Oriented Trees TAoCP-Seminar

Florian Guthmann

Friedrich-Alexander-Universität Erlangen-Nürnberg

2023-02-16

Graphs

A graph $\mathcal{G} = \langle V, E \rangle$ consists of

- A set of vertices (points) V
- A set of *edges* E

We call vertices G and H adjacent, if there is an edge between them.

$$V = \{A, B, C, D\}$$

$$E = \{e_0^{AB}, e_1^{AB}, e_0^{AC}, e_1^{AC}, e^{AC}, e^{AD}, e^{BD}, e^{CD}\}$$

Paths

Let V_0 and V_n be vertices and $n \ge 0$. Then

 (V_0, V_1, \ldots, V_n)

is a *path* of length n if

 V_k is adjacent to V_{k+1} , for $0 \leq k < n$

A path is *simple*, if V_0, V_1, \ldots, V_n are distinct.

Connectedness

A graph is *connected*, if there is a path between any two vertices.

connected

not connected

Free Tree

A *free tree* is a connected graph with no cycles.

Adapted from Fig. 30

Directed Graphs

Definition

A directed graph $\mathcal{G} = \langle V, A \rangle$ consist of

- A set of vertices V
- A set of arcs A

We will commonly abbreviate directed graph as *digraph*.

$$V = \{A, B, C, D\}$$
$$A = \{e^{AB}, e^{BA}, e^{AC}, e^{CA}, e^{DA}, e^{BD}, e^{DC}\}$$

Each arc *e* has an *initial* vertex:

 $\operatorname{init}(e) = A$

Each arc *e* has an *initial* vertex:

 $\operatorname{init}(e) = A$

And a *final* vertex:

fin(e) = B

Each arc *e* has an *initial* vertex:

e B

$\operatorname{init}(e) = A$

And a *final* vertex:

fin(e) = B

$$\operatorname{init}(e') = \operatorname{fin}(e') = C$$

Directed Graphs

```
For a vertex V, we define
out-degree
          the number of arcs e such that
          \operatorname{init}(e) = V
in-degree
          the number of arcs e such that
          fin(e) = V
   out-degree(V) = 4
```

 $\operatorname{in-degree}(V) = 3$

Balance

A directed graph $\mathcal{G} = \langle V, A \rangle$ is *balanced* if for every $v \in V$, in-degree(v) = out-degree(v)

Oriented path

Let e_1, e_2, \ldots, e_n , $n \ge 1$ be arcs in a digraph. Then (e_1, e_2, \ldots, e_n) is an *oriented path* of length n from V to V' if

•
$$\operatorname{init}(e_1) = V$$

•
$$fin(e_n) = V'$$

•
$$fin(e_i) = init(e_{i+1})$$
 for $1 \le i < n$

Oriented path

An oriented path is simple if

- $init(e_1), \ldots, init(e_n)$ are distinct
- $fin(e_1), \ldots, fin(e_n)$ are distinct

Oriented cycle

An *oriented cycle* is a simple oriented path from a vertex to itself.

$$\operatorname{init}(e_1) = A = \operatorname{fin}(e_n)$$

Directed Graphs

 e_1

 (e_1) is an oriented path of length 1

 (e_1,e_2) is an oriented path of length 2

Connectedness

A digraph is strongly connected if there is an oriented path from G to H for any two vertices $G, H, \quad G \neq H$

connected

not connected

not connected

(weakly connected)

Root

A root in a digraph G is a vertex R such that there is an oriented path from V to R for any vertex V in G, $V \neq R$

R = D

Oriented Tree

An oriented tree is a digraph with a vertex R such that

- each vertex $V \neq R$ is the initial vertex of exactly one arc e[V]
- *R* is the inital vertex of no arc
- R is a root

Adapted from Fig. 34

Types of Trees

¹With arcs pointing "up"

Oriented Trees

Eulerian Circuit

Definition An *eulerian circuit* in a digraph \mathcal{G} is an oriented path (e_1, e_2, \ldots, e_n) such that

 each arc in G occurs exactly once

wikimedia.org

• $\operatorname{fin}(e_n) = \operatorname{init}(e_1)$

wikimedia.org

Theorem G

Theorem

A finite, directed graph with no isolated vertices possesses an eulerian circuit iff it is connected and balanced.

