Internalization of a Categorical Automata

Philip KALUĐERČIĆ

philip.kaludercic@fau.de

16Jul24, typeset on July 26, 2024

Frank, et. al.¹ define a non-deterministic automaton in a category \mathscr{C} as the quintuplet of objects and subobjects

$$A = (Q \in \mathscr{C}, \Sigma \in \mathscr{C}, m_{\delta} \colon \delta \rightarrowtail Q \times \Sigma \times Q, m_{I} \colon I \longmapsto Q, m_{F} \colon F \longmapsto Q).$$

The accepted language of an automaton A is L(A), morally a subobject of Σ^* . If \mathscr{C} lacks countable coproducts, which would be necessary to give $\Sigma^* = \coprod_{n \in \mathbb{N}} \Sigma^n$, it is possible to define L(A) "length-wise", in which case we presuppose a definition of a language as a family of monos

$$L \coloneqq \left(m_n^{(L)} \colon L^{(n)} \rightarrowtail \Sigma^n \right)_{n \in \mathbb{N}}$$

For the empty word, we consider the following diagram, that constructs the pullback $I \cap F$ (designating the initial states that are also accepting), and the image of $I \cap F \longrightarrow 1$,

$$\begin{array}{c} L^{(0)}(A) \xleftarrow{e_{0,A}} I \cap F \xrightarrow{\overline{m}_F} I \\ m^{(0)}_{L(A)} \downarrow & & \downarrow \\ 1x & F \xrightarrow{m_F} Q \end{array}$$

For non-empty words, the notion of an "accepting run" $\operatorname{AccRun}_{A}^{(n)}$ of an automaton A for words $\sigma_1 \dots \sigma_n$ is given by

where $p_{n,A}$ is the projection discarding all states from transitions. The general idea is that an accepting run is a chain of transitions over the subobject of *legal* (δ^n) one-step transitions δ , connecting an *initial state to an* accepting state $(I \times \cdots \times F)$. The pullback of $d_{n,A}$ and m_{δ}^n acts as a generalisation of intersections in Sets, resulting in *legal*, accepting runs. By projecting $(p_{n,A})$ out the inputs of type Σ , we get the accepted words.

Categorical Automata in a Topos A topos \mathscr{E} provides all the necessary structure to define a categorical automaton:

- All finite limits, including e.g. to construct the pullback AccRun⁽ⁿ⁾
- Arbitrary subobjects $m \colon S \rightarrowtail A$
- General Epi-Mono Factorisation²

and therefore of interest if we can give a

 $m_A^{(n)}: \{\sigma_1 \dots \sigma_n \mid ???\} \rightarrowtail \Sigma^n$

description of a language, such that the above diagram commutes, i.e. the subobject is the image of $p_{n,A} \circ \overline{m}_{\delta}^{(n)}$.

¹Florian Frank, Stefan Milius, and Henning Urbat. *Positive Data Languages*. 2023. arXiv: 2304.12947 [cs.FL].

²Saunders MacLane and leke Moerdijk. *Sheaves in geometry and logic: A first introduction to topos theory*. Springer Science & Business Media, 2012, p. 185.

Base case n = 0 Here the question is, whether ϵ is part of the language or not. Note here that Q is an internal latice in \mathscr{E}^3 .

As $m_{L(A)}^{(0)}$ has 1 as its codomain it is unique up to isomorphism. As $! = m_{L(A)}^{(0)} \circ e_{0,A}$, $e_{0,A}$ is also unique up to iso. The question is therefore, if the domain of $e_{0,A}$ is 0 (when F and I are disjunct subobjects, $F \cap I \cong 0$), in which case $L^{(0)}(A) \cong 0$ as well, meaning that $\epsilon \notin L(A)$.

Alternatively if I and F are not disjunct subobjects (meaning there is an initial state that is also accepting, i.e. $\epsilon \in L(A)$), we want

$$L^{(0)}(A) = \eta_{\Sigma^{\star}}(\epsilon) = \{\epsilon\} = \{w \mid w = \epsilon\}$$

to hold. We can equivalently characterise the above as

 $L^{(0)}(A) = \{ \epsilon \mid F \cap I \not\cong 0 \}.$

Definition of $L_A^{(n)}$ and $\operatorname{AccRun}_A^{(n)}$ for n > 0 The definition of $\operatorname{AccRun}_A^{(n)}$, as the pullback of $m_{\delta}^{(n)}$ and $d_{n,A}$, gives a straightforward expression in the internal logic of \mathscr{E} ,

$$\mathsf{AccRun}_A^{(n)} = \left\{ a \mid d_{n,A}(\overline{m}_{\delta}^{(n)}(a)) = m_{\delta}^{(n)}(\overline{d}_{n,A}(a)) \right\}.$$

