A formulation of ρ in a Topos \mathscr{E}

Philip KALUĐERČIĆ philip.kaludercic@fau.de

06May24, typeset on June 20, 2024

We know that $\rho: TF \Rightarrow TF$, where the monad $TX = \wp(X)$ and an endofunctor $FX = 2 \times \wp(X)$ map a set of deterministic automata into a single non-deterministic automaton N, where N accepts a word if any deterministic automaton would accept it and state transitions merge all deterministic transitions.

The above occurs in Set. Can we translate this into a topos, where $TX = \mathbf{P}X$

 $FX = \Omega \times X^{\Sigma}$

To this end, we have to define the "power object functor" \mathbf{P} -, the "exponential functor" $-^A$ and the "product functor" $- \times A$ for some $A \in Ob(\mathscr{E})$ (the latter two, which are given in Cartesian closed category (terminal, product, exponential), are known to be adjunct).

Definition of a Topos For a category \mathscr{E} , we speak of a *power object* $A \in Ob(\mathscr{E})$ as an object $\mathbf{P}A = \Omega^A \in Ob(\mathscr{E})$ along with a morphism $\in_A \longrightarrow A \times \mathbf{P}A$, when for every $C \in Ob(\mathscr{E})$ and mono $R \longrightarrow A \times C$ the following commutes (composing diagrams by McLarty,¹ Johnstone²,³ Caramello⁴ and from nLab⁵):

with a unique $\chi_R : C \longrightarrow \mathbf{P}A$ and R being the pullback.

If \mathscr{E} with all finite limits has power objects for all objects $Ob(\mathscr{E})$, then we call \mathscr{E} a *(elementary) topos.*⁶ The qualifier "elementary" distinguishes the notion

¹Colin McLarty. *Elementary categories, elementary toposes*. Clarendon Press, 1992, p. 120.

²Peter T Johnstone. *Sketches of an Elephant: A Topos Theory Compendium*. Oxford University Press, 2002, p. 86.

³Peter T Johnstone. *Topos theory*. Courier Corporation, 2014, p. 43.

⁴Olivia Caramello and Riccardo Zanfa. *On the dependent product in toposes.* 2019. arXiv: 1908.08488 [math.CT]. URL: https://arxiv.org/abs/1908.08488, p. 5.

⁵nLab authors. power object. https://ncatlab.org/nlab/show/power+object. Revision 8. May 2024.

⁶Michael Barr and Charles Wells. *Toposes, triples, and theories*. Springer-Verlag, 2000, p. 63.

from Grothendieck topos, which are a special instance of elementary toposes.⁷

From the above, we can derive arbitrary finite co limits⁸ and exponential objects $B^{A,9}$ such that for all $q: Z \times A \longrightarrow B$, there is a unique $f: Z \longrightarrow B^{A}$ in

The subobject classifier,

$$\begin{array}{ccc} S & \stackrel{!}{\longrightarrow} & 1 \\ \downarrow m^{\neg} & \downarrow \text{true} \\ B & \stackrel{\varphi}{\dashrightarrow} & \Omega \end{array}$$

commutes, follows from $\Omega = \Omega^1 = \mathbf{P} \mathbf{1}$.

There are multiple equivalent definitions, ¹⁰ for example MacLane¹¹ postulate all pullbacks and a terminal objects (which amount's to \mathscr{E} being complete), the subobject classifier Ω and then describes power objects PA along with a morphism $\in_A : A \times \mathbf{P}A \longrightarrow \Omega$, such that for every $f : A \times B \longrightarrow \Omega$ there is a unique arrow $g : B \longrightarrow \mathbf{P}A$ and

where the morphism $\in_A = ev_{A,\Omega}$ is not to be confused with the object \in_A given above. Taken as a contravariant functor, $\mathbf{P} - : \mathscr{E} \longrightarrow \mathscr{E}$ maps an object in \mathscr{E} to its respective power object. A morphism $h : A \longrightarrow B$ is raised to $\mathbf{P}h : \mathbf{P}B \longrightarrow \mathbf{P}A$, so that

⁷Johnstone, *Topos theory*, p. 24.

⁸Saunders MacLane and leke Moerdijk. *Sheaves in geometry and logic: A first introduction to topos theory.* Springer Science & Business Media, 2012, p. 180.

⁹Ibid., p. 167.

¹⁰ Johnstone, Sketches of an Elephant: A Topos Theory Compendium, p. vii.

