\mathcal{EM} -Style Semantics in a Topos \mathscr{E}

Philip Kaluðerčić

philip.kaludercic@fau.de

17Jun24, typeset on July 26, 2024

We follow Jacobs, et. al.,¹ transliterating the proof from Sets into an arbitrary Topos \mathscr{E} , specifically trying to express the map $\wp(X) \longrightarrow \wp(A^*)$ in terms of the internal logic of \mathscr{E} .

Review of \mathcal{EM} -Style Non-Deterministic Automata In Sets, we can model a non-deterministic automaton as the morphism

$$X \longrightarrow 2 \times \wp(X)^{\Sigma},$$

where we can express $2 \times \wp(X)^{\Sigma}$ as the composition of the functor $2 \times -^{\Sigma}$ and the (powerset) monad $\wp(-)$. An Eilenberg-Moore category $\mathcal{EM}(T)$ of a monad (T, η_X, μ_X) of a category \mathscr{C} , has

- 1. as objects, morphisms in \mathscr{C} of the form $a: T(X) \longrightarrow X$, such that $a \circ \eta_X = \operatorname{id}_X$ and $a \circ T(a) = a \circ \mu_X$ hold,
- 2. as morphisms between objects $x \colon T(X) \longrightarrow X$ and $y \colon T(Y) \longrightarrow Y$, morphism $f \colon X \longrightarrow Y$ from \mathscr{C} such that $b \circ T(f) = f \circ a$.

In other words, we are considering a sub-category of F-Algebra, for a monad T with the above placing conditions on objects.

For a category \mathscr{C} , assume the following in order:

- An arbitrary endofunctor $G \colon \mathscr{C} \longrightarrow \mathscr{C}$,
- An arbitrary monad $(T \colon \mathscr{C} \longrightarrow \mathscr{C}, \eta, \mu)$,
- an \mathcal{EM} -law $\rho: TG \Rightarrow GT$,
- and by the corresponding lifting a endofunctor

 $\hat{G}: \mathcal{EM}(T) \longrightarrow \mathcal{EM}(T),$

- a final G-coalgebra $\zeta \in \operatorname{Hom}_{\mathscr{C}}(Z, GZ)$
- a G-coalgebra $\rho \circ T(\zeta) \in \operatorname{Hom}_{\mathscr{C}}(TZ, GTZ)$,
- a unique map $\alpha \colon TZ \longrightarrow Z$ in from $\rho \circ T(\zeta)$ to ζ , due to finality of ζ ,

Then ζ may as well be a final coalgebra in $\mathcal{EM}(T)$, of the form

 $\alpha \mapsto \hat{G}(\alpha) : (TZ \longrightarrow Z) \longrightarrow (TZ \longrightarrow GTZ),$

where $\hat{G}(\alpha) = \rho_X(G(\alpha))$.

For a non-deterministic automaton described by $G: X \longrightarrow 2 \times \wp(X)^{\Sigma}$, where the final coalgebra is $Z = \wp(\Sigma^*)$ (set of accepted words) is also final for $\hat{G}: \wp(X) \longrightarrow 2 \times \wp(X)^2$. For a given state X we can determine the set of accepted words by composing the monadic unit $\eta_X: X \longrightarrow \wp(X)$, i.e. $\eta_X(x) = \{y \mid y = x\} = \{x\}$ with \hat{G} , resulting in the semantic map

 $[\![-]\!]: X \longrightarrow \Sigma^{\star}$

in the base category, defined by

¹Bart Jacobs, Alexandra Silva, and Ana Sokolova. "Trace semantics via determinization". In: *International Workshop on Coalgebraic Methods in Computer Science*. Springer. 2012, pp. 109–129.

Translation into an arbitrary Topos \mathscr{E} We want to generalise [-] from Sets into \mathscr{E} . Knowing that in the internal logic

$$\eta_X(x) = \{ y \mid y = x \},\$$

the main issue remains to express $t: \mathbf{P}X \longrightarrow \mathbf{P}\Sigma^*$. To this end, we first have to determine the nature of Σ^* . Going by Frank, et. al.,² we could intuitively define

$$\Sigma^{\star} \coloneqq \coprod_{n \in \mathbb{N}} \Sigma^{n} = \coprod_{n \in \mathbb{N}} \underbrace{\Sigma \times \cdots \times \Sigma}_{n \text{ times}},$$

but that requires \mathscr{E} to be "countably extensive" (supporting countable coproducts), which is not grated in general, considering that general toposes allow for finite cocompleteness.