With some foreknowledge, we can describe the image of $m_{L(A)}^{(n)}$ as

$$\mathfrak{L}^{(n)}(A) \coloneqq \left\{ w \mid \exists r \colon (Q \times \Sigma \times Q)^n . \, w = p'_{n,A}(r) \wedge \mathsf{Accp}^{(n)}_A(r) \right\}$$

where

$$\mathsf{Accp}_A^{(n)}(r) \coloneqq \exists t \colon I \times (\Sigma \times Q)^{n-1} \times \Sigma \times F. r \in m^n_\delta(\delta^n) \cap d_{n,A}(t)$$

and $p'_{n,A} = \pi_2^n$ (the second projection under a *n*ary-product), such that

$$\begin{array}{c} I \times (\Sigma \times Q)^{n-1} \times \Sigma \times F \\ & & & & \\ p_{n,A} \downarrow & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

commutes, which is easy to see since $d_{n,A}$ preserves all Σ by identities or isomorphisms.

To verify the validity of this description, i.e. that $m_{L(A)}^{(n)}$ is the smallest subobject through which $p_{n,A} \circ \overline{m}_{\delta}^{(n)}$ can factor, we can take the description of an image in the internal logic

 $\operatorname{Im}(f\colon A \longrightarrow B) = \{ b \colon B \mid \exists a \colon A. f(a) = b \},\$

and attempt to prove the equivalence of subobjects

$$\vdash \operatorname{Im}\left(p_{n,A} \circ \overline{m}_{\delta}^{(n)}\right) = \mathfrak{L}^{(n)}(A).$$

It is at this point that we have to provide a concrete and non-recursive definitions of $\overline{m}_{\delta}^{(n)}$ and $\operatorname{AccRun}_{A}^{(n)}$. One option is to take $\operatorname{AccRun}_{A}^{(n)} \coloneqq (Q \times \Sigma \times Q)^{n}$, such that $\pi_{1}(\pi_{1}(\operatorname{AccRun}_{A}^{(n)}))$ is initial and $\pi_{3}(\pi_{m}(\operatorname{AccRun}_{A}^{(n)}))$ is final, while

$$\pi_3(\pi_i(\mathsf{AccRun}_A^{(n)})) = \pi_1(\pi_{i+1}(\mathsf{AccRun}_A^{(n)})) \qquad \qquad \forall 1 \le i < n$$

and have $\overline{m}_{\delta}^{(n)}$ be the destructing map that requires the first state to be in I and the final state in F, and $\overline{d}_{n,A}$ is a simple injection.

³MacLane and Moerdijk, Sheaves in geometry and logic: A first introduction to topos theory, p. 198.

Note: Due to the communing property of $p'_{n,A}$, we can equivalently consider $\operatorname{Im}(p'_{n,A} \circ d_{n,A} \circ \overline{m}_{\delta}^{(n)})$. We can express $\ell := p'_{n,A} \circ d_{n,A} \circ \overline{m}_{\delta}^{(n)} = \pi_2^n$ (since $d_{n,A} \circ \overline{m}_{\delta}^{(n)}$ ought to equal $\operatorname{id}_{Q \times \Sigma \times Q}$) in the internal logic as

$$\ell(r) = \{ w \mid w = \pi_2^n(r) \},\$$

using which we can define the language as

$$\{w \mid \exists r. \ell(r) = w\} = \left\{w \colon \Sigma^n \mid \exists r \colon \mathsf{AccRun}_A^{(n)} \subseteq (Q \times \Sigma \times Q)^n \cdot \pi_2^n(r) = w\right\} \colon \mathbf{P}(\Sigma^n)$$

Equivalence of subobjects With the above we can investigate if the internal descriptions, for n > 0:

$$\vdash \qquad \qquad \operatorname{Im}(\pi_2^n) = \mathfrak{L}^{(n)}(A)$$
$$w \colon \Sigma^n \vdash \qquad \qquad w \in \operatorname{Im}(\pi_2^n) \iff w \in \mathfrak{L}^{(n)}(A)$$

$$w: \Sigma^n \vdash \qquad \qquad w \in \left\{ w \mid \exists a. \, \pi_2^n(a) = w \right\} \iff w \in \left\{ w \mid \exists r. \, w = \pi_2^n(r) \land \mathsf{Accp}_A^{(n)}(r) \right\}$$

$$w: \Sigma^n \vdash \qquad \qquad \exists a: \operatorname{AccRun}_A^{(n)}. \pi_2^n(a) = w \iff \exists r: (Q \times \Sigma \times Q)^n. w = \pi_2^n(r) \wedge \operatorname{Accp}_A^{(n)}(r)$$

$$w: \Sigma^n \vdash \exists r: (Q \times \Sigma \times Q)^n, \pi_2^n(r) = w \wedge \mathsf{Accp}_A^{(n)}(r) \iff \exists r: (Q \times \Sigma \times Q)^n, w = \pi_2^n(r) \wedge \mathsf{Accp}_A^{(n)}(r)$$

where the last inference is valid, since $\operatorname{Accp}_A^{(n)}$ is the characteristic morphism that recognises if a $r: (Q \times \Sigma \times Q)^n$ is an accepted run.

