
EM-Style Semantics in a Topos E

Philip Kaluđerčić
philip.kaludercic@fau.de

17Jun24, typeset on July 26, 2024

We follow Jacobs, et. al.,1 transliterating the proof from Sets into an arbitrary Topos E , specifically trying
to express the map ℘ (X) ℘ (A⋆) in terms of the internal logic of E .

Review of EM-Style Non-Deterministic Automata In Sets, we can model a non-deterministic automaton
as the morphism

X 2 × ℘ (X)Σ
,

where we can express 2 × ℘ (X)Σ as the composition of the functor 2 × −Σ and the (powerset) monad ℘ (−).
An Eilenberg-Moore category EM(T ) of a monad (T, ηX , µX) of a category C , has

1. as objects, morphisms in C of the form a : T (X) X, such that a ◦ ηX = idX and a ◦ T (a) = a ◦ µX

hold,

2. as morphisms between objects x : T (X) X and y : T (Y ) Y , morphism f : X Y from C
such that b ◦ T (f) = f ◦ a.

In other words, we are considering a sub-category of F -Algebra, for a monad T with the above placing
conditions on objects.

For a category C , assume the following in order:
• An arbitrary endofunctor G : C C ,
• An arbitrary monad (T : C C , η, µ),
• an EM-law ρ : T G ⇒ GT ,
• and by the corresponding lifting a endofunctor

Ĝ : EM(T ) EM(T ),

• a final G-coalgebra ζ ∈ HomC (Z, GZ)
• a G-coalgebra ρ ◦ T (ζ) ∈ HomC (T Z, GT Z),
• a unique map α : T Z Z in from ρ ◦ T (ζ) to ζ, due to finality of ζ,

Then ζ may as well be a final coalgebra in EM(T ), of the form

α 7→ Ĝ(α) : (T Z Z) (T Z GT Z),

where Ĝ(α) = ρX(G(α)).

For a non-deterministic automaton described by G : X 2 × ℘ (X)Σ, where the final coalgebra
is Z = ℘ (Σ⋆) (set of accepted words) is also final for Ĝ : ℘ (X) 2 × ℘ (X)2. For a given state
X we can determine the set of accepted words by composing the monadic unit ηX : X ℘ (X), i.e.
ηX(x) = { y | y = x } = {x} with Ĝ, resulting in the semantic map

J−K : X Σ⋆

in the base category, defined by
1Bart Jacobs, Alexandra Silva, and Ana Sokolova. “Trace semantics via determinization”. In: International Workshop on

Coalgebraic Methods in Computer Science. Springer. 2012, pp. 109–129.

1



X ℘ (X) ℘ (Σ⋆)

2 × ℘ (X)Σ 2 × ℘ (Σ⋆)Σ

ηX

⟨ε,δ⟩

J−K

t

Ĝ(α) Ĝ(ζ)

id2×tΣ

Translation into an arbitrary Topos E We want to generalise J−K from Sets into E . Knowing that in the
internal logic

ηX(x) = { y | y = x } ,

the main issue remains to express t : PX PΣ⋆. To this end, we first have to determine the nature of Σ⋆.
Going by Frank, et. al.,2 we could intuitively define

Σ⋆ :=
∐
n∈N

Σn =
∐
n∈N

Σ × · · · × Σ︸ ︷︷ ︸
n times

,

but that requires E to be “countably extensive” (supporting countable coproducts), which is not grated in
general, considering that general toposes allow for finite cocompleteness.

Instead, Frank, et. al. define a language as a family of subobjects

L := (m(L)
n : L(n) Σn)n∈N,

where L(n) denotes the words of length n, and L ≤ L′ is defined point-wise.
Here the question arises, of how we can express “PL”? The notion of a family over N, which is countably

infinite, cannot be articulated in an arbitrary, non-countably extensive topos, as the family of subobjects would
correspond directly to a countable coproduct.

So should we instead consider J−Kn : X P (Σn), that describes accepted words of length n from a
given state X? This would result in a semantic given by a family of J−Kn maps.

Recall that in general PA ∼= 1 PA correspond3 to subobjects m : S A. In our case, this means we
are trying to find

s(L)
n : 1 P (Σn) ↭ m(L)

n : L(n) Σn.

