A formulation of $ρ$ in a Topos $\mathscr E$

Philip KALUĐERČIĆ philip.kaludercic@fau.de

06May24, typeset on June 20, 2024

We know that $\rho: TF \Rightarrow TF$, where the monad $TX = \wp(X)$ and an endofunctor $FX = 2 \times \wp(X)$ map a set of deterministic automata into a single non-deterministic automaton *N*, where *N* accepts a word if any deterministic automaton would accept it and state transitions merge all deterministic transitions.

The above occurs in **Set**. Can we translate this into a topos, where

 $TX = P X$ *F X* = Ω × *X*^Σ

$$
FX = \Omega \times X^{\sim}
$$

To this end, we have to define the "power object functor" **P**−, the "exponential functor" $-A$ and the "product functor" $-\times A$ for some $A \in Ob(\mathscr{E})$ (the latter two, which are given in Cartesian closed category (terminal, product, exponential), are known to be adjunct).

Definition of a Topos For a category $\mathscr E$, we speak of a power object $A \in Ob(\mathscr{E})$ as an object $PA = \Omega^{\overline{A}} \in Ob(\mathscr{E})$ along with a morphism $\epsilon_A \rightarrow A \times PA$, when for every $C \in Ob(\mathscr{E})$ and mono $R \rightarrow A \times C$ the following commutes (composing diagrams by McLarty, $^{\rm 1}$ $^{\rm 1}$ $^{\rm 1}$ Johnstone $^{\rm 2,3}$ $^{\rm 2,3}$ $^{\rm 2,3}$ $^{\rm 2,3}$ $^{\rm 2,3}$ Caramello^{[4](#page-0-3)} and from $nLab⁵$ $nLab⁵$ $nLab⁵$):

with a unique $\chi_R : C \longrightarrow \mathbf{P}A$ and *R* being the pullback.

If $\mathscr E$ with all finite limits has power objects for all objects $Ob(\mathscr E)$, then we call ${\mathscr E}$ a (elementary) topos. 6 6 The qualifier "elementary" distinguishes the notion

 1 Colin McLarty. Elementary categories, elementary toposes. Clarendon Press, 1992, p. 120.

²Peter T Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, 2002, p. 86.

³Peter T Johnstone. Topos theory. Courier Corporation, 2014, p. 43.

⁴Olivia Caramello and Riccardo Zanfa. On the dependent product in toposes. 2019. arXiv: [1908.08488 \[math.CT\]](https://arxiv.org/abs/1908.08488). url: <https://arxiv.org/abs/1908.08488>, p. 5.

⁵nLab authors. power object. <https://ncatlab.org/nlab/show/power+object>. [Revision 8.](https://ncatlab.org/nlab/revision/power+object/8) May 2024.

 6 Michael Barr and Charles Wells. Toposes, triples, and theories. Springer-Verlag, 2000, p. 63.

from *Grothendieck topos*, which are a special instance of elementary toposes.^{[7](#page-1-0)}

From the above, we can derive arbitrary finite co limits^{[8](#page-1-1)} and exponential objects $B^A, ^{\mathsf{g}}$ such that for all $g: Z{\times}A\longrightarrow B,$ there is a unique $f:Z\longrightarrow B^A$ in

The subobject classifier,

$$
S \xrightarrow{!} 1
$$

\n
$$
\downarrow^{m'} \qquad \qquad \downarrow^{true}
$$

\n
$$
B \xrightarrow{g} 0
$$

commutes, follows from $\Omega = \Omega^1 = \mathbf{P}1$.

