Some notes on the distributive law

Philip Kaluđerčić philip.kaludercic@fau.de

03May24, typeset on May 26, 2024

Given a monad $(T : \mathsf{Set} \to \mathsf{Set}, \eta, \mu)$, where $TX = \wp(X)$ and a Set endofunctor $FX = 1 + \Sigma \times X$ $FX = 1 + \Sigma \times X$ $FX = 1 + \Sigma \times X$, the distributive law¹ or \mathcal{EM} -law ("Eilenberg-Moore" law) should be the natural transformation

 $\rho: TF \Rightarrow FT$,

or point-wise

$$
\rho_X : \wp(1 + \Sigma \times X) \cong 2 \times \wp(\Sigma \times X) \cong 2 \times \wp(X)^{\Sigma} \to 1 + \Sigma \times \wp(X).
$$
This "distributions" the monad T "under" a functor F.

First attempt First let us consider a possible definition of ρ_X ,

$$
\rho_X: 2 \times \wp(X)^\Sigma \to 1 + \Sigma \times \wp(X)
$$

$$
\rho_X(b, f) = \begin{cases} \iota_1(\mathbf{1}, f(\mathbf{2})) & \text{if } b = \top \\ \iota_2 * & \text{if } b = \bot \end{cases}
$$

where 1 and 2 represent two holes of the type Σ that cannot be satisfied given the context $b: 2, f: \wp(X)^\Sigma$ $b: 2, f: \wp(X)^\Sigma$ $b: 2, f: \wp(X)^\Sigma$ along with the state space².

Second attempt For the sake of completeness, consider the "converse" distributive law $\kappa : FT \Rightarrow TF$ (which is actually the $\mathcal{K}\ell$ -law), that is once again point-wise as expected

$$
\kappa_X: 1 + \Sigma \times \wp(X) \to 2 \times \wp(X)^{\Sigma}.
$$
 Here we at first succeed given a intuitive enough definition

$$
\kappa_X(x) = \begin{cases} (\perp, \varnothing) & \text{if } x = \iota_2 * \\ (\top, \sigma' \mapsto s) & \text{if } x = \iota_1 \left(\sigma, s \right) \end{cases}
$$

which turns out to be natural wrt. a $f: X \to Y$ and

$$
id_2 \times \wp(f)^2 \circ \kappa_X = \kappa_Y \circ [id_1; id_{\Sigma} \times \wp(f)]
$$

yet is not satisfying since it has two instances of unused values *σ* and *σ* ′ .

Contextualisation What are ρ and κ expressing? Applying intuition from automata theory, we can attempt to convince ourselves if these transformations should be definable in the first place:

1. The type of ρ_X describes

Given a nondeterministic automaton N over a state space X and an input alphabet Σ *, indicate a final state* $* \in 1$ *or return a letter* $\sigma \in \Sigma$ *along with a set of states of X.*

As seen above, the non-accepting states of *N* can be mapped onto the final state \ast . We could pick an arbitrary σ (going by the working-assumption that Σ is non-empty) and then use *N* to determine the successor state, but with no further information about σ this would seen non-intuitive (and non-constructive).

This appears to confirm the issue encountered above.

2. The type of *κ^X* describes

¹The composition represents a non-deterministic automaton with the input alphabet Σ .

²Unless we return $\iota_2 *$ in both cases, which would be natural but pointless

Given a final state or *a pair of a letter* $\sigma \in \Sigma$ *and a set of states of* X, *construct a nondeterministic automaton N, i.e. indicate if the current state is accepting or not and provide a map to transition from the current set of states to a new set of states, while possibly taking a* $\sigma' \in \Sigma$ *into account.*

The object in $1 + \Sigma \times \wp(X)$ can indicate failure or a successful transition *by a specific letter in* Σ . A new attempt at defining a $κ'$ might attempt to make use of this interpretation:

$$
\kappa'_X(x) = \begin{cases}\n(\bot, \varnothing) & \text{if } x = \iota_2 * \\
(\top, \sigma' \mapsto \begin{cases}\n\varnothing & \text{if } \sigma \neq \sigma' \\
s & \text{if } \sigma = \sigma'\n\end{cases} & \text{if } x = \iota_1(\sigma, s)\n\end{cases}
$$

.

(Uncertain:) Coalgebraically *F T* are potentially infinite trees branching by subset of *X*, with letters of Σ as nodes. With κ' we translate these into NA, but the mapping is "injective" since we are reconstructing the inner workings from a input sequence $\langle \sigma_1 \sigma_2 \dots \rangle \in \Sigma^*$ along with a (tree-)tace. In this sense we appear to be non-determinising our input.

This remains unsatisfying, as $FT \Rightarrow TF$ is not what we are looking for in terms of a EMdistributive law. But using *κ* ′ we can consider if we could find an inverse (or why we cannot, which of course is not a proof that there exists no $FT \Rightarrow TF$).

A trivial inverse map κ'^{-1} where $\kappa'^{-1}\kappa'$ is an identity map can determine what $\sigma \in \Sigma$ *N* from the trace κ' uses to construct *N* and re-create the trace. It is easy to see that $\kappa'^{-1} \kappa'$ wouldn't work for an arbitrary NA, the assumption that only a single $\sigma \in \Sigma$ is accepted in a given state doesn't generally hold.

So the question is can we construct a ρ that will *naturally* construct a trace given an arbitrary NA? Intuitively it appears that we cannot do so, without making arbitrary choices, which confirms the initial impression, where ρ had two holes of type Σ .

Alternative Approach The existence of a \mathcal{EM} -law $\rho : TF \Rightarrow FT$ corresponds bijectively to the lifting of an endofunctor F on a category $\mathscr C$ to a endofunctor on $\mathcal{EM}(T)$: 3 3

where $\mathscr{C} =$ Set in our case.

So if given a $\hat{F}: \mathcal{EM}(T) \to \mathcal{EM}(T)$, then we should be able to construct an adequate *ρ*.

Preliminary Conclusion It seems that the indended result does not arise obviously the combination of *T* and *F*. Assuming that there are no algebraic tricks that I have forgot to notice, together with the apparent lack of an intuitive and natural description of what $TF \Rightarrow FT$ designates, it appears that there is no solution.

Jacobs, et. al. give a further indication that the mistake might lie in the initial problem statement, when they develop "Non-deterministic Automata in \mathcal{EM} -style":^{[4](#page-1-1)}

 3 Bart Jacobs, Alexandra Silva, and Ana Sokolova. "Trace semantics via determinization". In: *International Workshop on Coalgebraic Methods in Computer Science*. Springer. 2012, pp. 109–129, p. 113.

 4 [Ibid.,](#page-1-0) p. 117.

[...] It yields a \mathcal{EM} -law with the components $\rho = \rho_1 \times \rho_2 : \wp(2 \times X^A) \to 2 \times$ $\wp(X)^A$, given by: $\int \rho_1(U) = 1 \qquad \Longleftrightarrow \exists h \in X^A \cdot \langle 1, h \rangle \in U$ $x = \rho_2(U)(a) \iff \exists \langle b, h \rangle \in U. h(a) = x$

where in their case $A = \Sigma$, $TX = \wp(X)$ and $FX = 2 \times X^A$, not $1 + A \times X$. The intuition, that Jacobs' *ρ* maps a subset of deterministic automata into a single non-deterministic automaton (where ρ_1 says if any DA accepts a word, the NA will accept it as well) is easily imaginable.