¹¹MacLane and Moerdijk, *Sheaves in geometry and logic: A first introduction to topos theory*, p. 163.

commutes.

Example in Set The power object of any set A is $\wp(A) \coloneqq \{B \mid B \subseteq A\}$, exponential objects B^A are set of functions of type $A \longrightarrow B$ and the subobject classifier is $\mathbf{P1} = \wp(\{*\}) = \{\{*\}, \{\}\} \cong 2 \cong \{\top, \bot\}$ and φ is the characteristic function indicating if a an element of a (super-)set S is part of a subset B. We can interpret McLarty's \in_A as the subset

 $\in_A \coloneqq \{ \langle a, X \rangle \mid a \in X \} \subseteq A \times \Omega^A$

where " \in " is the usual set-theoretical membership relation.

Constituent Functors We will be using the **co**variant Power-Object Functor, as this is necessary for the Coalgebra to be defined on an Endofunctor. As expected, the "binary product functor $- \times A$ with a fixed object $A \in Ob(\mathscr{E})$ " maps $B \in Ob(\mathscr{E})$ to $A \times B \in Ob(\mathscr{E})$, and maps a morphism $m : B \longrightarrow C$ to a morphism $f \times A : B \times A \longrightarrow C \times A$. The "exponential functor $-^A$ with a fixed domain $A \in Ob(\mathscr{E})$ " maps a $B \in Ob(\mathscr{E})$ and a morphism $f : B \longrightarrow C$ to $f^A : B^A \longrightarrow C^A$ so that

commutes.

Defining ρ in \mathscr{E} Recall that in Set, Jacobs, et. al. define¹² $\rho_X = \rho_{X_1} \times \rho_{X_2} : \wp \left(2 \times X^{\Sigma}\right) \longrightarrow 2 \times \wp \left(X\right)^{\Sigma}$ component-wise, $\rho_1(U) = 1 \iff \exists h \in X. \langle 1, h \rangle \in U$

and

$$x = \rho_2(U)(a) \iff \exists \langle b, h \rangle \in U. \ h(a) = x.$$

This now becomes $\rho_X : \mathbf{P}(\Omega \times X^{\Sigma}) \longrightarrow \Omega \times \mathbf{P} X^{\Sigma}$

¹²Bart Jacobs, Alexandra Silva, and Ana Sokolova. "Trace semantics via determinization". In: *International Workshop on Coalgebraic Methods in Computer Science*. Springer. 2012, pp. 109–129, p. 117.

Here the question arises, what a power-object of a sub-object classifier might be? Likewise, how does the power-object behave over products and exponential objects? Back in **Set**, we could make use of properties like

 $\wp \left(1 + \Sigma \times X \right) \cong 2 \times \wp \left(\Sigma \times X \right) \cong 2 \times \wp \left(X \right)^{\Sigma},$

as

 $2^{1+\Sigma \times X} \cong 2 \times 2^{\Sigma \times X} \cong 2 \times 2^{X^{\Sigma}}.$

Reminding ourselves that $\mathbf{P}A \cong \Omega^A$, we can make use of properties enjoyed by exponential objects,¹³ such as transposition (currying)

 $\operatorname{Hom}_{\mathscr{C}}(A, C^B) \cong \operatorname{Hom}_{\mathscr{C}}(B \times A, C).$

As a Product UMP It is clear, that $\Omega \times \mathbf{P} X^{\Sigma}$ has two projections $\pi_1 : \Omega \times \mathbf{P} X^{\Sigma} \longrightarrow \Omega$ $\pi_2 : \Omega \times \mathbf{P} X^{\Sigma} \longrightarrow \mathbf{P} X^{\Sigma}$

that constitute a universal cone. If we can provide two further morphisms $\rho_1 : \mathbf{P}(\Omega \times X^{\Sigma}) \longrightarrow \Omega$ $\rho_2 : \mathbf{P}(\Omega \times X^{\Sigma}) \longrightarrow \mathbf{P}X^{\Sigma}$ then the universal property of products gives us a unique morphism, which

then the universal property of products gives us a unique morphism, which we shall already conveniently refer to as

 $\rho_X: \mathbf{P}(\Omega \times X^{\Sigma}) \to \Omega \times \mathbf{P} X^{\Sigma}.$

Here's an idea: The cone-morphisms ρ_1 and ρ_2 will respectively be defined as

$$\rho_1 : \mathbf{P} \left(\Omega \times X^{\Sigma} \right) \longrightarrow \mathbf{P} \Omega \longrightarrow \Omega \qquad \rho_2 : \mathbf{P} \left(\Omega \times X^{\Sigma} \right) \longrightarrow \mathbf{P} X^{\Sigma} \longrightarrow \mathbf{P} X^{\Sigma}.$$

Subobject of a Power-Object-Product These are simply

 $\mathbf{P}\pi_1: \mathbf{P}\left(A \times B\right) \longrightarrow \mathbf{P}A,$

and

 $\mathbf{P}\pi_2:\mathbf{P}\left(A\times B\right)\longrightarrow\mathbf{P}B,$

as $\mathbf{P}-$ is covariant.