There are multiple equivalent definitions, 10 for example MacLane 11 postulate all pullbacks and a terminal objects (which amount's to $\mathscr E$ being complete), the subobject classifier Ω and then describes power objects PA along with a morphism $\in_A: A \times \mathbf{P}A \longrightarrow \Omega$, such that for every $f: A \times B \longrightarrow \Omega$ there is a unique arrow $q : B \longrightarrow \mathbf{P} A$ and

where the morphism $\epsilon_A = \mathrm{ev}_{A,\Omega}$ is not to be confused with the object ϵ_A given above. Taken as a contravariant functor, $P- : E \longrightarrow E$ maps an object in $\mathcal E$ to its respective power object. A morphism $h : A \longrightarrow B$ is raised to $\mathbf{P}h : \mathbf{P}B \longrightarrow \mathbf{P}A$, so that

 7 Johnstone, $T_{\text{opos theory}}$, p. 24.

⁸Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first introduction to topos theory. Springer Science & Business Media, 2012, p. 180.

⁹lbid., p. 167.

¹⁰Johnstone, *[Sketches of an Elephant: A Topos Theory Compendium](#page-0-1)*, p. vii.

 11 MacLane and Moerdijk, [Sheaves in geometry and logic: A first introduction to topos](#page-1-1) [theory](#page-1-1), p. 163.

commutes.

Example in Set The power object of any set *A* is $\wp(A) := \{B \mid B \subseteq A\}$, exponential objects B^A are set of functions of type $A \longrightarrow B$ and the subobject classifier is $P1 = \wp({*}) = {{*}, {*}}$ $\equiv 2 \cong {T, \perp}$ and φ is the characteristic function indicating if a an element of a (super-)set *S* is part of a subset *B*. We can interpret McLarty's \in *A* as the subset

 \in _{*A*} $:= \{ \langle a, X \rangle \mid a \in X \} \subseteq A \times \Omega^A$

where "∈" is the usual set-theoretical membership relation.

Constituent Functors We will be using the **co**variant Power-Object Functor, as this is necessary for the Coalgebra to be defined on an Endofunctor. As expected, the "binary product functor $-\times A$ with a fixed object $A \in Ob(\mathscr{E})$ " maps $B \in \mathrm{Ob}(\mathscr{E})$ to $A \times B \in \mathrm{Ob}(\mathscr{E})$, and maps a morphism $m : B \longrightarrow C$ to a morphism $f \times A : B \times A \longrightarrow C \times A$. The "exponential functor $-A$ with a fixed domain $A \in Ob(\mathscr{E})$ " maps a $B \in Ob(\mathscr{E})$ and a morphism $f : B \longrightarrow C$ to $f^A: B^A \longrightarrow C^A$ so that

$$
B^{A} \times A \xrightarrow{\text{ev}_{A,B}} B
$$

$$
f^{A} \times \text{id}_{A} \downarrow \qquad \qquad \downarrow f
$$

$$
C^{A} \times A \xrightarrow{\text{ev}_{A,C}} C
$$

commutes.

Defining ρ **in** $\mathscr E$ Recall that in Set, Jacobs, et. al. define^{[12](#page-2-0)} ρ_X = $\rho_{X\,1}\times \rho_{X\,2}:\wp\left(2\times X^\Sigma\right)\longrightarrow 2\times \wp\left(X\right)^\Sigma$ component-wise, $\rho_1(U) = 1 \iff \exists h \in X$. $\langle 1, h \rangle \in U$

and

$$
x = \rho_2(U)(a) \iff \exists \langle b, h \rangle \in U. \ h(a) = x.
$$

This now becomes $\varrho_X : \mathbf{P}(\Omega \times X^\Sigma) \longrightarrow \Omega \times \mathbf{P}X^\Sigma$.

 12 Bart Jacobs, Alexandra Silva, and Ana Sokolova. "Trace semantics via determinization". In: International Workshop on Coalgebraic Methods in Computer Science. Springer. 2012, pp. 109–129, p. 117.

Here the question arises, what a power-object of a sub-object classifier might be? Likewise, how does the power-object behave over products and exponential objects? Back in **Set**, we could make use of properties like

 $\wp(1 + \Sigma \times X) \cong 2 \times \wp(\Sigma \times X) \cong 2 \times \wp(X)^{\Sigma},$

as

 $2^{1+\Sigma \times X} \cong 2 \times 2^{\Sigma \times X} \cong 2 \times 2^{X^{\Sigma}}.$

 ${\sf Reminding}$ ourselves that ${\bf P} A \!\cong\! \Omega^A$, we can make use of properties enjoyed by exponential objects, 13 13 13 such as transposition (currying)

 $\text{Hom}_{\mathscr{C}}(A, C^B) \cong \text{Hom}_{\mathscr{C}}(B \times A, C)$.