By using a map reminiscent of the usual map from a coalgebra of a non-deterministic automaton to the
terminal coalgebra (indicated by t in the above diagram), we can directly describe the subobject of accepted
words in Σn of a state x ∈ X in the internal logic of E :

JxKn = { (σ1, . . . , σn) | ε(δn(ηX(x))(σ1, . . . , σn)) }}

which matches the intended type above, where4

δn(S) = (σ1, . . . , σn) 7→ δn−1(µX({ δ(x)(σ1) | x ∈ S }))(σ2, . . . , σn)

for n > 0, and otherwise

δ0(S) = S.

As we have a x ∈ X given, we can also describe it using global element x : 1 X. By composing this
with J−Kn, we have a description of

s(n)
n = J−Kn ◦ x, read “JxKn”.

How does this stand in relation to m
(L)
n ? Fundamentally, this relies on the above quoted observation

SubE (A) ∼=
(ℵ)

HomE (A, Ω) ∼=
(ℶ)

HomE (1, PA),

2Florian Frank, Stefan Milius, and Henning Urbat. Positive Data Languages. 2023. arXiv: 2304.12947 [cs.FL], p. 10.
3Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first introduction to topos theory. Springer Science

& Business Media, 2012, p. 165.
4Note that in this case ε and δ do not have the domain X, but PX, and hence can be defined as ε = π1 ◦ Ĝ(α) and

δ = π2 ◦ Ĝ(α), for the coalgebra α representing the automaton, and Ĝ lifts from E to EM(P (−)).

2

https://arxiv.org/abs/2304.12947


which is natural in A, or specifically in our case for n ∈ N

SubE (Σn) ∼= HomE (Σn, Ω) ∼= HomE (1, PΣn).

The (ℶ) correspondence is just exponential transposition, that is easily seen when one remembers that
PA = ΩA. To understand (ℵ), one has to recall that SubE (A) is the lattice of subobjects of A. As SubE (A),
like all categories of a poset are thin categories, there is at most one morphism between two objects, where
each morphism is a mono (and epi). While usually we have a unique classification χm for each mono m, the
fact that SubE (A) is thin grants us that for each χm there is also a unique mono m.

Put simply, J−Kn ◦ x (or rather its transpose) is the character of m
(L)
n . We can define the transposed

morphism by

χ
m

(L)
n

= σ⃗n 7→ σ⃗n ∈ JxKn : Σn Ω,

for some state x ∈ X and σ⃗n = (σ1, . . . , σn).
We can now express a “language” starting in x as a family of monos

Lx :=
(

m(Lx)
n : JxKn Σn

)
n∈N

.

Relating Lx to EM-style semantics While conceivable as a intermediate step, the above does not have an
immediately obvious relation to the EM-style semantics. The issue remains representing Σ⋆ and specifically
P (Σ⋆). It appears necessary to strengthen the assumptions on E beyond an elementary topos.

Topos with countable coproducts Adamek, et. al. discuss automata in a symmetric monoidal closed
category D = (D , ⊗, I), where here

D = E , ⊗ = ×, I = 1

with a free monoid X⊛ = Σ⋆ and a “language”

L : X⊛ Y

where Y = Ω describes the output. For a functor of the form TQ = Y × QX , the terminal coalgebra is5 Y X⊛ ,
which is ΩΣ⋆ in our case.

For this we require E to have countable coproducts, as X⊛ =
∐

n<ω Xn, which is the initial algebra of
FQ = I + X ⊗ Q.

This provides us with the sufficient structure to define J−K. For a Coalgebra ⟨e, d⟩ : X Ω × XΣ, we
can intuitively define

JxK =
{

σ⃗
∣∣∣ e(d(x)(σ⃗))

}
,

where d(x) is the canonical extension of d : X XΣ over the free monoid.
The definition of a language by Adamek, et. al., would be a morphism in E of the form Σ⋆ Ω. We can

represent this internally as ΩΣ⋆ ∼= P (Σ⋆), which gives us the expected result.
Considering our previous definition, we could also describe it as a single mono (as opposed to a family of

monos)

L′
x : JxK Σ⋆.

This is not surprising, as MacLane points out that6 a power object (or the generalised element of a power
object) 1 P (A) corresponds directly to a mono S A.

Recall that Lx is a family of monos. How does this relate to L′
x? Granting the existence of Lx and

transitively that of countable coproducts, we want to know if

(Lx)n
?= { σ⃗ ∈ Ob(L′

x) | ∥σ⃗∥ = n }

for every n ∈ N. Note as a matter of formal pedantry, that the first usage of n occurs in the meta-language,
where we are indexing a family of monos, while in the second instance, n is an object in E , that of the same
type as ∥σ1 . . . σn∥, a map from a free monoid σ1 . . . σn to “n”.