Elaborating ρ_1 and ρ_2 Given $\mathbf{P}\pi_1$ and $\mathbf{P}\pi_2$, the constructing the cone from $\mathbf{P}(\Omega \times X^{\Sigma})$ requires two further morphisms, of the forms

$$\mathbf{P}\Omega \longrightarrow \Omega$$
 and $\mathbf{P}(X^{\Sigma}) \longrightarrow \mathbf{P}X^{\Sigma}$.
The the former, consider the subobject,

$$\begin{cases} X | \exists x \in X. x \} & \longrightarrow 1 \\ \int f & & \int \text{true} \\ \mathbf{P}\Omega & \xrightarrow{\chi_f} & \Omega \end{cases}$$

¹³Steve Awodey. Category Theory. Oxford, England: Oxford University Press, 2006, p. 119.

For the latter, consider

$$\mathbf{P} (X^{\Sigma}) \longrightarrow (\mathbf{P}X)^{\Sigma} : g \\
\cong \Omega^{X^{\Sigma}} \longrightarrow (\Omega^{X})^{\Sigma} \\
\cong \Omega^{X^{\Sigma}} \longrightarrow \Omega^{\Sigma \times X} \\
\cong \Sigma \times X \times \Omega^{X^{\Sigma}} \longrightarrow \Omega \\
\cong \Sigma \times X \times \mathbf{P} (X^{\Sigma}) \longrightarrow \Omega : g'$$
(curry)

We can regard the last form as a characteristic morphism of the subobject "containing", taking the liberty of thinking in **Set**,

All $x \in X$, $\sigma \in \Sigma$ and $F \in \mathbf{P}(X^{\Sigma})$ (that is to say $F \subseteq X^{\Sigma}$) where there exists a $f \in F$, such that $f(\sigma) = x$.

or put in terms of the internal logic of \mathscr{E} ,

It would be worthwhile to translate these internal formulations back into morphisms of $\mathscr{E}.$

These results gives us

$$\rho_1 = \chi_f \circ \mathbf{P} \pi_1 : \mathbf{P} \left(\Omega \times X^{\Sigma} \right) \longrightarrow \Omega$$

and

 $\rho_2 = g \circ \mathbf{P} \pi_2 : \mathbf{P} \left(\Omega \times X^{\Sigma} \right) \longrightarrow \mathbf{P} X^{\Sigma}.$

Due to the uniqueness of ρ_X , we can conclude that the above construction gives us a concrete definition:

 $\rho_X = (\chi_f \times g) \circ \langle \mathbf{P} \pi_1, \mathbf{P} \pi_2 \rangle.$

Overview and Review of the Construction The following commutative diagram summarises the construction

Before proceeding to check if this satisfies the conditions of the \mathcal{EM} -distributive law, I would like to verify if the arrows make sense in terms of toposes as generalised sets:

- The projection ρ_1 , itself a characteristic morphism of the subobject that "contains" at least one accepting automaton.
- Going by MacLane,¹⁴ we know that subobjects

```
m:S\rightarrowtail A
```

may also be described as

 $s: 1 \longrightarrow \mathbf{P}A.$

The subobject corresponding to $\mathbf{P}(X^{\Sigma})$ denotes state-transitions, that collectively step to a sub-object $\mathbf{P}X$ via some $\sigma \in \Sigma$, which we precisely describe using $\mathbf{P}X^{\Sigma}$.

This intuitively matches the above mentioned description by Jacobs, et. al...

Verifying the Distributivity Laws Recall that $FX = \Omega \times X^{\Sigma}$. It remains to verify if a "singleton" power-object distributes to a non-deterministic automaton over a single state,

and if "flattening" power-objects of automata and of states distribute well as well,

The Power-Object-Functor is a Monad First we have to define our terms, and make the unit η and multiplication μ of the monad explicit.