Instead, Frank, et. al. define a language as a family of subobjects

$$L \coloneqq (m_n^{(L)} \colon L^{(n)} \rightarrowtail \Sigma^n)_{n \in \mathbb{N}},$$

where $L^{(n)}$ denotes the words of length n, and $L \leq L'$ is defined point-wise.

Here the question arises, of how we can express " $\mathbf{P}L$ "? The notion of a family over \mathbb{N} , which is countably infinite, cannot be articulated in an arbitrary, non-countably extensive topos, as the family of subobjects would correspond directly to a countable coproduct.

So should we instead consider $\llbracket - \rrbracket_n : X \longrightarrow \mathbf{P}(\Sigma^n)$, that describes accepted words of length n from a given state X? This would result in a semantic given by a family of $\llbracket - \rrbracket_n$ maps.

Recall that in general $\mathbf{P}A \cong 1 \longrightarrow \mathbf{P}A$ correspond³ to subobjects $m: S \longrightarrow A$. In our case, this means we are trying to find

$$s_n^{(L)} \colon 1 \rightarrowtail \mathbf{P} \left(\Sigma^n \right) \qquad \Longleftrightarrow \qquad m_n^{(L)} \colon L^{(n)} \rightarrowtail \Sigma^n.$$

By using a map reminiscent of the usual map from a coalgebra of a non-deterministic automaton to the terminal coalgebra (indicated by t in the above diagram), we can directly describe the subobject of accepted words in Σ^n of a state $x \in X$ in the internal logic of \mathscr{E} :

$$\llbracket x \rrbracket_n = \{ (\sigma_1, \dots, \sigma_n) \mid \varepsilon(\delta^n(\eta_X(x))(\sigma_1, \dots, \sigma_n)) \} \}$$

which matches the intended type above, where⁴

$$\delta^{n}(S) = (\sigma_{1}, \dots, \sigma_{n}) \mapsto \delta^{n-1}(\mu_{X}(\{\delta(x)(\sigma_{1}) \mid x \in S\}))(\sigma_{2}, \dots, \sigma_{n})$$

for n > 0, and otherwise

 $\delta^0(S) = S.$

As we have a $x \in X$ given, we can also describe it using global element $x: 1 \rightarrow X$. By composing this with $[\![-]\!]_n$, we have a description of

$$s_n^{(n)} = \llbracket - \rrbracket_n \circ x, \quad \text{read "} \llbracket x \rrbracket_n$$
".

How does this stand in relation to $m_n^{(L)}$? Fundamentally, this relies on the above quoted observation

$$\operatorname{Sub}_{\mathscr{E}}(A) \cong \operatorname{Hom}_{\mathscr{E}}(A, \Omega) \cong \operatorname{Hom}_{\mathscr{E}}(1, \mathbf{P}A),$$

²Florian Frank, Stefan Milius, and Henning Urbat. *Positive Data Languages*. 2023. arXiv: 2304.12947 [cs.FL], p. 10.

³Saunders MacLane and leke Moerdijk. *Sheaves in geometry and logic: A first introduction to topos theory*. Springer Science & Business Media, 2012, p. 165.

⁴Note that in this case ε and δ do not have the domain X, but $\mathbf{P}X$, and hence can be defined as $\varepsilon = \pi_1 \circ \hat{G}(\alpha)$ and $\delta = \pi_2 \circ \hat{G}(\alpha)$, for the coalgebra α representing the automaton, and \hat{G} lifts from \mathscr{E} to $\mathcal{EM}(\mathbf{P}(-))$.

which is natural in A, or specifically in our case for $n \in \mathbb{N}$

$$\operatorname{Sub}_{\mathscr{E}}(\Sigma^n) \cong \operatorname{Hom}_{\mathscr{E}}(\Sigma^n, \Omega) \cong \operatorname{Hom}_{\mathscr{E}}(1, \mathbf{P}\Sigma^n).$$

The (\beth) correspondence is just exponential transposition, that is easily seen when one remembers that $\mathbf{P}A = \Omega^A$. To understand (\aleph), one has to recall that $\mathrm{Sub}_{\mathscr{E}}(A)$ is the lattice of subobjects of A. As $\mathrm{Sub}_{\mathscr{E}}(A)$, like all categories of a poset are thin categories, there is at most one morphism between two objects, where each morphism is a mono (and epi). While usually we have a unique classification χ_m for each mono m, the fact that $\mathrm{Sub}_{\mathscr{E}}(A)$ is thin grants us that for each χ_m there is also a unique mono m.