 ${\bold A}$ s a <code>Product UMP</code> $\;$ It is clear, that $\Omega\times{\bf P}X^\Sigma$ has two projections $\pi_1 : \Omega \times \mathbf{P} X^{\Sigma} \longrightarrow \Omega \quad \quad \pi_2 : \Omega \times \mathbf{P} X^{\Sigma} \longrightarrow \mathbf{P} X^{\Sigma}$

that constitute a universal cone. If we can provide two further morphisms $\rho_1: \mathbf{P}\left(\Omega \times X^\Sigma \right) \longrightarrow \Omega \qquad \rho_2: \mathbf{P}\left(\Omega \times X^\Sigma \right) \longrightarrow \mathbf{P} X^\Sigma$

then the universal property of products gives us a unique morphism, which we shall already conveniently refer to as

 $\rho_X : \mathbf{P}\left(\Omega \times X^\Sigma \right) \twoheadrightarrow \Omega \times \mathbf{P} X^\Sigma.$

Here's an idea: The cone-morphisms ρ_1 and ρ_2 will respectively be defined as

$$
\rho_1: \mathbf{P}(\Omega \times X^\Sigma) \longrightarrow \mathbf{P}\Omega \longrightarrow \Omega \qquad \rho_2: \mathbf{P}(\Omega \times X^\Sigma) \longrightarrow \mathbf{P}X^\Sigma \longrightarrow \mathbf{P}X^\Sigma.
$$

Subobject of a Power-Object-Product These are simply

 $\mathbf{P}\pi_1 : \mathbf{P}(A \times B) \longrightarrow \mathbf{P}A$.

and

 $\mathbf{P}\pi_2 : \mathbf{P}(A \times B) \longrightarrow \mathbf{P}B,$ as **P**− is covariant.

Elaborating ρ_1 **and** ρ_2 Given $P\pi_1$ and $P\pi_2$, the constructing the cone from $\mathbf{P}\left(\Omega \times X^\Sigma\right)$ requires two further morphisms, of the forms

 $\mathbf{P}\Omega \longrightarrow \Omega$ and $\mathbf{P}\left(X^\Sigma\right) \longrightarrow \mathbf{P} X^\Sigma.$ The the former, consider the subobject,

$$
\{X | \exists x \in X. x\} \longrightarrow 1
$$

$$
\downarrow f
$$

$$
\mathbf{P}\Omega \xrightarrow{\chi_f} \Omega
$$

¹³Steve Awodey. Category Theory. Oxford, England: Oxford University Press, 2006, p. 119.

For the latter, consider
\n
$$
\mathbf{P}(X^{\Sigma}) \longrightarrow (\mathbf{P}X)^{\Sigma} : g
$$
\n
$$
\cong \Omega^{X^{\Sigma}} \longrightarrow (\Omega^{X})^{\Sigma}
$$
\n
$$
\cong \Omega^{X^{\Sigma}} \longrightarrow \Omega^{\Sigma \times X}
$$
\n
$$
\cong \Sigma \times X \times \Omega^{X^{\Sigma}} \longrightarrow \Omega
$$
\n
$$
\cong \Sigma \times X \times \mathbf{P}(X^{\Sigma}) \longrightarrow \Omega : g'
$$
\n
$$
(curry)
$$

We can regard the last form as a characteristic morphism of the subobject "containing", taking the liberty of thinking in **Set**,

 \mathcal{A} ll $x\in X$, $\sigma\in\Sigma$ and $F\in\mathbf{P}\left(X^{\Sigma}\right)$ (that is to say $F\subseteq X^{\Sigma})$ where there exists a $f \in F$, such that $f(\sigma) = x$.

or put in terms of the internal logic of \mathscr{E} ,

It would be worthwhile to translate these internal formulations back into morphisms of \mathscr{E} .