5Jiri Adamek, Stefan Milius, and Henning Urbat. Syntactic Monoids in a Category. 2015. arXiv: 1504.02694, p. 7.
6MacLane and Moerdijk, Sheaves in geometry and logic: A first introduction to topos theory , p. 165.

3

https://arxiv.org/abs/1504.02694


Topos with a natural number object If we decide that the existence of countable coproducts is too
restrictive, we can consider an alternative approach, that would require E to express the notion of “countably”,
without requiring concrete countable coproducts. (The topos Eff7 is an example of a category with a NNO,
but not arbitrarily cocomplete, specifically without countable coproducts[citation needed]).

A natural number object is8 an object N ∈ Ob(E ) with morphisms o, s as indicated here

1 N N

X X

o

x

s

f f

u

where for any other object X ∈ Ob(E ) and analogous morphisms pair x, u, there is unique f : N X and
N is unique up to isomorphism. This should also be equivalent to the F -Algebraof the functor FX = 1 + X,
where the structure morphism of the initial algebra is exactly ⟨o, s⟩ : N 1 + N .

In Sets, N = N with o(·) = 0 and s(n) = n + 1 is a NNO.9 Every NNO is also a model of Peano
arithmetic,10

n = 0 ∨ ∃m. m = s(n)

¬(s(n) = 0)

s(n) = s(m) =⇒ n = m

(0 ∈ P ∧ ∀n. (n ∈ P ) =⇒ s(n) ∈ P ) =⇒ P = N

for n, m ∈ Ob(N) and P ∈ Ob(ΩN ).
In the internal logic, we can reason with a NNO N , just like[citation needed]with N in Sets.
Idea: We can represent a “Σ⋆” using an object (1 + (1 + Σ))N×N . To give intuition, assume a category

C has countable coproducts, allowing the direct definition of Σ⋆, for σ1 . . . σm ∈ Σ⋆:

f(σ1 . . . σm) = (n, i) 7→


ι1(∗) if n ̸= m

ι2(ι1(∗)) if i > m

ι2(ι2(σi)) else

Note that this allows us to map every Σ⋆ to this kind of an exponential object, but the reverse is not the
case: The maps

(n, i) 7→ ι2(ι2(σ))

or

(n, i) 7→

{
ι1(∗) if i > 0
ι2(ι2(σ)) else

for some fixed σ do not unambiguously correspond to a Σ⋆.
The transpose of ℓ : Σ⋆ (1 + (1 + Σ))N×N is ℓ̄ : Σ⋆ × N (1 + (1 + Σ))N .
An imaginable further variation is the following

ℓ̄(n, σ1 . . . σm) =


ι1(∗) if n ̸= m

ι2

(
i 7→

{
ι1(∗) if 1 ≤ i ≤ m

ι2(σi) else

)
else

.

of the type ℓ̄ : N × Σ⋆ 1 + (1 + Σ)N .
We would like to demonstrate 𭟋 := (1 + (1 + Σ))N×N this can serve as the carrier for the terminal

coalgebra, which should also grant us that if E had to countable coproducts, that the following would
commute:

7J.M.E. Hyland. “The Effective Topos”. In: The L. E. J. Brouwer Centenary Symposium. Ed. by A.S. Troelstra and D. van
Dalen. Vol. 110. Studies in Logic and the Foundations of Mathematics. Elsevier, 1982, pp. 165–216. doi: https://doi.org/10.
1016/S0049-237X(09)70129-6. url: https://www.sciencedirect.com/science/article/pii/S0049237X09701296.

8Peter T Johnstone. Topos theory. Courier Corporation, 2014, p. 165.
9Francis Borceux. Handbook of Categorical Algebra: Volume 3, Sheaf Theory. Vol. 3. Cambridge university press, 1994, p.

455.
10Ibid., p. 457, p. 456.

4

https://doi.org/https://doi.org/10.1016/S0049-237X(09)70129-6
https://doi.org/https://doi.org/10.1016/S0049-237X(09)70129-6
https://www.sciencedirect.com/science/article/pii/S0049237X09701296


X

P (Σ⋆) P𭟋

To prove that 𭟋 is a carrier for the terminal coalgebara, we need a unique coalgebra homomorphism
f : X P𭟋:

Q Ω + QΣ

P𭟋 Ω + P (𭟋)Σ

⟨a,t⟩

f idΩ×fΣ

⟨ε,δ⟩

We can consider the two components separately:

ε ◦ f = a : Q Ω (termination)
δ ◦ f = t ◦ fΣ : Q Ω (transition)

For (termination), we need to ensure that if the current state is accepting (a : Q Ω), then the “empty
word” is also accepted:

∃f ∈ P𭟋∀n∀i. f(n, i) = π1(∗)

For (transition), we need to ensure that the addition of a σ ∈ Ob(Σ) properly extends the accepted words:

∀σ ∈ Σ

. . . The preceding investigation was suddenly interrupted and possibly deferred to a later point in
time . . .