Put simply, $[-]_n \circ x$ (or rather its transpose) is the character of $m_n^{(L)}$. We can define the transposed morphism by

$$\chi_{m_{-}^{(L)}} = \vec{\sigma}_{n} \mapsto \vec{\sigma}_{n} \in [\![x]\!]_{n} : \Sigma^{n} \longrightarrow \Omega,$$

for some state $x \in X$ and $\vec{\sigma}_n = (\sigma_1, \dots, \sigma_n)$.

We can now express a "language" starting in x as a family of monos

$$L_x \coloneqq \left(m_n^{(L_x)} \colon \llbracket x \rrbracket_n \rightarrowtail \Sigma^n \right)_{n \in \mathbb{N}}.$$

Relating L_x to \mathcal{EM} -style semantics While conceivable as a intermediate step, the above does not have an immediately obvious relation to the \mathcal{EM} -style semantics. The issue remains representing Σ^* and specifically $\mathbf{P}(\Sigma^*)$. It appears necessary to strengthen the assumptions on \mathscr{E} beyond an elementary topos.

Topos with countable coproducts Adamek, et. al. discuss automata in a symmetric monoidal closed category $\mathscr{D} = (\mathscr{D}, \otimes, I)$, where here

$$\mathscr{D} = \mathscr{E}, \qquad \otimes = \times, \qquad I = 1$$

with a free monoid $X^\circledast = \Sigma^\star$ and a "language"

$$L: X^{\circledast} \longrightarrow Y$$

where $Y = \Omega$ describes the output. For a functor of the form $TQ = Y \times Q^X$, the terminal coalgebra is⁵ $Y^{X^{\otimes}}$, which is Ω^{Σ^*} in our case.

For this we require \mathscr{E} to have countable coproducts, as $X^{\circledast} = \coprod_{n < \omega} X^n$, which is the initial algebra of $FQ = I + X \otimes Q$.

This provides us with the sufficient structure to define [-]. For a Coalgebra $\langle e, d \rangle : X \longrightarrow \Omega \times X^{\Sigma}$, we can intuitively define

$$\llbracket x \rrbracket = \left\{ \left. \vec{\sigma} \right. \left| \right. e(\overline{d(x)}(\vec{\sigma})) \right. \right\},\$$

where $\overline{d(x)}$ is the canonical extension of $d: X \longrightarrow X^{\Sigma}$ over the free monoid.

The definition of a language by Adamek, et. al., would be a morphism in \mathscr{E} of the form $\Sigma^* \longrightarrow \Omega$. We can represent this internally as $\Omega^{\Sigma^*} \cong \mathbf{P}(\Sigma^*)$, which gives us the expected result.

Considering our previous definition, we could also describe it as a single mono (as opposed to a family of monos)

$$L'_x \colon \llbracket x \rrbracket \longrightarrow \Sigma^\star.$$

This is not surprising, as MacLane points out that⁶ a power object (or the generalised element of a power object) $1 \rightarrow \mathbf{P}(A)$ corresponds directly to a mono $S \rightarrow A$.

Recall that L_x is a family of monos. How does this relate to L'_x ? Granting the existence of L_x and transitively that of countable coproducts, we want to know if

$$(L_x)_n \stackrel{?}{=} \{ \vec{\sigma} \in \mathsf{Ob}(L'_x) \mid \|\vec{\sigma}\| = n \}$$

for every $n \in \mathbb{N}$. Note as a matter of formal pedantry, that the first usage of n occurs in the meta-language, where we are indexing a family of monos, while in the second instance, n is an object in \mathscr{E} , that of the same type as $\|\sigma_1 \dots \sigma_n\|$, a map from a free monoid $\sigma_1 \dots \sigma_n$ to "n".

⁵ Jiri Adamek, Stefan Milius, and Henning Urbat. *Syntactic Monoids in a Category*. 2015. arXiv: 1504.02694, p. 7.

⁶MacLane and Moerdijk, Sheaves in geometry and logic: A first introduction to topos theory, p. 165.

Topos with a natural number object If we decide that the existence of countable coproducts is too restrictive, we can consider an alternative approach, that would require \mathscr{E} to express the notion of "countably", without requiring concrete countable coproducts. (The topos \mathbf{Eff}^7 is an example of a category with a NNO, but not arbitrarily cocomplete, specifically without countable coproducts^[citation needed]).

