {a,b,c,d}. Furthermore, we can specify
the set E of edges to be {eab,e′ab,eac,e′ac,ead,ebd,ecd,}. It is natural to talk about
edges as being between two vertices, so for example the edge eab is between vertices
a and b. It might be worth mentioning also that, unlike many other sources, we do
not restrict our definition of an edge such that there exists at most one edge between
any two vertices. This is illustrated by edges eac and e′ac which are both between a
and c. For this very reason what we talk about as undirected graphs may be called
undirected multigraphs in other sources such as Rahman [4].

Definition. Two vertices v and w in an undirected graph G are adjacent, if there is an
edge between them.
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1.1 Undirected Graphs

If we take Figure 1.1 as an example, we can see that vertices a and c are adjacent,
since there is an edge between them. Vertices b and c are not adjacent. It is obvious
however, that they are, in a way, “connected” if we can string sequences of edges
together to create such a connection. We will now specify this notion as paths in
undirected graphs.

1.1.1 Paths

Definition. Let v0 and vn be vertices in an undirected graph G. Then (v0,v1, . . . ,vn),
with 0 ≤ n is a path of length n in G if for 0 ≤ k < n it holds that vk is adjacent to
vk+1.

For vertices v and w we will refer to a path from v to w as a path with v0 = v and
vn = w.

See how with this definition, again taking Figure 1.1 as an example, we can form
the path (b,d,c) which gives us our desired “connection” between vertices b and c
which we previously missed since they are not in fact adjacent. Notice also how the
path from b to c does not have to be unique. In this case we can also form the path
(b,a,c). We do not, however, distinguish between multiple edges between the same
vertices, which the path (a,c) illustrates.

Notice that in all our example paths so far, so (b,d,c),(b,a,c),(a,c), each vertex
occurs at most once. We can specify this notion, which will later prove useful.

Definition. A path is simple, if v0,v1, . . . ,vn are distinct.

To see an example of a path in Figure 1.1 that is not simple, consider (a,c,d,a,b)
where a occurs twice.

With our definition of a simple path, we can determine another property paths can
exhibit. We want to talk about paths that loop, that is paths that start at the same
vertex that they end in.

Definition. A cycle is a path from a vertex to itself, i.e. where v0 = vn, and v1, . . . ,vn
are distinct.

Take, for instance, the path (a,b,c,d,a) in Figure 1.1. We can see that it a cycle
since it starts and ends in a and all other vertices are distinct.

For the most part, we will be interested not in cycles themselves, but rather graphs
that do not contain them. We will later see why, as graphs without cycles exhibit
properties that we could not otherwise guarantee.

1.1.2 Properties of Undirected Graphs

Now let us define some additional properties that undirected graphs may satisfy.
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1 Fundamentals in Graph Theory

Definition. An undirected graph G is connected, if there is a path between any two
vertices in G.

This generalises our notion of two vertices being “connected” for all vertices in a
graph. It is easy to visualise a connected graph as one that contains only one compo-
nent where all vertices are connected and no vertices that are outside or isolated. So
if G is a connected graph, we may also refer to it as a graph without isolated vertices.

Our working example, Figure 1.1, is a connected graph which we can verify visu-
ally or by giving paths from v to w for every unordered pair of vertices (v,w).
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d

Figure 1.2: A graph that is not connected

In Figure 1.2 we observe a graph that is not connected. Notice how it does not
suffice to define connected graphs as those that do not contain vertices that have no
other adjacent vertices. Our graph would satisfy this property, which is not what we
want. It is in fact not connected as there is, for instance, no path from a to c

Now we can formalise our notion of an undirected graph that has a tree-like struc-
ture.

Definition. A free tree is a connected undirected graph that contains no cycles.

This is perhaps a more general definition than one might expect, considering that
we do not even specify the “root” of such a tree. In fact, Knuth also calls them
unrooted trees [3]. It is, however, a concept that is often useful in computer science,
as we will observe later.
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Figure 1.3: A free tree
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1.2 Directed Graphs

1.2 Directed Graphs

If we take our definition of undirected graphs and extend edges by introducing the
notion of direction. We will thus cease to call them edges, rather calling them arcs.
In illustrations, this direction will be visualised by arrows on arcs.