These results gives us

$$
\rho_1 = \chi_f \circ \mathbf{P} \pi_1 : \mathbf{P} (\Omega \times X^\Sigma) \longrightarrow \Omega
$$

and

 $\rho_2 = g \circ \mathbf{P} \pi_2 : \mathbf{P}\left(\Omega \times X^\Sigma \right) \longrightarrow \mathbf{P} X^\Sigma.$

Due to the uniqueness of ρ_X , we can conclude that the above construction gives us a concrete definition:

 $\rho_X = (\chi_f \times q) \circ \langle \mathbf{P} \pi_1, \mathbf{P} \pi_2 \rangle$.

Overview and Review of the Construction The following commutative diagram summarises the construction

Before proceeding to check if this satisfies the conditions of the \mathcal{EM} distributive law, I would like to verify if the arrows make sense in terms of toposes as generalised sets:

- \blacksquare The projection ρ_1 , itself a characteristic morphism of the subobject that "contains" at least one accepting automaton.
- Going by MacLane, 14 we know that subobjects
	- $m: S \rightarrow A$

may also be described as

 $s: 1 \longrightarrow \mathbf{P}A$.

The subobject corresponding to $\mathbf{P}\left(X^{\Sigma }\right)$ denotes state-transitions, that collectively step to a sub-object $\mathbf{P} \overrightarrow{X}$ via some $\sigma \in \Sigma$, which we precisely describe using $\mathbf{P} X^{\Sigma}$.

This intuitively matches the above mentioned description by Jacobs, et. al..

Verifying the Distributivity Laws Recall that $FX = \Omega \times X^{\Sigma}$. It remains to verify if a "singleton" power-object distributes to a non-deterministic automaton over a single state,

and if "flattening" power-objects of automata and of states distribute well as well,

$$
\mathbf{P}\left(\mathbf{P}\left(\Omega \times X^{\Sigma}\right)\right) \xrightarrow{\mathbf{P}(\rho_X)} \mathbf{P}\left(\Omega \times \mathbf{P}X^{\Sigma}\right) \xrightarrow{\rho_{\mathbf{P}X}} \Omega \times \mathbf{P}\mathbf{P}X^{\Sigma}
$$
\n
$$
\downarrow^{\mu_{FX}} \qquad \qquad \downarrow^{\mu_{FX}}
$$
\n
$$
\mathbf{P}\left(\Omega \times X^{\Sigma}\right) \xrightarrow{\rho_X} \Omega \times \mathbf{P}X^{\Sigma}
$$

The Power-Object-Functor is a Monad First we have to define our terms, and make the unit η and multiplication μ of the monad explicit.

Following a comment by Zhen Lin on Stack Exchange^{[15](#page-5-1)}, we can define *η* as the characteristic morphism of the transpose of the diagonal

$$
\chi_{\Delta}:X\times X\longrightarrow \Omega
$$

as

 $\eta_X: X \longrightarrow \Omega^X \cong \mathbf{P}X,$

 14 MacLane and Moerdijk, *[Sheaves in geometry and logic: A first introduction to topos](#page-1-1)* [theory](#page-1-1), p. 165.

¹⁵<https://math.stackexchange.com/a/1192948>

or in using internal logic

 $\eta_X(e) = \{x \mid e = x\}.$

Now, whenever we encounter the $a \vdash a \in \eta_X(e)$, we know this to be equivalent to $\vdash a = e$.