This fact remains open to proof:

$$\vdash \qquad \qquad \operatorname{AccRun}_{A}^{(n)} = \left\{ r : \left(Q \times \Sigma \times Q \right)^{n} \middle| \operatorname{Accp}_{A}^{(n)}(r) \right\} \\ \vdash \qquad \left\{ a \middle| d_{n,A}(\overline{m}_{\delta}^{(n)}(a)) = m_{\delta}^{(n)}(\overline{d}_{n,A}(a)) \right\} = \left\{ r : \left(Q \times \Sigma \times Q \right)^{n} \middle| \operatorname{Accp}_{A}^{(n)}(r) \right\}$$

The following step intend to address the informality, in that the right-hand side is of the type $\operatorname{AccRun}_{A}^{(n)}$, while the left-hand side has the super-type $(Q \times \Sigma \times Q)^{n}$. We do this by "up-casting":

$$\vdash \left\{ r \mid \exists a. a = r \land d_{n,A}(\overline{m}_{\delta}^{(n)}(a)) = m_{\delta}^{(n)}(\overline{d}_{n,A}(a)) \right\} = \left\{ r \colon (Q \times \Sigma \times Q)^n \mid \mathsf{Accp}_A^{(n)}(r) \right\}$$
$$r \colon (Q \times \Sigma \times Q)^n \vdash \qquad \exists a. a = r \land d_{n,A}(\overline{m}_{\delta}^{(n)}(a)) = m_{\delta}^{(n)}(\overline{d}_{n,A}(a)) \iff \exists t. r \in m_{\delta}^n(\delta^n) \cap d_{n,A}(t)$$

Descending back into irrigorousness, we can disregard the morphisms that serve as injections from subobjects,

$$\begin{array}{ll} r \colon (Q \times \Sigma \times Q)^n \vdash & \qquad \exists a. \ a = r \wedge d_{n,A}(\overline{m}_{\delta}^{(n)}(a)) = a \iff \exists t. r \in \delta^n \cap d_{n,A}(t) \\ r \colon (Q \times \Sigma \times Q)^n \vdash & \qquad \exists a: \operatorname{AccRun}_A^{(n)} \cdot r = d_{n,A}(\overline{m}_{\delta}^{(n)}(a)) \iff \exists t. r \in \delta^n \cap d_{n,A}(t) \\ \end{array}$$

 $(\mathbf{v} + \mathbf{v}) = (\mathbf{v} + \mathbf{v})$

Using the property that in a pullback Pb(a, b), for any $a: A \rightarrow C$, $b: B \rightarrow C$ and a fixed $\beta: B$ (see below),

$$\gamma \colon C, \beta \colon B \vdash \exists \pi \colon \operatorname{Pb}(a, b). \ a(b(\pi)) = \gamma \iff \exists \alpha \colon A. \ \gamma \in a(\alpha) \cap b(\beta), \tag{\dagger}$$

we can conclude the proof with

$$\begin{array}{ll} r \colon (Q \times \Sigma \times Q)^n \vdash & \qquad \exists a \colon \mathsf{AccRun}_A^{(n)} \cdot r = a \iff \exists a \colon \mathsf{AccRun}_A^{(n)} \cdot r = d_{n,A}(\overline{m}_{\delta}^{(n)}(a)) \\ r \colon (Q \times \Sigma \times Q)^n \vdash & \qquad \exists a \cdot r = a \iff \exists a \cdot r = a & \blacksquare \end{array}$$

Proof of the remaining assumption It remains to argue that (\dagger) is a valid claim. The intuition is pullbacks in \mathscr{E} correspond to intersections in the internal logic of \mathscr{E} .

$$\gamma \colon C, \beta \colon B \vdash \qquad \qquad \exists \, \pi \colon \operatorname{Pb}(a, b). \, a(b(\pi)) = \gamma \iff \exists \, \alpha \colon A. \, \gamma \in a(\alpha) \cap b(\beta)$$