Definition. A finite directed graph G = 〈V,A〉 consists of

• a finite set of vertices V

• a finite set of arcs A

For each arc a we have

• an initial vertex, denoted by init(a)

• a final vertex, denoted by fin(a)

Note that in contrast to the definition of an edge in an undirected graph, we do
not exclude the case of an arc where initial and final are one and the same vertex,
i.e. V = init(a) = fin(a). Additionally, nothing prevents us from having several
arcs with the same initial and final vertex, e.g. arcs a,b with init(a) = init(b) and
fin(a) = fin(b). Our notion of a directed graph thus corresponds to a finite directed
multigraph or quiver. [2] Given a directed graph, we can define its corresponding
undirected graph by ignoring the direction of arcs. That is, instead of an arc a we
take an edge e as the unordered pair of init(a) and fin(a).

With that, we can take a look at the relationship between arcs and vertices.

Definition. Given a vertex v in a directed graph G, we can define:

in-degree(v) as the number of arcs a in G with init(a) = v

out-degree(v) as the number of arcs a in G with fin(a) = v

Definition. A directed graph G is balanced if every vertex v in G has the same
in-degree and out-degree

As an example, consider the directed graph in Figure 1.4, where for each vertex
the in-degree is labeled as I and the out-degree is labeled as O. As both values are
equal for each vertex, the graph is balanced. The same cannot be said about the
graph in Figure 1.5, where for both vertices b and c the in-degree does not equal the
out-degree. The graph is therefore not balanced.
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1 Fundamentals in Graph Theory

a
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Figure 1.4: A balanced graph
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d
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Figure 1.5: A graph that is not balanced

1.2.1 Oriented paths

Like with undirected graphs we will introduce the notion of a path, but now for di-
rected graphs. To distinguish paths in undirected and directed graphs we will call
them oriented paths.

Definition. Let a1,a2, . . . ,an, n≥ 1 be arcs in a directed graph. (a1,a2, . . . ,an) is an
oriented path of length n from vertices v1 to v2 if

1. init(a1) = v1

2. fin(an) = v2

3. fin(ei) = init(ei+1) for 1≤ i≤ n

As a convenience, we can define a path’s length as the number of arcs in it. So if
P = (a1, . . . ,an) then length(P) = n.

It is important to notice that we switched from defining a path on the vertices it
visits, like we did for undirected graphs, to listing the arcs we take. Unlike with
undirected graphs, in the case where multiple arcs are between the same two vertices
going in the same direction, we do in fact care about which of these arcs we use in
our path. This may seem an arbitrary distinction we will, however, see later why we
take this route.

With this distinction made clear, we can see that we can transfer our definitions
of simple paths and cycles from undirected graphs, only changing what relates to
vertices to what relates to arcs.

Definition. An oriented path P = (a1,a2, . . . ,an) is simple if

1. init(a1), . . . , init(an) are distinct

2. fin(a1), . . . ,fin(an) are distinct

Definition. An oriented path P = (a1,a2, . . . ,an) is a cycle or circuit, if it is simple
and init(a1) = fin(an).
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1.2 Directed Graphs

1.2.2 Properties of Directed Graphs

Definition. A directed graph G = 〈V,A〉 is strongly connected, if for any two vertices
a,b ∈V,a 6= b there exists an oriented path from a to b.

It also makes sense to talk about directed graphs that are weakly connected, i.e.
where the corresponding undirected graph is connected. Though in the context of
directed graphs, we will refer to connected directed graphs as those that are strongly
connected.
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directed graph
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A graph that is not
connected

A
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A weakly connected
graph

Figure 1.6: Examples of connected and unconnected digraphs

Definition. A root is a vertex r in a directed graph G = 〈V,A〉 such that for any vertex
v ∈V,v 6= r there exists an oriented path from v to r

a

b

c

d

Figure 1.7: A graph with root d
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2 Oriented Trees

We have examined undirected graphs that exhibit tree-like structure and formalized
the notion to be free trees. For directed graphs a similar formalization can be done.
As we can no longer ignore the direction of edges however, we will have to restrict
our definition to make sure that our graphs still behave in a tree-like manner.

Definition. An oriented tree is a directed graph G with a vertex r such that

(a) each vertex v in G, v 6= r is the initial vertex of exactly one arc, denoted by e[v]

(b) no arc in G has r as its initial vertex

(c) r is a root in G

r

a

c

e[c]

e[a]

b

d

g

e[g]

h

e[h]

e[d]

e

e[e]

f

e[ f ]

e[b]

Figure 2.1: An oriented tree with root r

If we now a directed graph to by free of cycles we need only show properties (a)
and (b) to prove it is an oriented tree, as shown below.