Suitability of J−K Assuming E is countably extensive, we have the following situation,

X PX P (Σ⋆)

Ω × P (X)Σ Ω × P (Σ⋆)Σ

ηX

⟨o,t⟩

J−K

h

det ⟨o,t⟩ ⟨ε,δ⟩

idΩ×hΣ

where for a given coalgebra ⟨o, t⟩ : X Ω × XΣ, we define

JxK :=
{

σ⃗ ∈ Σ⋆
∣∣∣ o(t(x)(σ⃗))

}
,

ηX(x) := { y | y = x } ,

h(X) :=
{

σ⃗ ∈ Σ⋆
∣∣∣ ∃ x ∈ X. o(t(x)(σ⃗))

}
,

ε(L) := ϵ ∈ L

δ(L) := σ 7→ { σ⃗ ∈ Σ⋆ | σ · σ⃗ ∈ L }
π1(det ⟨o, t⟩) := X 7→ ∃ x ∈ X. o(x)

π2(det ⟨o, t⟩) := X 7→

(
σ 7→

⋃
x∈X

t(x)(σ)
)

where the last four definitions follow Silva, et. al.11 in spirit. To verify, that our definition of J−K is sensible,
we analyse the two commuting polygons in the internal logic:

x : X ⊢ ⟨o, t⟩ = det ⟨o, t⟩ ◦ ηX

11Alexandra Silva et al. “Generalizing determinization from automata to coalgebras”. In: Logical Methods in Computer Science
9 (2013), p. 5.

5



and

X : PX, σ : Σ ⊢ ⟨ε, δ⟩ ◦ h = idΣ × hΣ ◦ det ⟨o, t⟩ ,

where we can split the latter equation into two

X : PX ⊢ ε ◦ h ⇐⇒ π1(det ⟨o, t⟩),

and

X : PX, σ : Σ ⊢ δ ◦ h = hΣ ◦ π2(det ⟨o, t⟩).

Singleton Determinisation Verify,

⊢ ⟨o, t⟩ = det ⟨o, t⟩ ◦ηX

x : X ⊢ ⟨o, t⟩ (x) = det ⟨o, t⟩(ηX(x))

x : X ⊢ ⟨o, t⟩ (x) =
〈
X 7→ ∃ x ∈ X. o(x),X 7→

(
σ 7→

⋃
x∈X

t(x)(σ)
)〉

(ηX(x))

x : X ⊢ ⟨o, t⟩ (x) =
〈

∃ x ∈ ηX(x). o(x),

σ 7→
⋃

x∈ηX (x)

t(x)(σ)

〉
x : X ⊢ ⟨o, t⟩ (x) = ⟨o(x), (σ 7→ t(x)(σ))⟩
x : X ⊢ ⟨o, t⟩ (x) = ⟨o(x), t(x)⟩
x : X ⊢ ⟨o, t⟩ (x) = ⟨o, t⟩ (x)

⊢ ⟨o, t⟩ = ⟨o, t⟩ ■

Termination of the Terminal Coalgebra Verify,

⊢ ε◦h ⇐⇒ π1(det ⟨o, t⟩)
X : PX ⊢ ε(h(X)) ⇐⇒ (X 7→∃ x ∈ X. o(x))(X)

X : PX ⊢ ϵ ∈
{

σ⃗
∣∣∣ ∃ x ∈ X. o(t(x)(σ⃗))

}
⇐⇒ ∃ x ∈ X. o(x)

X : PX ⊢ ∃ x ∈ X. o(t(x)(ϵ)) ⇐⇒ ∃ x ∈ X. o(x)
X : PX ⊢ ∃ x ∈ X. o(x) ⇐⇒ ∃ x ∈ X. o(x) ■

Transitions of the Terminal Coalgebra Verify with context X : PX, σ : Σ,

⊢ δ◦h = hΣ◦π2(det ⟨o, t⟩)
⊢ δ(h(X)) = hΣ(π2(det ⟨o, t⟩)(X))

⊢ δ(h(X)) = hΣ

σ 7→
⋃

y∈X

t(y)(σ)


⊢ δ(h(X)) = σ 7→ h

⋃
y∈X

t(y)(σ)


⊢ σ 7→

{
σ⃗ ∈ Σ⋆

∣∣∣ σ · σ⃗ ∈
{

σ⃗
∣∣∣ ∃ x ∈ X. o(t(x)(σ⃗))

}}
= . . .