A natural number object is⁸ an object $N \in Ob(\mathscr{E})$ with morphisms o, s as indicated here

where for any other object $X \in Ob(\mathscr{E})$ and analogous morphisms pair x, u, there is unique $f: N \longrightarrow X$ and N is unique up to isomorphism. This should also be equivalent to the F-Algebraof the functor FX = 1 + X, where the structure morphism of the initial algebra is exactly $\langle o, s \rangle : N \longrightarrow 1 + N$.

In Sets, $N = \mathbb{N}$ with $o(\cdot) = 0$ and s(n) = n + 1 is a NNO.⁹ Every NNO is also a model of Peano arithmetic,¹⁰

$$\begin{split} n &= 0 \lor \exists m. \, m = s(n) \\ \neg(s(n) &= 0) \\ s(n) &= s(m) \implies n = m \\ (0 \in P \land \forall n. \, (n \in P) \implies s(n) \in P) \implies P = N \end{split}$$

for $n, m \in \mathsf{Ob}(N)$ and $P \in \mathsf{Ob}(\Omega^N)$.

In the internal logic, we can reason with a NNO N, just like^[citation needed] with \mathbb{N} in Sets. Idea: We can represent a " Σ^* " using an object $(1 + (1 + \Sigma))^{N \times N}$. To give intuition, assume a category \mathscr{C} has countable coproducts, allowing the direct definition of Σ^* , for $\sigma_1 \ldots \sigma_m \in \Sigma^*$:

$$f(\sigma_1 \dots \sigma_m) = (n, i) \mapsto \begin{cases} \iota_1(*) & \text{if } n \neq m \\ \iota_2(\iota_1(*)) & \text{if } i > m \\ \iota_2(\iota_2(\sigma_i)) & \text{else} \end{cases}$$

Note that this allows us to map every Σ^{\star} to this kind of an exponential object, but the reverse is not the case: The maps

$$(n,i)\mapsto\iota_2(\iota_2(\sigma))$$

or

$$(n,i)\mapsto \begin{cases} \iota_1(*) & \text{if } i>0\\ \iota_2(\iota_2(\sigma)) & \text{else} \end{cases}$$

for some fixed σ do not unambiguously correspond to a $\Sigma^\star.$

The transpose of $\ell: \Sigma^{\star} \longrightarrow (1 + (1 + \Sigma))^{N \times N}$ is $\overline{\ell}: \Sigma^{\star} \times N \longrightarrow (1 + (1 + \Sigma))^{N}$. An imaginable further variation is the following

$$\bar{\ell}(n,\sigma_1\dots\sigma_m) = \begin{cases} \iota_1(*) & \text{if } n \neq m \\ \iota_2\left(i \mapsto \begin{cases} \iota_1(*) & \text{if } 1 \leq i \leq m \\ \iota_2(\sigma_i) & \text{else} \end{cases}\right) & \text{else} \end{cases}$$

of the type $\bar{\ell} \colon N \times \Sigma^{\star} \longrightarrow 1 + (1 + \Sigma)^{N}$.

We would like to demonstrate $F \coloneqq (1 + (1 + \Sigma))^{N \times N}$ this can serve as the carrier for the terminal coalgebra, which should also grant us that if $\mathscr E$ had to countable coproducts, that the following would commute:

⁷J.M.E. Hyland. "The Effective Topos". In: The L. E. J. Brouwer Centenary Symposium. Ed. by A.S. Troelstra and D. van Dalen. Vol. 110. Studies in Logic and the Foundations of Mathematics. Elsevier, 1982, pp. 165-216. DOI: https://doi.org/10. 1016/S0049-237X(09)70129-6. URL: https://www.sciencedirect.com/science/article/pii/S0049237X09701296.

⁸Peter T Johnstone. *Topos theory*. Courier Corporation, 2014, p. 165.

⁹Francis Borceux. Handbook of Categorical Algebra: Volume 3, Sheaf Theory. Vol. 3. Cambridge university press, 1994, p. 455

¹⁰Ibid., p. 457, p. 456.