Zhen gives the definition of multiplication directly using internal logic $\mu_X(t) = \{x \mid \exists s : \mathbf{P} X \ldotp x \in s \land s \in t\}.$

Let us use the opportunity the rephrase ρ_1 and ρ_2 directly and point-wise in terms of the internal logic of $\mathscr E$ and a fixed state space $X \in \mathrm{Ob}(\mathscr E)$:

 $\rho_1\left(A:\mathbf{P}\left(\Omega\times X^\Sigma\right)\right)=\exists\left<\varepsilon,\delta\right>\in A.\,\varepsilon$

and

 $\rho_2\left(A : \mathbf{P}\left(\Omega \times X^\Sigma\right)\right) = \sigma \mapsto \{x : \mathbf{P}X \mid \exists \langle \varepsilon, \delta \rangle \in A \ldotp \delta(\sigma) = x\}$ so together $\rho_X(A) = \langle \exists \langle \varepsilon, \delta \rangle \in A$. $\varepsilon, \sigma \mapsto \{x : \mathbf{P}X \mid \exists \langle \varepsilon, \delta \rangle \in A$. $\delta(\sigma) = x \} \rangle$ **Distributitivty of the Unit** In the internal logic, the first diagram reads as $\rho_X \circ \eta_{FX} = F(\eta_X)$ $a \models \rho_X(\eta_{FX}(a)) = F(\eta_X)(a)$ at which point we can split the equation into the two cases $a \models \rho_1(\eta_{FX}(a)) = \mathrm{id}_{\Omega}(\pi_1(a))$ (left) $a \models \qquad \qquad \rho_2(\eta_{FX}(a)) = (\eta_X)^{\Sigma}(\pi_2(a)) \quad \text{(right)}$ considering the simpler (left) case first, $a \models \qquad \exists \langle \varepsilon, \delta \rangle \in \eta_{FX}(a) \cdot \varepsilon = \pi_1(a)$ $a \models \qquad \exists \langle \varepsilon, \delta \rangle \in \{y \mid y = a\} \wedge \varepsilon = \pi_1(a)$ $a \models \exists \langle \varepsilon, \delta \rangle \cdot \langle \varepsilon, \delta \rangle = a \wedge \varepsilon = \pi_1(a)$ given that *a* is a $\Omega \times X^{\Sigma}$, we can replace $\varepsilon, \delta \models \quad (\exists \langle \varepsilon', \delta' \rangle \cdot \langle \varepsilon', \delta' \rangle = \langle \varepsilon, \delta \rangle \wedge \varepsilon') = \pi_1(\langle \varepsilon, \delta \rangle)$ *ε* |= *ε* = *ε* and then the right case, by extending both sides with a $\sigma \in \Sigma$, $a, \sigma \models \qquad \qquad \rho_2(\eta_{FX}(a))(\sigma) = (\eta_X)^{\Sigma}(\pi_2(a))(\sigma)$ $a, \sigma, z \models z \in \rho_2(\eta_{FX}(a))(\sigma) \iff z \in ((\eta_X)^{\Sigma}(\pi_2(a)))(\sigma)$

considering the left hand side of the implication, we get $\langle \varepsilon, \delta \rangle \in \{y \mid y = a\} \wedge \delta(\sigma) = z$ or ⟨*ε, δ*⟩ = *a* ∧ *δ*(*σ*) = *z* or $(\pi_2(a))(\sigma) = z$, while the right hand side gives us $z \in ((q \mapsto \eta_X \circ q)(\pi_2(a)))(\sigma)$ or $z \in (\eta_X \circ \pi_2(a))(\sigma)$ or $z \in n_X((\pi_2(a))(\sigma))$ or $z \in \{y \mid y = (\pi_2(a))(\sigma)\}\$ or $z = (\pi_2(a))(\sigma)$, giving us the final and positive result $a, \sigma, z \models (\pi_2(a))(\sigma) = z \iff z = (\pi_2(a))(\sigma)$ $a \models a$ **Distributitivty of Multiplication** We consider, \models $\rho_X \circ \mu_{FX} = F(\mu_X) \circ \rho_{\mathbf{P} X} \circ \mathbf{P}(\rho_X)$ $A \models \rho_X(\mu_{FX}(A)) = F(\mu_X)(\rho_{PX}(\mathbf{P}(\rho_X)(A)))$ Once again, considering both cases separately:
 $A \models \rho_1(\mu_{FX}(A)) = \pi_1(F(\mu_X))$ $\rho_1(\mu_{FX}(A)) = \pi_1(F(\mu_X)(\rho_{\mathbf{P} X}(\mathbf{P}(\rho_X)(A))))$ $A \models \rho_1(\mu_{FX}(A)) = \pi_1(\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A)))$ $A \models \rho_1(\mu_{FX}(A)) = \rho_1(\mathbf{P}(\rho_X)(A))$ $A \models$ $\exists \langle \varepsilon, \delta \rangle \in \mu_{FX}(A), \varepsilon \iff \exists \langle \varepsilon, \delta \rangle \in \mathbf{P}(\rho_X)(A), \varepsilon$