⊢ σ 7→
{

σ⃗ ∈ Σ⋆
∣∣∣ ∃ x ∈ X. o(t(x)(σ · σ⃗))

}
= σ 7→

 σ⃗ ∈ Σ⋆

∣∣∣∣∣∣ ∃ x ∈

⋃
y∈X

t(y)(σ)

. o(t(x)(σ⃗))


⊢
{

σ⃗
∣∣∣ ∃ x ∈ X. o(t(x)(σ · σ⃗))

}
=
{

σ⃗
∣∣∣ ∃ x ∈ X. o(t(x) (σ · σ⃗))

}

6



where we can legitimate the inference step

∃ x ∈

⋃
y∈X

t(y)(σ)

 . o(t(x)(σ⃗)) ⇐⇒ ∃ x ∈ X. o(t(x)(σ · σ⃗))

will be legitimated below.

Verification of J−K As a final step, we have to ensure that for a x : X the following holds:

x : X ⊢ JxK = h(ηX(x))

x : X ⊢
{

σ⃗ ∈ Σ⋆
∣∣∣ o(t(x)(σ⃗))

}
=
{

σ⃗ ∈ Σ⋆
∣∣∣ ∃ x ∈ ηX(x). o(t(x)(σ⃗))

}
x : X ⊢

{
σ⃗ ∈ Σ⋆

∣∣∣ o(t(x)(σ⃗))
}

=
{

σ⃗ ∈ Σ⋆
∣∣∣ o(t(x)(σ⃗))

}
■

This gives us a satisfactory conclusion regarding the suitability of J−K in terms of the internal logic of E to
express the semantics of a non-deterministic automaton described by ⟨o, t⟩.

The canonical extension of f on a (free) monoid Σ⋆ As a final point of clarification, it is necessary to
consider the definition and properties of

t(x)(σ⃗) =
{

{x} if σ⃗ = ϵ⋃
x′∈t(x)(σ) t(x′)(σ⃗′) if σ⃗ = σ · σ⃗′

for a t : X PXΣ, x : X and σ⃗ : Σ⋆. Keep in mind that this is not a definition. We instead have to
demonstrate that a morphism exists with properties like these when considered point-wise.

Note that Σ⋆ is the initial algebra of the functor FX = 1 + Σ × X, meaning we have a have a unique
morphism h(n, c) : Σ⋆ P (X)X , for which

1 + Σ × Σ⋆ Σ⋆

1 + Σ × P (X)X P (X)X

id1+idΣ×h(n,c)

[nil;cons]

h(n,c)

[n;c]

commutes. In this context, we want h(n, c) to denotes the function generated by a word σ⃗, such that

h(n, c)(σ⃗) = x 7→ t(x)(σ⃗),

holds for an arbitrary σ⃗.
We have to define a

n : 1 P (X)X
,

c : Σ⋆ × P (X)X P (X)X

and the dependent

h(n, c) : Σ⋆ P (X)X

to demonstrate that the above diagram commutes. We can split this up into two equations:

n ◦ id1 = h ◦ nil (1)
c ◦(idΣ × h) = h ◦ cons (2)

and assume the definitions:

n(∗) := x 7→ {x} = ηx

c(σ, f) := x 7→
⋃

x′∈t(x)(σ)

f(x′)

h(n, c)(σ⃗) :=
{

n if σ⃗ = ϵ

c(σ, h(n, c)(σ⃗′)) if σ⃗ = σ · σ⃗′

Note the implicit usage of the transition morphism t in the definition of c.