To prove that F is a carrier for the terminal coalgebara, we need a unique coalgebra homomorphism $f: X \longrightarrow \mathbf{P}F$:

We can consider the two components separately:

$$\varepsilon \circ f = a \colon Q \longrightarrow \Omega \tag{termination}$$

$$\delta \circ f = t \circ f^{\Sigma} \colon Q \longrightarrow \Omega \tag{transition}$$

For (termination), we need to ensure that if the current state is accepting $(a: Q \rightarrow \Omega)$, then the "empty word" is also accepted:

$$\exists f \in \mathbf{P}_{\mathbf{F}} \forall n \forall i. f(n, i) = \pi_1(*)$$

For (transition), we need to ensure that the addition of a $\sigma \in Ob(\Sigma)$ properly extends the accepted words:

$$\forall \sigma \in \Sigma$$

... The preceding investigation was suddenly interrupted and possibly deferred to a later point in time ...

Suitability of [-] Assuming \mathscr{E} is countably extensive, we have the following situation,

where for a given coalgebra $\langle o, t \rangle : X \longrightarrow \Omega \times X^{\Sigma}$, we define

$$\begin{split} \llbracket x \rrbracket &:= \left\{ \left. \vec{\sigma} \in \Sigma^{\star} \right| \left. o(\overline{t(x)}(\vec{\sigma})) \right\}, \\ \eta_X(x) &:= \left\{ \left. y \right| \left. y = x \right\}, \\ h(\mathfrak{X}) &:= \left\{ \left. \vec{\sigma} \in \Sigma^{\star} \right| \left. \exists \, x \in \mathfrak{X}. \, o(\overline{t(x)}(\vec{\sigma})) \right\}, \\ \varepsilon(L) &:= \epsilon \in L \\ \delta(L) &:= \sigma \mapsto \left\{ \left. \vec{\sigma} \in \Sigma^{\star} \right| \left. \sigma \cdot \vec{\sigma} \in L \right\} \right. \\ \pi_1(\det \left< o, t \right>) &:= \mathfrak{X} \mapsto \exists \, x \in \mathfrak{X}. \, o(x) \\ \pi_2(\det \left< o, t \right>) &:= \mathfrak{X} \mapsto \left(\sigma \mapsto \bigcup_{x \in \mathfrak{X}} t(x)(\sigma) \right) \end{split}$$

where the last four definitions follow Silva, et. al.¹¹ in spirit. To verify, that our definition of [-] is sensible, we analyse the two commuting polygons in the internal logic:

 $x \colon X \vdash \langle o, t \rangle = \det \langle o, t \rangle \circ \eta_X$

¹¹Alexandra Silva et al. "Generalizing determinization from automata to coalgebras". In: *Logical Methods in Computer Science* 9 (2013), p. 5.

and

$$\mathfrak{X} \colon \mathbf{P}X, \sigma \colon \Sigma \vdash \langle \varepsilon, \delta \rangle \circ h = \mathrm{id}_{\Sigma} \times h^{\Sigma} \circ \det \langle o, t \rangle,$$

where we can split the latter equation into two

$$\mathfrak{X} \colon \mathbf{P} X \vdash \varepsilon \circ h \iff \pi_1(\det \langle o, t \rangle),$$

and

 $\mathfrak{X} \colon \mathbf{P}X, \sigma \colon \Sigma \vdash \delta \circ h = h^{\Sigma} \circ \pi_2(\det \langle o, t \rangle).$

Singleton Determinisation Verify,

$$\vdash \langle o, t \rangle = \det \langle o, t \rangle \circ \eta_X$$

$$x: X \vdash \langle o, t \rangle (x) = \det \langle o, t \rangle (\eta_X(x))$$

$$x: X \vdash \langle o, t \rangle (x) = \left\langle \mathfrak{X} \mapsto \exists x \in X. o(x), \mathfrak{X} \mapsto \left(\sigma \mapsto \bigcup_{x \in \mathfrak{X}} t(x)(\sigma) \right) \right\rangle (\eta_X(x))$$

$$x: X \vdash \langle o, t \rangle (x) = \left\langle \exists x \in \eta_X(x). o(x), \left(\sigma \mapsto \bigcup_{x \in \eta_X(x)} t(x)(\sigma) \right) \right\rangle$$

$$x: X \vdash \langle o, t \rangle (x) = \langle o(x), (\sigma \mapsto t(x)(\sigma)) \rangle$$