Following a comment by Zhen Lin on Stack Exchange¹⁵, we can define η as the characteristic morphism of the transpose of the diagonal

$$\chi_{\Delta}: X \times X \longrightarrow \Omega$$

as

 $\eta_X: X \longrightarrow \Omega^X \cong \mathbf{P}X,$

¹⁴MacLane and Moerdijk, *Sheaves in geometry and logic: A first introduction to topos theory*, p. 165.

¹⁵https://math.stackexchange.com/a/1192948

or in using internal logic

 $\eta_X(e) = \{x \mid e = x\}.$

Now, whenever we encounter the a $\vdash a \in \eta_X(e)$, we know this to be equivalent to $\vdash a = e$.

Zhen gives the definition of multiplication directly using internal logic $\mu_X(t) = \{x \mid \exists s : \mathbf{P}X. x \in s \land s \in t\}.$

Let us use the opportunity the rephrase ρ_1 and ρ_2 directly and point-wise in terms of the internal logic of \mathscr{E} and a fixed state space $X \in Ob(\mathscr{E})$:

 $\rho_1\left(A:\mathbf{P}\left(\Omega\times X^{\Sigma}\right)\right) = \exists \langle \varepsilon, \delta \rangle \in A. \varepsilon$

and $\rho_2\left(A:\mathbf{P}\left(\Omega\times X^{\Sigma}\right)\right) = \sigma \mapsto \{x:\mathbf{P}X \mid \exists \langle \varepsilon, \delta \rangle \in A. \, \delta(\sigma) = x\}$ so together $\rho_X(A) = \langle \exists \langle \varepsilon, \delta \rangle \in A. \varepsilon, \sigma \mapsto \{ x : \mathbf{P}X \mid \exists \langle \varepsilon, \delta \rangle \in A. \delta(\sigma) = x \} \rangle$ **Distributitivty of the Unit** In the internal logic, the first diagram reads as $\rho_X \circ \eta_{FX} = F(\eta_X)$ $\rho_X(\eta_{FX}(a)) = F(\eta_X)(a)$ $a \models$ at which point we can split the equation into the two cases $a \models$ $\rho_1(\eta_{FX}(a)) = \mathrm{id}_{\Omega}(\pi_1(a))$ (left) $\rho_2(\eta_{FX}(a)) = (\eta_X)^{\Sigma}(\pi_2(a)) \quad (\text{right})$ $a \models$ considering the simpler (left) case first, $\exists \langle \varepsilon, \delta \rangle \in \eta_{FX}(a). \varepsilon = \pi_1(a)$ $a \models$ $a\models \qquad \exists \left< \varepsilon, \delta \right> \in \{y \mid y=a\} \land \varepsilon = \pi_1(a)$ $a \models$ $\exists \langle \varepsilon, \delta \rangle . \langle \varepsilon, \delta \rangle = a \wedge \varepsilon = \pi_1(a)$ given that a is a $\Omega \times X^{\Sigma}$, we can replace $\varepsilon, \delta \models (\exists \langle \varepsilon', \delta' \rangle, \langle \varepsilon', \delta' \rangle = \langle \varepsilon, \delta \rangle \land \varepsilon') = \pi_1(\langle \varepsilon, \delta \rangle)$ $\varepsilon \models$ $\varepsilon = \varepsilon$ and then the right case, by extending both sides with a $\sigma \in \Sigma$, $\rho_2(\eta_{FX}(a))(\sigma) = (\eta_X)^{\Sigma}(\pi_2(a))(\sigma)$ $a, \sigma \models$ $z \in \rho_2(\eta_{FX}(a))(\sigma) \iff z \in ((\eta_X)^{\Sigma}(\pi_2(a)))(\sigma)$ $a, \sigma, z \models$