Here again, we consider the right and the left hand of the implication separately: On the left we can expand $\mu_{FX}(A)$,

 $\exists \langle \varepsilon, \delta \rangle \cdot \langle \varepsilon, \delta \rangle \in \{x \mid \exists s. \ s \in A \land x \in s\} \land \varepsilon$ or equivalently, $\exists \langle \varepsilon, \delta \rangle \cdot (\exists s. s \in A \land \langle \varepsilon, \delta \rangle \in s) \land \varepsilon.$ On the other side, we can expand $P(\rho_X)$ ∃ ⟨*ε, δ*⟩ ∈ **P** (*ρX*) (*A*)*. ε* which going by $x \in P(f)(s) \iff \exists y, y \in s \land f(y) = x$, is $\exists \langle \varepsilon, \delta \rangle \cdot \langle \varepsilon, \delta \rangle \in \{x \mid \exists y, y \in A \land \rho_X(y) = x\} \land \varepsilon,$ or $\exists \langle \varepsilon, \delta \rangle$ *.*($\exists s. s \in A \wedge \rho_X(s) = \langle \varepsilon, \delta \rangle$) $\wedge \varepsilon$,

or

 $\exists \langle \varepsilon, \delta \rangle$. $(\exists s. s \in A \land \rho_1(s) = \varepsilon \land \rho_2(s) = \delta) \land \varepsilon$,

where we can disregard δ , as it doesn't interest us beyond its existence, $\exists \langle \varepsilon, \delta \rangle \cdot (\exists s. s \in A \land (\exists \langle \varepsilon', \delta' \rangle \in s. \varepsilon') = \varepsilon) \land \varepsilon,$

which simplifies to

 $\exists \langle \varepsilon, \delta \rangle \cdot (\exists s. s \in A \land \langle \varepsilon, \delta \rangle \in s) \land \varepsilon,$

as δ' was not constrained. This gives us the intended equality result for $\rho_1.$

For the second case, we once again fix an arbitrary *σ*:

$$
A, \sigma \models \qquad \rho_2(\mu_{FX}(A))(\sigma) = \pi_2(F(\mu_X)(\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A))))(\sigma)
$$

\n
$$
A, \sigma \models \qquad \rho_2(\mu_{FX}(A))(\sigma) = (\mu_X^{\Sigma}(\pi_2(\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A))))(\sigma)
$$

\n
$$
A, \sigma \models \qquad \rho_2(\mu_{FX}(A))(\sigma) = \mu_X(\pi_2((\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A))))(\sigma))
$$

 $A, \sigma, x \models x \in \rho_2(\mu_{FX}(A))(\sigma) \iff x \in \mu_X(\pi_2((\rho_{PX}(P(\rho_X)(A))))(\sigma))$ Simplispanding the LHS of the implication we get

$$
x \in \rho_2(\mu_{FX}(A))(\sigma)
$$

\n
$$
\iff x \in \{y \mid \exists \langle \varepsilon, \delta \rangle \in \mu_{FX}(A). \delta(\sigma) = y\}
$$

\n
$$
\iff x \in \{y \mid \exists \langle \varepsilon, \delta \rangle \in \{z \mid \exists s. s \in A \land z \in s\}. \delta(\sigma) = y\}
$$

\n
$$
\iff x \in \{y \mid \exists \langle \varepsilon, \delta \rangle \cdot (\exists s. s \in A \land \langle \varepsilon, \delta \rangle \in s). \delta(\sigma) = y\}
$$