$$x: X \vdash \langle o, t \rangle (x) = \langle o(x), t(x) \rangle$$

$$x: X \vdash \langle o, t \rangle (x) = \langle o, t \rangle (x)$$

$$\vdash \langle o, t \rangle = \langle o, t \rangle$$

Termination of the Terminal Coalgebra Verify,

 $\vdash \varepsilon \circ h \iff \pi_1(\det \langle o, t \rangle)$ $\mathfrak{X} \colon \mathbf{P}X \vdash \varepsilon(h(\mathfrak{X})) \iff (X \mapsto \exists x \in X. o(x))(\mathfrak{X})$ $\mathfrak{X} \colon \mathbf{P}X \vdash \epsilon \in \left\{ \left. \vec{\sigma} \right| \exists x \in \mathfrak{X}. o(\overline{t(x)}(\vec{\sigma})) \right\} \iff \exists x \in \mathfrak{X}. o(x)$ $\mathfrak{X} \colon \mathbf{P}X \vdash \exists x \in \mathfrak{X}. o(\overline{t(x)}(\epsilon)) \iff \exists x \in \mathfrak{X}. o(x)$ $\mathfrak{X} \colon \mathbf{P}X \vdash \exists x \in \mathfrak{X}. o(x) \iff \exists x \in \mathfrak{X}. o(x)$

Transitions of the Terminal Coalgebra Verify with context \mathfrak{X} : $\mathbf{P}X, \sigma \colon \Sigma$,

$$\begin{split} \vdash \delta \circ h &= h^{\Sigma} \circ \pi_{2}(\det \langle o, t \rangle) \\ \vdash \delta(h(\mathfrak{X})) &= h^{\Sigma} \left(\pi_{2}(\det \langle o, t \rangle)(\mathfrak{X}) \right) \\ \vdash \delta(h(\mathfrak{X})) &= h^{\Sigma} \left(\sigma \mapsto \bigcup_{y \in \mathfrak{X}} t(y)(\sigma) \right) \\ \vdash \delta(h(\mathfrak{X})) &= \sigma \mapsto h \left(\bigcup_{y \in \mathfrak{X}} t(y)(\sigma) \right) \\ \vdash \sigma \mapsto \left\{ \vec{\sigma} \in \Sigma^{\star} \mid \sigma \cdot \vec{\sigma} \in \left\{ \vec{\sigma} \mid \exists x \in \mathfrak{X}. o(\overline{t(x)}(\vec{\sigma})) \right\} \right\} = \dots \\ \vdash \sigma \mapsto \left\{ \vec{\sigma} \in \Sigma^{\star} \mid \exists x \in \mathfrak{X}. o(\overline{t(x)}(\sigma \cdot \vec{\sigma})) \right\} \\ &= \sigma \mapsto \left\{ \vec{\sigma} \in \Sigma^{\star} \mid \exists x \in \left(\bigcup_{y \in \mathfrak{X}} t(y)(\sigma) \right). o(\overline{t(x)}(\vec{\sigma})) \right\} \\ \vdash \left\{ \vec{\sigma} \mid \exists x \in \mathfrak{X}. o(\overline{t(x)}(\sigma \cdot \vec{\sigma})) \right\} = \left\{ \vec{\sigma} \mid \exists x \in \mathfrak{X}. o(\overline{t(x)}(\sigma \cdot \vec{\sigma})) \right\} \end{split}$$

where we can legitimate the inference step

$$\exists x \in \left(\bigcup_{y \in \mathfrak{X}} t(y)(\sigma)\right) . o(\overline{t(x)}(\vec{\sigma})) \iff \exists x \in \mathfrak{X} . o(\overline{t(x)}(\sigma \cdot \vec{\sigma}))$$

will be legitimated below.

Verification of [-] As a final step, we have to ensure that for a x: X the following holds:

$$\begin{aligned} x \colon X \vdash \llbracket x \rrbracket &= h(\eta_X(x)) \\ x \colon X \vdash \left\{ \vec{\sigma} \in \Sigma^* \mid o(\overline{t(x)}(\vec{\sigma})) \right\} &= \left\{ \vec{\sigma} \in \Sigma^* \mid \exists x \in \eta_X(x). o(\overline{t(x)}(\vec{\sigma})) \right\} \\ x \colon X \vdash \left\{ \vec{\sigma} \in \Sigma^* \mid o(\overline{t(x)}(\vec{\sigma})) \right\} &= \left\{ \vec{\sigma} \in \Sigma^* \mid o(\overline{t(x)}(\vec{\sigma})) \right\} \end{aligned}$$

This gives us a satisfactory conclusion regarding the suitability of [-] in terms of the internal logic of \mathscr{E} to express the semantics of a non-deterministic automaton described by $\langle o, t \rangle$.