7



Commutativity using h(n, c) First consider the equation involving nil,

⊢ n = h(n, c) ◦ nil
⊢ n(∗) = h(n, c)(nil(∗))
⊢ n = n ■

and for the “cons”-path:

⊢ c ◦(idΣ × h(n, c)) = h(n, c) ◦ cons
σ : Σ, σ⃗ : Σ⋆ ⊢ c ◦(idΣ × h(n, c))(σ, σ⃗) = h(n, c) ◦ cons(σ, σ⃗)
σ : Σ, σ⃗ : Σ⋆ ⊢ c(σ, h(n, c)(σ⃗)) = h(n, c)(cons(σ, σ⃗))
σ : Σ, σ⃗ : Σ⋆ ⊢ c(σ, h(n, c)(σ⃗)) = c(σ, h(n, c)(σ⃗)) ■

Definition of t in relation to h(n, c) It is clear that t(−) : X × Σ⋆ PX is the exponential
transposition of h(n, c) : Σ⋆ P (X)X , so the question remains if this satisfies the conditions we expect.
Therefore, we will consider the two “constructors” of a Σ⋆ inductively. An empty-word, i.e. the base-case,

⊢ h(n, c)(nil) = x 7→ t(nil)(x) = t(ϵ)(x)
⊢ n = x 7→ {x}
⊢ ηX = ηX ■

and for a non-empty word, with the induction hypothesis h(n, c)(σ⃗) = x 7→ t(x)(σ⃗),

σ : Σ, σ⃗ : Σ⋆ ⊢ h(n, c)(cons(σ, σ⃗)) = (x 7→ t(cons(σ, σ⃗))(x))) = (x 7→ t(σ · σ⃗)(x))

σ : Σ, σ⃗ : Σ⋆ ⊢ c(σ, h(n, c)(σ⃗)) =

x 7→
⋃

x′∈t(x)(σ)

t(x′)(σ⃗)

 (apply I.H.)

σ : Σ, σ⃗ : Σ⋆ ⊢

x 7→
⋃

x′∈t(x)(σ)

h(n, c)(σ⃗)(x′)

 =

x 7→
⋃

x′∈t(x)(σ)

h(n, c)(σ⃗)(x′)

 ■

Verifying the intended usage As a reminder, the intention was to ensure that equivalences like

X : PX, σ : Σ, σ⃗ : Σ⋆ ⊢ ∃ x ∈

⋃
y∈X

t(y)(σ)

 . o
(

t(x)(σ⃗)
)

⇐⇒ ∃ x ∈ X. o
(

t(x)(σ · σ⃗)
)

or more concretely/simply

x : X, σ : Σ, σ⃗ : Σ⋆ ⊢ ∃ x′ ∈ t(x)(σ). o
(

t(x′)(σ⃗)
)

⇐⇒ o
(

t(x)(σ · σ⃗)
)

.

In fact, we might regard the former as a special case of the latter, where the X are the states following a
transition from a x over some σ̃ : Σ:

x : X, σ : Σ, σ̃ : Σ, σ⃗ : Σ⋆ ⊢ ∃ x′ ∈

 ⋃
y∈t(x)(σ̃)

t(y)(σ)

 . o
(

t(x′)(σ⃗)
)

⇐⇒ ∃ x′ ∈ t(x)(σ̃). o
(

t(x′)(σ · σ⃗)
)

x : X, σ : Σ, σ̃ : Σ, σ⃗ : Σ⋆ ⊢ ∃ x′ ∈ t(x)(σ̃ · σ). o
(

t(x′)(σ⃗)
)

⇐⇒ ∃ x′ ∈ t(x)(σ̃). o
(

t(x′)(σ · σ⃗)
)

(We can legitimate this claim in general, by extending the automaton by a fresh σ̃ that maps x to X, and that
wouldn’t affect any transitions beyond that.)

So restricting our attention to the latter formula,

x : X, σ : Σ, σ⃗ : Σ⋆ ⊢ ∃ x′ ∈ t(x)(σ). o
(

t(x′)(σ⃗)
)

⇐⇒ o
(

t(x)(σ · σ⃗)
)

x : X, σ : Σ, σ⃗ : Σ⋆ ⊢ ∃ x′ ∈ t(x)(σ). o
(

t(x′)(σ⃗)
)

⇐⇒ o

 ⋃
x′∈t(x)(σ)

t(x′)(σ⃗)



8



Reminding ourselves that o is a “∃-style” check, and that for an arbitrary non-deterministic state X

o(X) ⇐⇒ ∃ xi ∈ X. o ({xi})

holds. Therefore,

x : X, σ : Σ, σ⃗ : Σ⋆ ⊢ ∃ x′ ∈ t(x)(σ). o
(

t(x′)(σ⃗)
)

⇐⇒ ∃ x ∈
⋃

x′∈t(x)(σ)

t(x′)(σ⃗). o ({x})

TODO

9