\n
$$
\iff \exists \langle \varepsilon, \delta \rangle \cdot (\exists s. s \in A \land \langle \varepsilon, \delta \rangle \in s). \delta(\sigma) = x
$$

\nThe the RHS, consider
\n
$$
x \in \mu_X(\pi_2((\rho_{PX}(P(\rho_X)(A))))(\sigma))
$$

\n
$$
\iff x \in \{y \mid \exists s. s \in \pi_2(\rho_{PX}(P(\rho_X)(A)))(\sigma) \land y \in s\}
$$

\n
$$
\iff x \in \{y \mid \exists s. s \in (\rho_2(P(\rho_X)(A)))(\sigma) \land y \in s\}
$$

\n
$$
\iff x \in \{y \mid \exists s. s \in \{z \mid \exists \langle \varepsilon, \delta \rangle \in P(\rho_X)(A). \delta(\sigma) = z\} \land y \in s\}
$$

\n
$$
\iff x \in \{y \mid \exists s. (\exists \langle \varepsilon, \delta \rangle \in P(\rho_X)(A). \delta(\sigma) = s) \land y \in s\}
$$

\nwhere $P(\rho_X)(A) = \{w | \exists s. v \in A \land w = \rho_X(v)\},$
\n
$$
\iff x \in \{y | \exists s. (\exists \langle \varepsilon, \delta \rangle \cdot (\exists v. v \in A \land \langle \varepsilon, \delta \rangle = \rho_X(v)) \land \delta(\sigma) = s) \land y \in s\}
$$

allowing us once again to ignore *ε*,

$$
\iff x \in \{y \mid \exists s. (\exists \langle \varepsilon, \delta \rangle \cdot (\exists v. v \in A \land \delta = \rho_2(v)). \delta(\sigma) = s) \land y \in s\}
$$

\n
$$
\iff \exists s. (\exists \langle \varepsilon, \delta \rangle \cdot (\exists v. v \in A \land \delta = \rho_2(v)) \land \delta(\sigma) = s) \land x \in s
$$

\n
$$
\iff \exists s. (\exists \langle \varepsilon, \delta \rangle \cdot \exists v. v \in A \land \rho_2(v)(\sigma) = s) \land x \in s
$$

\n
$$
\iff \exists \langle \varepsilon, \delta \rangle \cdot \exists v. v \in A \land x \in \rho_2(v)(\sigma)
$$

\n
$$
\iff \exists \langle \varepsilon, \delta \rangle \cdot \exists v. v \in A \land x \in \rho_2(v)(\sigma)
$$

\nkeeping in mind that $\rho_2(v) = (\sigma \mapsto \{x \mid \exists \langle \varepsilon, \delta \rangle \in v \land \delta(\sigma) = x\}),$
\n
$$
\iff \exists \langle \varepsilon, \delta \rangle \cdot \exists v. v \in A \land x \in \{x \mid \exists \langle \varepsilon, \delta \rangle \in v \land \delta(\sigma) = x\}
$$

\n
$$
\iff \exists \langle \varepsilon, \delta \rangle \cdot \exists v. v \in A \land \exists \langle \varepsilon', \delta' \rangle \in v \land \delta'(\sigma) = x
$$

\n
$$
\iff \exists s. s \in A \land \exists \langle \varepsilon, \delta \rangle \in s \land \delta(\sigma) = x
$$

This leaves us with the question,

 $\exists \langle \varepsilon, \delta \rangle \cdot (\exists s \in A \ldotp \langle \varepsilon, \delta \rangle \in s) \ldotp \delta(\sigma) = x \iff \exists s \in A \ldotp \exists \langle \varepsilon, \delta \rangle \in s \ldotp \delta(\sigma) = x$ which holds by the commutativity of ∃ given that ⟨*ε, δ*⟩ is "free" in *A*.

This concludes the proof, demonstrating that the \mathcal{EM} -distributive law for holds in $\mathscr E$ for ρ_X .