Lemma C. A directed graph that possesses no oriented cycles and satisfies properties
(a) and (b) of the definition of an oriented tree is an oriented tree.
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2.1 Oriented Trees and Free Trees

Proof. Fix a directed graph G and vertex r with no cycles that satisfies properties (a)
and (b) of an oriented tree. We will only have to show that G also satisfies property
(c), that is that r is a root in G.

Consider choosing a vertex in G that is not r and traversing G by forming an
oriented path. Since every vertex is the initial vertex of exactly one arc, we can
always continue our path, except when we encounter r. As r is not the initial vertex
of any arc, we cannot continue. Notice that since G possesses no cycle, every path
we traverse must be finite, so there must a last vertex visited in our path. This shows
that for every vertex v in G we can start at, the path starting from v that is of longest
possible length must end in r. If it did, in fact, end in another vertex w, w 6= r then
we could extend our path by the arc that w is the initial vertex of.

Thus, we have shown that for every vertex in G there must exist an oriented path
from that vertex to r. This means that G satisfies property (c) along with properties
(a) and (b), making it an oriented tree.

This property can be useful in showing graphs to be oriented trees if we can assume
them to be free of cycles, as we will see later.

2.1 Oriented Trees and Free Trees

We can now make a comparison between oriented trees and free trees. As oriented
trees are just directed graphs with additional properties, we can likewise get the cor-
responding undirected graph by ignoring the direction of arcs. By Lemma C 2 we
can see that an oriented tree is connected and possesses no cycles. As such, the cor-
responding undirected graph is also cycle-free and connected, thus making it a free
tree.

For example, consider the oriented tree given in Figure 2.2 and its corresponding
free tree. Though the representation of oriented trees starting with the root vertex and
growing down “makes sense”, free trees do not define the concept of a root vertex, so
it is only represented that way to emphasise the correlation to the oriented tree.

It is even possible to define an inverse mapping from a free tree to an oriented tree.
The intuition for this is to “pick up” the tree by a chosen root vertex and assigning an
“upward” direction to all edges. Notice that this means that, unlike with our mapping
from oriented trees to free trees, one free tree corresponds to many oriented trees.
Depending on which vertex of the free tree we pick as the root, we get different
oriented trees. For example, both oriented trees in Figure2.3 correspond to the same
free tree given in Figure2.2. They are however not equal as the root vertices were
picked differently (a and d) which results in the assignment of different direction for
the edges.
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2 Oriented Trees

a

c b

d e f

g h

a

c b

d e f

g h

Figure 2.2: An oriented tree and corresponding free tree
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Figure 2.3: Two oriented trees

2.2 Eulerian Circuits

We can take a look at a special case of path, first observed by Leonhard Euler in
1736 [3], though in his case only for undirected graphs. In a directed graph, we want
to find a path that traverses over all arcs and starts at the same vertex it ends in. In
the case of Euler, he was interested in finding a path that traverses over all bridges
spanning the river Pregel in Königsberg and ends up on the same side of the river or
island it started at. Such a path would be called an eulerian circuit. Consequently,
we can define eulerian circuits on directed graphs. We will later see an interesting
connection between eulerian circuits in directed graphs and oriented trees.

Definition. An eulerian circuit in a directed graph G is an oriented path P=(a1,a2, . . . ,an)
such that

• each arc in G occurs exactly once in P

• init(a1) = fin(an)
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2.3 Existence of Eulerian Circuits

2.3 Existence of Eulerian Circuits

Theorem G. A finite directed graph possesses an eulerian circuit iff it is connected
and balanced.

Proof. We fix a balanced and connected directed graph G and an oriented path
P = (a1, . . . ,an) in G that is longest possible length and uses no arc twice. Note,
that we make no provisions as to how such a path may be obtained, it is however
reasonable to assume that such a path must exist. Let us now show that P is an
eulerian circuit.

First, let us examine that P is a cycle. If vertex v = fin(an) and k = out-degree(v)
we can see that all k arcs starting at v must be used in P. If an arc a with init(a) = v
that is not in P existed then we could append a to P, resulting in P′ = (a1, . . . ,an,a)
with length(P′) = length(P)+ 1, where no arc in P′ would be used twice. But this
contradicts our assumption that P is of longest possible length, so a can not exist.

Furthermore, we observe that for any arc ai, 1 < i < n in P with init(ai) = v it must
hold that fin(ai−1) = v. We can thus form pairings of arcs (ai,ai−1) as such:

init = v fin = v
an

ai ai−1
...

...