We begin by unfolding the definition of " \cap ",

$$\gamma \colon C, \beta \colon B \vdash \qquad \qquad \exists \, \pi \colon \operatorname{Pb}(a, b). \, a(\overline{b}(\pi)) = \gamma \iff \exists \, \alpha \colon A. \, \gamma \in \{ \, \zeta \colon C \mid \zeta \in a(\alpha) \land \zeta \in b(\beta) \, \}$$

and of

$$Pb(a,b) = \left\{ \varpi \colon C \mid a(\overline{b}(\varpi)) = b(\overline{a}(\varpi)) \right\},\$$

we can take $\alpha = \overline{b}(\varpi)$ for a $\overline{a}(\varpi) = \beta$. This gives us

$$\gamma \colon C, \beta \colon B \vdash \exists \varpi \colon C, \overline{a}(\varpi) = \beta \implies a(\overline{b}(\varpi)) = \gamma \iff \gamma \in a(\overline{b}(x)) \land \gamma \in b(\beta)$$

A different approach Take $\sigma_1 \dots \sigma_n \colon \Sigma^n \vdash$, then

$$\sigma_{1} \dots \sigma_{n} \in \operatorname{Im}(\pi_{2}^{n})$$

$$\iff \sigma_{1} \dots \sigma_{n} \in \left\{ \sigma_{1} \dots \sigma_{n} \mid \exists a: \operatorname{AccRun}_{A}^{(n)} \dots \sigma_{n} = \pi_{2}^{n}(a) \right\}$$

$$\iff \exists a: \operatorname{AccRun}_{A}^{(n)} \dots \sigma_{n} = \pi_{2}^{n}(a)$$

$$\iff \exists a: \operatorname{AccRun}_{A}^{(n)} \dots \sigma_{n} = \pi_{2}^{n}(a)$$

$$\iff \exists r: (Q \times \Sigma \times Q)^{n} \dots \sigma_{n} = \pi_{2}^{n}(r) \wedge \operatorname{Accp}_{A}^{(n)}(r)$$

$$\iff \sigma_{1} \dots \sigma_{n} \in \left\{ \sigma_{1} \dots \sigma_{n} \mid \exists r: (Q \times \Sigma \times Q)^{n} \dots \sigma_{n} = \pi_{2}^{n}(r) \wedge \operatorname{Accp}_{A}^{(n)}(r) \right\}$$

$$\iff \sigma_{1} \dots \sigma_{n} \in \left\{ \sigma_{1} \dots \sigma_{n} \mid \exists r: (Q \times \Sigma \times Q)^{n} \dots \sigma_{n} = \pi_{2}^{n}(r) \wedge \operatorname{Accp}_{A}^{(n)}(r) \right\}$$

where (‡) requires

$$r \colon (Q \times \Sigma \times Q)^n \vdash \mathsf{Accp}_A^{(n)}(r) \iff \exists \, a \colon \mathsf{AccRun}_A^{(n)} \cdot \iota_{(Q \times \Sigma \times Q)^n}(a) = r$$

to hold. Intuitively this should indicate that $\operatorname{Accp}_A^{(n)}$ is a faithful predicate, recognising if a $r: (Q \times \Sigma \times Q)^n$ is part of the intersection of *legal* (m_{δ}^n) and *accepting* $(d_{n,A})$ runs, i.e. in the pullback of the subobjects m_{δ}^n and $d_{n,A}$.

Keeping in mind that for a A, δ^n is fixed, this is equivalent to stating that

$$r : (Q \times \Sigma \times Q)^n \vdash \exists t : I \times \dots \times F. r \in \underbrace{m_{\delta}^n(\delta^n)}_{\mathsf{legal}} \cap \underbrace{d_{n,A}(t)}_{\mathsf{acc.}} \iff \exists \pi : \operatorname{Pb}(m_{\delta}^n, d_{n,A}). \ \overline{d}_{n,A}(\pi) = \delta^n \implies r = \pi$$

or generally for subobjects $a: A \rightarrow C$, $b: B \rightarrow C$ and a fixed b: B,

$$\gamma \colon C, \beta \colon B \vdash \exists \alpha \colon A. \gamma \in a(\alpha) \cap b(\beta) \iff \exists \pi \colon \operatorname{Pb}(a, b). \overline{a}(\pi) = \beta \implies \iota_C(\pi) = \gamma$$

(Note to self: Does $\gamma \in a(\alpha) \cap b(\beta)$ even type? I don't think so, since $a(\alpha) \colon C$, and we cannot intersect on an element of C!) So the actual definition of $Accp_A^{(n)}$ should be

$$\mathsf{Accp}_{A}^{(n)}(r) \coloneqq \exists a \colon I \times \dots \times F. \, d_{n,A}(a) = r$$