Fix a balanced and connected Graph $\mathcal{G}\boldsymbol{.}$

G

Adapted from Fig. 36

= 3

= 3

= 3

Let $P = (e_1, \ldots, e_m)$ be an oriented path of longest possible length that uses no arc twice.

e.g., $P=(e_{01},e_{12},e_{22},e_{20},e_{00},e_{01}^{\prime},e_{12}^{\prime},e_{21},e_{10})$

$V = \operatorname{fin}(e_m)$

$$V = \operatorname{fin}(e_m) \qquad P = (e_1, \dots, e_m, e) \notin$$

$$e \in \{e_i\}_{i=1,\dots,m}$$

$$V = \operatorname{fin}(e_m) \qquad P = (e_1, \dots, e_m, e) \notin \qquad \operatorname{init}(e_j) = V$$

 $e \in \{e_i\}_{i=1,\dots,m}$

 $\sin(e_{j-1}) = V$

G is balanced

$\mathrm{init} = V$	fin = V
	e_m
e_j	$e_j - 1$
•	

$$\operatorname{init}(e_j) = V$$
$$\operatorname{fin}(e_{j-1}) = V$$

G is balanced

$\mathrm{init} = V$	$\mathrm{fin} = V$
e_1	e_m
e_j	$e_j - 1$
:	:

 $\begin{array}{ll} \operatorname{init}(e_j) = V & \operatorname{init}(e_1) = V = \operatorname{fin}(e_m) \\ \operatorname{fin}(e_{j-1}) = V & \Longrightarrow P \text{ is a cycle} \end{array}$

Now if there exists an arc e not in P $\begin{array}{ll} \operatorname{init}(e)\neq\operatorname{init}(e_i) &,i=1,\ldots,m\\ \operatorname{fin}(e)\neq\operatorname{fin}(e_i) &,i=1,\ldots,m \end{array}$

Now if there exists an arc e not in P

 $init(e) \neq init(e_i) , i = 1, \dots, m$ $fin(e) \neq fin(e_i) , i = 1, \dots, m$

 \mathcal{G} is not connected. $\not \leq \Rightarrow$ No such arc exists!

Now if there exists an arc e not in P

 $init(e) \neq init(e_i) , i = 1, \dots, m$ $fin(e) \neq fin(e_i) , i = 1, \dots, m$

- \mathcal{G} is not connected. $\oint \implies$ No such arc exists!
 - \implies *P* is an eulerian circuit.

Theorem D

Theorem Let \mathcal{G} be a balanced, directed graph. Let \mathcal{G}' be an oriented tree of all vertices and some arcs of \mathcal{G} with root R. Let e_1 be an arc of \mathcal{G} with $\operatorname{init}(e_1) = R$ Then $P = (e_1, e_2, \dots, e_m)$ is an eulerian circuit if

1. no arc is used twice

- 2. if $e_j = e[V]$ and there is an arc e with init(e) = V then $e = e_k, k \le j$
- 3. if $init(e) = fin(e_m)$ then $e = e_k$ for some k

Theorem D

2. if $e_j = e[V]$ and there is an arc ewith init(e) = V then $e = e_k, k \le j$

3. if $init(e) = fin(e_m)$ then $e = e_k$ for some k

Analogously to Theorem G.

 \mathcal{G}'

 $R = V_1$

Theorem D

 \mathcal{G}'

 $R = V_1$

1. $P = (e_{12}, ...)$ **2.** Choose e_{22} . $P = (e_{12}, e_{22}, ...)$

 \mathcal{G}'

 $R = V_1$

1. $P = (e_{12}, ...)$ 2. Choose e_{22} . $P = (e_{12}, e_{22}, ...)$ 3. Choose e_{20} . $P = (e_{12}, e_{22}, e_{20}, ...)$

 \mathcal{G}'

 $R = V_1$

 \mathcal{G}'

 $R = V_1$

4. $P = (e_{12}, e_{22}, e_{20}, e_{00}, e'_{01}, e'_{12}, \dots)$ Now we can choose $e_{21} = e[V_2]$ $P = (e_{12}, e_{22}, e_{20}, e_{00}, e'_{01}, e'_{12}, e_{21}, e_{10}, e_{01})$

From 3.

$$\operatorname{init}(e_1) = R = \operatorname{fin}(e_m)$$

init = R	$ \operatorname{fin} = R$
e_1	e_m
e_j	$e_j - 1$
:	:

If e is an arc not in P, V = fin(e):

• *G* is balanced, so there exists arc *e' not* in *P* with init(e') = V

• if $V \neq R$ then e[V] is not in P (3.)

• Analoguously with e = e[V]

• Until fin(e) = R

 $\operatorname{init}(e') = R$ and e' is not in P(43.) $\implies e \text{ must be in } P$ $\implies P$ is an eulerian circuit

I TRIED TO USE A TIME MACHINE TO CHEAT ON MY ALGORITHMS FINAL BY PREVENTING GRAPH THEORY FROM BEING INVENTED.