
Some notes on the distributive law
Philip Kaluđerčić

philip.kaludercic@fau.de

03May24, typeset on May 26, 2024

Given a monad (T : Set Set, η, µ), where TX = ℘ (X) and a Set endofunctor
FX = 1 + Σ × X, the distributive law1 or EM-law (“Eilenberg-Moore” law) should
be the natural transformation

ρ : TF ⇒ FT,
or point-wise

ρX : ℘ (1 + Σ × X) ∼= 2 × ℘ (Σ × X) ∼= 2 × ℘ (X)Σ 1 + Σ × ℘ (X) .
This “distributes” the monad T “under” a functor F .

First attempt First let us consider a possible definition of ρX ,
ρX : 2 × ℘ (X)Σ 1 + Σ × ℘ (X)

ρX(b, f) =
{

ι1
(

1 , f
(

2
))

if b = ⊤
ι2 ∗ if b = ⊥

where 1 and 2 represent two holes of the type Σ that cannot be satisfied given the
context b : 2, f : ℘ (X)Σ along with the state space2.
Second attempt For the sake of completeness, consider the “converse” distributive
law κ : FT ⇒ TF (which is actually the Kℓ-law), that is once again point-wise as
expected

κX : 1 + Σ × ℘ (X) 2 × ℘ (X)Σ
.

Here we at fist succeed given a intuitive enough definition

κX(x) =
{

(⊥,∅) if x = ι2 ∗
(⊤, σ′ 7→ s) if x = ι1

(
σ , s

)
which turns out to be natural wrt. a f : X → Y and

id2 × ℘ (f)Σ ◦ κX = κY ◦ [id1; idΣ × ℘ (f)]
yet is not satisfying since it has two instances of unused values σ and σ′ .
Contextualisation What are ρ and κ expressing? Applying intuition from au-
tomata theory, we can attempt to convince ourselves if these transformations should
be definable in the first place:
1. The type of ρX describes

Given a nondeterministic automaton N over a state space X and an
input alphabet Σ, indicate a final state ∗ ∈ 1 or return a letter σ ∈ Σ
along with a set of states of X.

As seen above, the non-accepting states of N can be mapped onto the final
state ∗. We could pick an arbitrary σ (going by the working-assumption that Σ is
non-empty) and then use N to determine the successor state, but with no further
information about σ this would seen non-intuitive (and non-constructive).

This appears to confirm the issue encountered above.
2. The type of κX describes

1The composition represents a non-deterministic automaton with the input alphabet Σ.
2Unless we return ι2 ∗ in both cases, which would be natural but pointless

1

Given a final state or a pair of a letter σ ∈ Σ and a set of states of X, con-
struct a nondeterministic automaton N , i.e. indicate if the current state
is accepting or not and provide a map to transition from the current set of
states to a new set of states, while possibly taking a σ′ ∈ Σ into account.

The object in 1 + Σ × ℘ (X) can indicate failure or a successful transition by
a specific letter in Σ. A new attempt at defining a κ′ might attempt to make use
of this interpretation:

κ′
X(x) =

(⊥,∅) if x = ι2 ∗(

⊤, σ′ 7→
{∅ if σ ̸= σ′

s if σ = σ′

)
if x = ι1 (σ, s)

.

(Uncertain:) Coalgebraically FT are potentially infinite trees branching by subset
of X, with letters of Σ as nodes. With κ′ we translate these into NA, but the
mapping is “injective” since we are reconstructing the inner workings from a input
sequence ⟨σ1σ2 . . . ⟩ ∈ Σ∗ along with a (tree-)tace. In this sense we appear to be
non-determinising our input.
This remains unsatisfying, as FT ⇒ TF is not what we are looking for in terms

of a EMdistributive law. But using κ′ we can consider if we could find an inverse
(or why we cannot, which of course is not a proof that there exists no FT ⇒ TF).

A trivial inverse map κ′−1 where κ′−1
κ′ is an identity map can determine what

σ ∈ Σ N from the trace κ′ uses to construct N and re-create the trace. It is easy
to see that κ′−1

κ′ wouldn’t work for an arbitrary NA, the assumption that only a
single σ ∈ Σ is accepted in a given state doesn’t generally hold.

So the question is can we construct a ρ that will naturally construct a trace given an
arbitrary NA? Intuitively it appears that we cannot do so, without making arbitrary
choices, which confirms the initial impression, where ρ had two holes of type Σ.
Alternative Approach The existence of a EM-law ρ : TF ⇒ FT corresponds
bijectively to the lifting of an endofunctor F on a category C to a endofunctor on
EM(T):3

EM(T) EM(T)

C C

F̂

F

where C = Set in our case.
So if given a F̂ : EM(T) EM(T), then we should be able to construct an

adequate ρ.
Preliminary Conclusion It seems that the indended result does not arise obvi-
ously the combination of T and F . Assuming that there are no algebraic tricks that
I have forgot to notice, together with the apparent lack of an intuitive and natural
description of what TF ⇒ FT designates, it appears that there is no solution.

Jacobs, et. al. give a further indication that the mistake might lie in the initial
problem statement, when they develop “Non-deterministic Automata in EM-style”:4

3Bart Jacobs, Alexandra Silva, and Ana Sokolova. “Trace semantics via determinization”. In:
International Workshop on Coalgebraic Methods in Computer Science. Springer. 2012, pp. 109–129,
p. 113.

4Ibid., p. 117.

2

[. . .] It yields a EM-law with the components ρ = ρ1×ρ2 : ℘
(
2 × XA

)
2×

℘ (X)A, given by:{
ρ1(U) = 1 ⇐⇒ ∃h ∈ XA. ⟨1, h⟩ ∈ U

x = ρ2(U)(a) ⇐⇒ ∃⟨b, h⟩ ∈ U. h(a) = x

where in their case A = Σ, TX = ℘ (X) and FX = 2 × XA, not 1 + A × X.
The intuition, that Jacobs’ ρ maps a subset of deterministic automata into a single
non-deterministic automaton (where ρ1 says if any DA accepts a word, the NA will
accept it as well) is easily imaginable.

3