The canonical extension of f on a (free) monoid Σ^* As a final point of clarification, it is necessary to consider the definition and properties of

$$\overline{t(x)}(\vec{\sigma}) = \begin{cases} \{x\} & \text{if } \vec{\sigma} = \epsilon \\ \bigcup_{x' \in t(x)(\sigma)} \overline{t(x')}(\vec{\sigma}') & \text{if } \vec{\sigma} = \sigma \cdot \vec{\sigma}' \end{cases}$$

for a $t: X \longrightarrow \mathbf{P}X^{\Sigma}$, x: X and $\vec{\sigma}: \Sigma^{\star}$. Keep in mind that this is *not* a definition. We instead have to demonstrate that a morphism exists with properties like these when considered point-wise.

Note that Σ^* is the initial algebra of the functor $FX = 1 + \Sigma \times X$, meaning we have a have a unique morphism $h(n,c): \Sigma^* \longrightarrow \mathbf{P}(X)^X$, for which

$$1 + \Sigma \times \Sigma^{\star} \xrightarrow{[nil;cons]} \Sigma^{\star}$$

$$\downarrow^{id_{1} + id_{\Sigma} \times h(n,c)} \qquad \downarrow^{h(n,c)}$$

$$1 + \Sigma \times \mathbf{P} (X)^{X} \xrightarrow{[n;c]} \mathbf{P} (X)^{X}$$

commutes. In this context, we want h(n,c) to denotes the function generated by a word $\vec{\sigma}$, such that

$$h(n,c)(\vec{\sigma}) = x \mapsto t(x)(\vec{\sigma}),$$

holds for an arbitrary $\vec{\sigma}.$

We have to define a

$$n: 1 \longrightarrow \mathbf{P}(X)^X,$$

$$c\colon \Sigma^{\star} \times \mathbf{P}\left(X\right)^{X} \longrightarrow \mathbf{P}\left(X\right)^{X}$$

...

and the dependent

$$h(n,c): \Sigma^{\star} \longrightarrow \mathbf{P}(X)^{X}$$

to demonstrate that the above diagram commutes. We can split this up into two equations:

$$n \circ \mathrm{id}_1 = h \circ \mathrm{nil} \tag{1}$$

$$c \circ (\mathrm{id}_{\Sigma} \times h) = h \circ \mathrm{cons} \tag{2}$$

and assume the definitions:

$$\begin{split} n(*) &\coloneqq x \mapsto \{x\} = \eta_x \\ c(\sigma, f) &\coloneqq x \mapsto \bigcup_{x' \in t(x)(\sigma)} f(x') \\ h(n, c)(\vec{\sigma}) &\coloneqq \begin{cases} n & \text{if } \vec{\sigma} = \epsilon \\ c(\sigma, h(n, c)(\vec{\sigma}')) & \text{if } \vec{\sigma} = \sigma \cdot \vec{\sigma}' \end{cases} \end{split}$$

Note the implicit usage of the transition morphism t in the definition of c.

Commutativity using h(n, c) First consider the equation involving nil,

$$\begin{split} \vdash & n = h(n,c) \circ \text{nil} \\ \vdash & n(*) = h(n,c)(\text{nil}(*)) \\ \vdash & n = n \end{split}$$

and for the "cons"-path:

Definition of t in relation to h(n,c) It is clear that $\overline{t(-)}: X \times \Sigma^* \longrightarrow \mathbf{P}X$ is the exponential transposition of $h(n,c): \Sigma^* \longrightarrow \mathbf{P}(X)^X$, so the question remains if this satisfies the conditions we expect. Therefore, we will consider the two "constructors" of a Σ^* inductively. An empty-word, i.e. the base-case,

$$\vdash \qquad \qquad h(n,c)(\operatorname{nil}) = x \mapsto t(\operatorname{nil})(x) = t(\epsilon)(x)$$
$$\vdash \qquad \qquad n = x \mapsto \{x\}$$
$$\vdash \qquad \qquad \eta_X = \eta_X$$

and for a non-empty word, with the induction hypothesis $h(n,c)(\vec{\sigma}) = x \mapsto \overline{t(x)}(\vec{\sigma})$,

$$\sigma \colon \Sigma, \vec{\sigma} \colon \Sigma^* \vdash \mathbf{h}(n, c)(\cos(\sigma, \vec{\sigma})) = (x \mapsto t(\cos(\sigma, \vec{\sigma}))(x))) = (x \mapsto t(\sigma \cdot \vec{\sigma})(x))$$

$$\sigma \colon \Sigma, \vec{\sigma} \colon \Sigma^{\star} \vdash c(\sigma, h(n, c)(\vec{\sigma})) = \left(x \mapsto \bigcup_{x' \in t(x)(\sigma)} \overline{t(x')}(\vec{\sigma}) \right)$$
(apply I.H.)