considering the left hand side of the implication, we get $\langle \varepsilon, \delta \rangle \in \{y \mid y = a\} \land \delta(\sigma) = z$ or $\langle \varepsilon, \delta \rangle = a \wedge \delta(\sigma) = z$ or $(\pi_2(a))(\sigma) = z,$ while the right hand side gives us $z \in ((q \mapsto \eta_X \circ q)(\pi_2(a)))(\sigma)$ or $z \in (\eta_X \circ \pi_2(a))(\sigma)$ or $z \in \eta_X((\pi_2(a))(\sigma))$ or $z \in \{y \mid y = (\pi_2(a))(\sigma)\}$ or $z = (\pi_2(a))(\sigma),$ giving us the final and positive result $(\pi_2(a))(\sigma) = z \iff z = (\pi_2(a))(\sigma)$ $a, \sigma, z \models$ $a \models$ a = aDistributitivty of Multiplication We consider, $\rho_X \circ \mu_{FX} = F(\mu_X) \circ \rho_{\mathbf{P}X} \circ \mathbf{P}(\rho_X)$ ⊨ $\rho_X(\mu_{FX}(A)) = F(\mu_X)(\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A)))$ $A \models$ Once again, considering both cases separately: $\rho_1(\mu_{FX}(A)) = \pi_1(F(\mu_X)(\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A))))$ $A \models$ $\rho_1(\mu_{FX}(A)) = \pi_1(\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A)))$ $A \models$ $\rho_1(\mu_{FX}(A)) = \rho_1(\mathbf{P}(\rho_X)(A))$ $A \models$ $A \models \exists \langle \varepsilon, \delta \rangle \in \mu_{FX}(A). \varepsilon \iff \exists \langle \varepsilon, \delta \rangle \in \mathbf{P}(\rho_X)(A). \varepsilon$

Here again, we consider the right and the left hand of the implication separately: On the left we can expand $\mu_{FX}(A)$,

 $\exists \langle \varepsilon, \delta \rangle . \langle \varepsilon, \delta \rangle \in \{x \mid \exists s. s \in A \land x \in s\} \land \varepsilon$ or equivalently, $\exists \langle \varepsilon, \delta \rangle . (\exists s. s \in A \land \langle \varepsilon, \delta \rangle \in s) \land \varepsilon.$ On the other side, we can expand $\mathbf{P}(\rho_X)$ $\exists \langle \varepsilon, \delta \rangle \in \mathbf{P}(\rho_X)(A). \varepsilon$ which going by $x \in P(f)(s) \iff \exists y. y \in s \land f(y) = x$, is $\exists \langle \varepsilon, \delta \rangle . \langle \varepsilon, \delta \rangle \in \{x \mid \exists y. y \in A \land \rho_X(y) = x\} \land \varepsilon,$ or $\exists \langle \varepsilon, \delta \rangle . (\exists s. s \in A \land \rho_X(s) = \langle \varepsilon, \delta \rangle) \land \varepsilon,$

or

 $\exists \langle \varepsilon, \delta \rangle . (\exists s. s \in A \land \rho_1(s) = \varepsilon \land \rho_2(s) = \delta) \land \varepsilon,$

where we can disregard δ , as it doesn't interest us beyond its existence,

 $\exists \langle \varepsilon, \delta \rangle . (\exists s. s \in A \land (\exists \langle \varepsilon', \delta' \rangle \in s. \varepsilon') = \varepsilon) \land \varepsilon,$

which simplifies to

 $\exists \langle \varepsilon, \delta \rangle . (\exists s. s \in A \land \langle \varepsilon, \delta \rangle \in s) \land \varepsilon,$

as δ' was not constrained. This gives us the intended equality result for ρ_1 .

For the second case, we once again fix an arbitrary σ :

$$A, \sigma \models \rho_2(\mu_{FX}(A))(\sigma) = \pi_2(F(\mu_X)(\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A))))(\sigma)$$

$$A, \sigma \models \rho_2(\mu_{FX}(A))(\sigma) = (\mu_X^{\Sigma}(\pi_2(\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A)))))(\sigma)$$

$$A, \sigma \models \rho_2(\mu_{FX}(A))(\sigma) = \mu_X(\pi_2((\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A))))(\sigma))$$

$$A, \sigma \models \rho_2(\mu_{FX}(A))(\sigma) = \mu_X(\pi_2((\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A))))(\sigma))$$

 $A, \sigma, x \models x \in \rho_2(\mu_{FX}(A))(\sigma) \iff x \in \mu_X(\pi_2((\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A))))(\sigma)))$ Simplispanding the LHS of the implication we get $r \in \mathcal{O}_{2}(\mu_{\mathrm{DV}}(A))(\sigma)$

$$x \in \rho_{2}(\mu_{FX}(A))(\sigma)$$

$$\iff x \in \{y \mid \exists \langle \varepsilon, \delta \rangle \in \mu_{FX}(A). \, \delta(\sigma) = y\}$$

$$\iff x \in \{y \mid \exists \langle \varepsilon, \delta \rangle \in \{z \mid \exists s. s \in A \land z \in s\}. \, \delta(\sigma) = y\}$$

$$\iff x \in \{y \mid \exists \langle \varepsilon, \delta \rangle. \, (\exists s. s \in A \land \langle \varepsilon, \delta \rangle \in s). \, \delta(\sigma) = y\}$$

$$\iff \exists \langle \varepsilon, \delta \rangle. \, (\exists s. s \in A \land \langle \varepsilon, \delta \rangle \in s). \, \delta(\sigma) = x$$
he the RHS, consider