Notice that the left column for the arc an is left empty. What if we wanted to find a
pairing (a,an) such that init(a) = v? In fact, such an arc must exist! As G is balanced,
it must hold that in-degree(v) = out-degree(v). We can see that if we consider all
pairings (ai,ai−1) this must hold. But if we could not find a such a pairing for an
then in-degree(v) = out-degree(v)+1 which would contradict our assumption that G
is balanced. As our only choice is to pick arc a1 it follows that init(a1) = v.

init = v fin = v
a1 an
ai ai−1
...

...

So as init(a1) = fin(an), we can conclude that P is a cycle. Also let us observe
that since P is a cycle, we can form cyclic permutations of P. For instance, the path
(ai+1 mod n, . . . ,an,a1,ai) can be formed for any ai in P.

Now let us show that all arcs in G are used in P by contradiction. Assume that
there exists an arc a in G that is not used in P. If init(a) occurred in P, that is
init(a) = fin(ai) for some ai in P, then the cyclic permutation P′ = (ai+1 mod n, . . . ,ai)
must exist. Since fin(ai) = init(a) the path (ai+1 mod n, . . . ,ai,a) is also valid and of
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2 Oriented Trees

length 1+ length(P). This contradicts our assumption that P is of longest possible
length, so init(a) cannot occur in P. We can make an analogous argument for the
final vertex of a. It follows a has neither initial nor final vertex in common with any
arc in P. Evidently, this contradicts our assumption that G is strongly connected, so
a cannot exist i.e. every arc in G occurs in P.

Since we assumed that every arc in P occurs only once and have shown every arc in
G occurs in P and that P is a cycle, we can conclude that P is an eulerian circuit.

2.4 Eulerian Circuits and Oriented Trees

Now we can finally take a look at the promised connection between oriented trees
and eulerian circuits. If we have an arc a1 in a directed Graph G and some arbitrary
path in G that is a circuit. Traversing the circuit, we can see that for every vertex v
we visit, though we may visit it multiple times, there will always be a last visit. We
call the arc with which we exit a vertex after the last visit to it the last exit of v.

Lemma E. Let G = 〈V,A〉 be a directed graph that is strongly connected. Let P =
(a1, . . . ,an) be an eulerian circuit in G where vertex r = init(a1) = fin(an). For every
vertex v, v 6= r let e[v] be the last arc a in P with init(a) = v. That is,

e[v] = a j if init(a j) = v and init(ak) 6= v for j < k ≤ n

Then V along with the arcs e[V ] form an oriented tree with root r.

Proof. Let T be the directed graph with vertices V and arcs e[V ]. Let r be the last
vertex in P, that is r = fin(an). It is easy to show that T satisfies properties (a) and
(b) of an oriented tree. For once, we can see that for every vertex v in T , v 6= r there
exists an arc with v as its initial vertex, namely e[v]. Furthermore, we can see that r
is not the initial vertex of any arc in T , since we explicitly exclude a1.

Now let us show that T also satisfies property (c). From Lemma C we know that
we need only show that T contains no oriented cycles. Consider vertices v and w in
T with fin(e[v]) = w = init(e[w]). If e[v] = ai and e[w] = a j are arcs in P, so i and j
are the indices in P, then it must be that i < j. If T contained a cycle, then the indices
of arcs would increase indefinitely. But since n is the maximal value of indices of all
arcs, this cannot be so T does not contain any cycles.

We can now apply Lemma C to obtain a proof that T is an oriented tree.

This shows us that there is a “striking relationship”, as Aardenne-Ehrenfest and
de Bruijn [1] put it, between oriented trees and eulerian circuits. We can use this
relationship to find a construction method for eulerian circuits, as we will now see.
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2.5 Construction of Eulerian Circuits

2.5 Construction of Eulerian Circuits

In Theorem G we examined that connected and balanced directed graphs possess
an eulerian circuit. Our proof for this is sadly inherently non-constructive. Notice
how we assume to be given an oriented path of longest possible length that uses no
arc twice. It is safe to assume that such a path must exist, however, we make no
provisions as to how to obtain such a path.

We will now look at a construction method for eulerian circuits that does give us
an instance of that path and verifies that it is in fact an eulerian circuit. We will still
assume the graph which we reason about to be connected and balanced to guarantee
the existence of an eulerian circuit. Then we can use the relationship between eulerian
circuits and oriented trees from Lemma E to our advantage.