$$\sigma \colon \Sigma, \vec{\sigma} \colon \Sigma^{\star} \vdash \left(x \mapsto \bigcup_{x' \in t(x)(\sigma)} h(n,c)(\vec{\sigma})(x') \right) = \left(x \mapsto \bigcup_{x' \in t(x)(\sigma)} h(n,c)(\vec{\sigma})(x') \right) \blacksquare$$

Verifying the intended usage As a reminder, the intention was to ensure that equivalences like

$$\mathfrak{X} \colon \mathbf{P}X, \sigma \colon \Sigma, \vec{\sigma} \colon \Sigma^{\star} \vdash \exists \, x \in \left(\bigcup_{y \in \mathfrak{X}} t(y)(\sigma)\right) \cdot o\left(\overline{t(x)}(\vec{\sigma})\right) \iff \exists \, x \in \mathfrak{X}. \, o\left(\overline{t(x)}(\sigma \cdot \vec{\sigma})\right)$$

、

or more concretely/simply

$$x \colon X, \sigma \colon \Sigma, \vec{\sigma} \colon \Sigma^{\star} \vdash \exists x' \in t(x)(\sigma). \ o\left(\overline{t(x')}(\vec{\sigma})\right) \iff o\left(\overline{t(x)}(\sigma \cdot \vec{\sigma})\right).$$

In fact, we might regard the former as a special case of the latter, where the $\mathfrak X$ are the states following a transition from a x over some $\tilde{\sigma} \colon \Sigma$:

$$\begin{aligned} x \colon X, \sigma \colon \Sigma, \tilde{\sigma} \colon \Sigma, \tilde{\sigma} \colon \Sigma, \tilde{\sigma} \colon \Sigma^* \vdash \quad \exists \, x' \in \left(\bigcup_{y \in t(x)(\tilde{\sigma})} t(y)(\sigma) \right) . \, o\left(\overline{t(x')}(\vec{\sigma})\right) \iff \exists \, x' \in t(x)(\tilde{\sigma}) . \, o\left(\overline{t(x')}(\sigma \cdot \vec{\sigma})\right) \\ x \colon X, \sigma \colon \Sigma, \tilde{\sigma} \colon \Sigma, \tilde{\sigma} \colon \Sigma^* \vdash \qquad \exists \, x' \in t(x)(\tilde{\sigma} \cdot \sigma) . \, o\left(\overline{t(x')}(\vec{\sigma})\right) \iff \exists \, x' \in t(x)(\tilde{\sigma}) . \, o\left(\overline{t(x')}(\sigma \cdot \vec{\sigma})\right) \end{aligned}$$

(We can legitimate this claim in general, by extending the automaton by a fresh $\tilde{\sigma}$ that maps x to \mathfrak{X} , and that wouldn't affect any transitions beyond that.)

So restricting our attention to the latter formula,

$$\begin{aligned} x \colon X, \sigma \colon \Sigma, \vec{\sigma} \colon \Sigma^{\star} \vdash & \exists x' \in t(x)(\sigma). \, o\left(\overline{t(x')}(\vec{\sigma})\right) \iff o\left(\overline{t(x)}(\sigma \cdot \vec{\sigma})\right) \\ x \colon X, \sigma \colon \Sigma, \vec{\sigma} \colon \Sigma^{\star} \vdash & \exists x' \in t(x)(\sigma). \, o\left(\overline{t(x')}(\vec{\sigma})\right) \iff o\left(\bigcup_{x' \in t(x)(\sigma)} \overline{t(x')}(\vec{\sigma})\right) \end{aligned}$$

Reminding ourselves that o is a "∃-style" check, and that for an arbitrary non-deterministic state $\mathfrak X$

$$o(\mathfrak{X}) \iff \exists x_i \in \mathfrak{X}. o(\{x_i\})$$

holds. Therefore,

$$x \colon X, \sigma \colon \Sigma, \vec{\sigma} \colon \Sigma^{\star} \vdash \qquad \exists \, x' \in t(x)(\sigma) . \, o\left(\overline{t(x')}(\vec{\sigma})\right) \iff \exists \, x \in \bigcup_{x' \in t(x)(\sigma)} \overline{t(x')}(\vec{\sigma}) . \, o\left(\{x\}\right)$$

TODO