Th

$$\begin{aligned} x \in \mu_X(\pi_2((\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A))))(\sigma)) \\ \iff x \in \{y \mid \exists s. s \in \pi_2(\rho_{\mathbf{P}X}(\mathbf{P}(\rho_X)(A)))(\sigma) \land y \in s\} \\ \iff x \in \{y \mid \exists s. s \in (\rho_2(\mathbf{P}(\rho_X)(A)))(\sigma) \land y \in s\} \\ \iff x \in \{y \mid \exists s. s \in \{z \mid \exists \langle \varepsilon, \delta \rangle \in \mathbf{P}(\rho_X)(A). \, \delta(\sigma) = z\} \land y \in s\} \\ \iff x \in \{y \mid \exists s. (\exists \langle \varepsilon, \delta \rangle \in \mathbf{P}(\rho_X)(A). \, \delta(\sigma) = s) \land y \in s\} \\ \iff x \in \{y \mid \exists s. (\exists \langle \varepsilon, \delta \rangle \in \mathbf{P}(\rho_X)(A). \, \delta(\sigma) = s) \land y \in s\} \\ \text{where } \mathbf{P}(\rho_X)(A) = \{w \mid \exists s. v \in A \land w = \rho_X(v)\}, \\ \iff x \in \{y \mid \exists s. (\exists \langle \varepsilon, \delta \rangle . (\exists v. v \in A \land \langle \varepsilon, \delta \rangle = \rho_X(v)) \land \delta(\sigma) = s) \land y \in s\} \end{aligned}$$

allowing us once again to ignore ε ,

$$\begin{split} & \Longleftrightarrow x \in \{y \mid \exists s. (\exists \langle \varepsilon, \delta \rangle . (\exists v. v \in A \land \delta = \rho_2(v)) . \delta(\sigma) = s) \land y \in s\} \\ & \Longleftrightarrow \exists s. (\exists \langle \varepsilon, \delta \rangle . (\exists v. v \in A \land \delta = \rho_2(v)) \land \delta(\sigma) = s) \land x \in s \\ & \Longleftrightarrow \exists s. (\exists \langle \varepsilon, \delta \rangle . \exists v. v \in A \land \rho_2(v)(\sigma) = s) \land x \in s \\ & \Leftrightarrow \exists \langle \varepsilon, \delta \rangle . \exists v. v \in A \land x \in \rho_2(v)(\sigma) \\ & \Leftrightarrow \exists \langle \varepsilon, \delta \rangle . \exists v. v \in A \land x \in \rho_2(v)(\sigma) \\ & & \Leftrightarrow \exists \langle \varepsilon, \delta \rangle . \exists v. v \in A \land x \in \{x \mid \exists \langle \varepsilon, \delta \rangle \in v \land \delta(\sigma) = x\}), \\ & & \Leftrightarrow \exists \langle \varepsilon, \delta \rangle . \exists v. v \in A \land x \in \{x \mid \exists \langle \varepsilon, \delta \rangle \in v \land \delta(\sigma) = x\} \\ & & \Leftrightarrow \exists \langle \varepsilon, \delta \rangle . \exists v. v \in A \land \exists \langle \varepsilon', \delta' \rangle \in v \land \delta'(\sigma) = x \\ & & \Leftrightarrow \exists s. s \in A \land \exists \langle \varepsilon, \delta \rangle \in s \land \delta(\sigma) = x \end{split}$$

This leaves us with the question,

 $\exists \langle \varepsilon, \delta \rangle . \ (\exists s \in A. \ \langle \varepsilon, \delta \rangle \in s). \ \delta(\sigma) = x \iff \exists s \in A. \ \exists \langle \varepsilon, \delta \rangle \in s. \ \delta(\sigma) = x$ which holds by the commutativity of \exists given that $\langle \varepsilon, \delta \rangle$ is "free" in A.

This concludes the proof, demonstrating that the \mathcal{EM} -distributive law for holds in \mathscr{E} for ρ_X .