Theorem D. Let G be a connected and balanced directed graph and T be an oriented
tree of all vertices and some arcs of G with a root vertex R. Let a1 be an arc of G with
init(a1) = R. Then P = (a1,a2, . . . ,am) is an eulerian circuit if

(a) no arc is used twice in P

(b) if for some vertex V in G, a j = e[V ] and there is an arc a with init(a) =V then
a = ak with 1≤ k ≤ j

(c) if for some arc a in G, init(a) = fin(am) then a = ak with 1≤ k ≤ m

Proof. First, we can employ a similar argument to the one used in the proof of The-
orem G to show that P must be a cycle. Let v be the final vertex of am, v = fin(am).
Assume there exists an arc a with init(a) = v that does not occur in P. This contra-
dicts our assumption from (c), since if a existed, then P could still be extended with
a so in our case we would have terminated prematurely.

Now for every arc ai in P, so 1 < i < m we have v = init(ai). Consequently, we
also have fin(ai+1) = v. As we have already shown in Theorem G, G being balanced
means that we now know that init(a1) = fin(am), so P is a cycle.

Now, let us show that all arcs in G are used in P. Assume a to be an arc in G that
is not used in P and v = fin(a). Then we also have an arc b not in P with v = init(b)
since G is balanced. If v 6= r then we can infer from (b) that e[v] is not in P because
if b is not in P then e[v] cannot be in P as (b) prohibits us from choosing an arc T
before any other choice is exhausted.

Now if we apply this argument to a = e[v] we can extend it to the oriented path
from v to r, which we know to exist. For every arc from c to d in this path we can
reason that there must exist an arc with initial vertex d. Eventually we will find an
arc initial vertex v. But we know this contradicts (c) as is shown above, so all arcs in
G must occur in P.

Since P contains all arcs in G and is a cycle, it is an eulerian circuit.
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2 Oriented Trees

v0a00 v1 v2 a22
a01

a′01

a10

a12

a′12

a21

a20

Figure 2.4: A directed graph with oriented sub-tree

As an example, consider the directed graph G in Figure 2.4 that possesses a sub-
graph T that is an oriented tree with root v1 and arcs a01 = e[v0],a21 = e[v2]. We can
easily convince ourselves that G is balanced, as in-degree(vi) = out-degree(vi) for
i ∈ {0,1,2}. We can also see that all vertices in G are also part of T . Therefore, the
construction method in Theorem D can be applied to find an eulerian circuit P in G
starting from T ’s root vertex v1.

Table 2.1 shows in detail how the construction method in Theorem G works. For
each row P represents the current state of our traversal. CG and CT show choices for
the next arc to append to P, that is if P ends with arch a with fin(a) = v then all arcs b
in G with init(b) = v = fin(a) are valid choices. We do however make the distinction
between CT the arcs that are part of the oriented tree T , and CG, the arcs that are in G
but not part of T . If in a row the set CG contains more than one arc, we have a choice
to select one of the valid arcs in CG. If CG is empty, we have to choose the singleton
element of CT . Theorem D shows how, in this case, this arc is guaranteed to exist. If
both CG and CT are empty, we terminate.

P CG CT Choice
(a12) {a20,a22} {a21} CG
(a12,a20) {a00,a′01} {a01} CG
(a12,a20,a00) {a′01} {a01} CG
(a12,a20,a00,a′01) {a10,a′12} /0 CG
(a12,a20,a00,a′01,a

′
12) {a22} {a21} CG

(a12,a20,a00,a′01,a
′
12,a22) /0 {a21} CT

(a12,a20,a00,a′01,a
′
12,a22,a21) {a10} /0 CG

(a12,a20,a00,a′01,a
′
12,a22,a21,a10) /0 {a01} CT

(a12,a20,a00,a′01,a
′
12,a22,a21,a10,a01) /0 /0

Table 2.1: Construction of an eulerian circuit
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[2] Béla Bollobás. Modern Graph Theory. Springer New York, New York, NY,
1998.

[3] Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental
Algorithms. Addison-Wesley, Reading, Massachusetts, 1997.

[4] Md. Saidur Rahman. Basic Graph Theory. Springer Cham, 2017.

15


	Fundamentals in Graph Theory
	Undirected Graphs
	Paths
	Properties of Undirected Graphs

	Directed Graphs
	Oriented paths
	Properties of Directed Graphs


	Oriented Trees
	Oriented Trees and Free Trees
	Eulerian Circuits
	Existence of Eulerian Circuits
	Eulerian Circuits and Oriented Trees
	Construction of Eulerian Circuits

	Bibliography

