
An Exordium on Computational Trinitarianism ∗

Curry-Howard-Lambek
Correspondence

As revealed by KALUĐERČIĆ, Philip;
Questions or Complaints? Mail philip.kaludercic at fau.de.

2024-12-19, last typeset December 19, 2024, 19:20

∗ Available on the WWW: https://wwwcip.cs.fau.de/~oj14ozun/src+etc/chl.pdf

https://wwwcip.cs.fau.de/~oj14ozun/src+etc/chl.pdf

Abstract
Goal: We want to extend the Logic-Language correspondance

by Categories:

Simply-Typed
λ-Calculus

Minimal Intu-
itionistic Logic

Cartesian Closed
Categories

Each edge represents a “moment” of the essence of
computation?

Abstract
Goal: We want to extend the Logic-Language correspondance

by Categories:

Simply-Typed
λ-Calculus

Minimal Intu-
itionistic Logic

Cartesian Closed
Categories

Computation
Each edge represents a “moment” of the essence of

computation?

Part I

Yet Another Introduction to
Category Theory

Section 1

The Definition of a Category

Set-theoretic
functions Posets Monoids

Functions “connect” Sets N B
isPrime

is0
even

Every set has an “identity function”

N B
isPrime

is0
even

idN idB

Functions can be composed (associativley)

R N B
fifthDecimal

round
const0

isPrime

is0
even

Set-theoretic
functions Posets Monoids

Functions “connect” Sets N B
isPrime

is0
even

Every set has an “identity function”

N B
isPrime

is0
even

idN idB

Functions can be composed (associativley)

R N B
fifthDecimal

round
const0

isPrime

is0
even

Set-theoretic
functions Posets Monoids

Functions “connect” Sets N B
isPrime

is0
even

Every set has an “identity function”

N B
isPrime

is0
even

idN idB

Functions can be composed (associativley)

R N B
fifthDecimal

round
const0

isPrime

is0
even

Set-theoretic
functions Posets Monoids

A relation “connect” elements
{a, b} ⊆ {a, b, c}

The relation is reflexive
{a, b} ⊆ {a, b}

The relation is transitive
{a} ⊆ {a, b} ⊆ {a, b, c} and
{a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}

grants
{a} ⊆ {a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}

Set-theoretic
functions Posets Monoids

A relation “connect” elements
{a, b} ⊆ {a, b, c}

The relation is reflexive
{a, b} ⊆ {a, b}

The relation is transitive
{a} ⊆ {a, b} ⊆ {a, b, c} and
{a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}

grants
{a} ⊆ {a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}

Set-theoretic
functions Posets Monoids

A relation “connect” elements
{a, b} ⊆ {a, b, c}

The relation is reflexive
{a, b} ⊆ {a, b}

The relation is transitive
{a} ⊆ {a, b} ⊆ {a, b, c} and
{a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}

grants
{a} ⊆ {a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}

Set-theoretic
functions Posets Monoids

Elements of a monoid (e.g. (N,+, 0)) “connect”

• •
3

10
1

There is a unique neutral “arrow” • •0

All “arrows” are associative

• • • • •3

5

11

2
3

8

1

6

5

Set-theoretic
functions Posets Monoids

Elements of a monoid (e.g. (N,+, 0)) “connect”

• •
3

10
1

There is a unique neutral “arrow” • •0

All “arrows” are associative

• • • • •3

5

11

2
3

8

1

6

5

Set-theoretic
functions Posets Monoids

Elements of a monoid (e.g. (N,+, 0)) “connect”

• •
3

10
1

There is a unique neutral “arrow” • •0

All “arrows” are associative

• • • • •3

5

11

2
3

8

1

6

5

Definition (Category)
A category C is a

collection of objects
A,B ∈ Ob (C) and arrows HomC (A,B) that
associate objects. For A,B,C ∈ Ob (C),
categories must satisfy the properties:

idA : A A (neutral)

f : A B g : B C
g ◦ f : A C (comp)

s.t. idB ◦ f = f = f ◦ idA.

Definition (Category)
A category C is a collection of objects
A,B ∈ Ob (C)

and arrows HomC (A,B) that
associate objects. For A,B,C ∈ Ob (C),
categories must satisfy the properties:

idA : A A (neutral)

f : A B g : B C
g ◦ f : A C (comp)

s.t. idB ◦ f = f = f ◦ idA.

Definition (Category)
A category C is a collection of objects
A,B ∈ Ob (C) and arrows HomC (A,B) that
associate objects.

For A,B,C ∈ Ob (C),
categories must satisfy the properties:

idA : A A (neutral)

f : A B g : B C
g ◦ f : A C (comp)

s.t. idB ◦ f = f = f ◦ idA.

Definition (Category)
A category C is a collection of objects
A,B ∈ Ob (C) and arrows HomC (A,B) that
associate objects. For A,B,C ∈ Ob (C),
categories must satisfy the properties:

idA : A A (neutral)

f : A B g : B C
g ◦ f : A C (comp)

s.t. idB ◦ f = f = f ◦ idA.

Definition (Category)
A category C is a collection of objects
A,B ∈ Ob (C) and arrows HomC (A,B) that
associate objects. For A,B,C ∈ Ob (C),
categories must satisfy the properties:

idA : A A (neutral)

f : A B

g : B C
g ◦ f : A C (comp)

s.t. idB ◦ f = f = f ◦ idA.

Definition (Category)
A category C is a collection of objects
A,B ∈ Ob (C) and arrows HomC (A,B) that
associate objects. For A,B,C ∈ Ob (C),
categories must satisfy the properties:

idA : A A (neutral)

f : A B g : B C

g ◦ f : A C (comp)

s.t. idB ◦ f = f = f ◦ idA.

Definition (Category)
A category C is a collection of objects
A,B ∈ Ob (C) and arrows HomC (A,B) that
associate objects. For A,B,C ∈ Ob (C),
categories must satisfy the properties:

idA : A A (neutral)

f : A B g : B C
g ◦ f : A C (comp)

s.t. idB ◦ f = f = f ◦ idA.

Definition (Category)
A category C is a collection of objects
A,B ∈ Ob (C) and arrows HomC (A,B) that
associate objects. For A,B,C ∈ Ob (C),
categories must satisfy the properties:

idA : A A (neutral)

f : A B g : B C
g ◦ f : A C (comp)

s.t. idB ◦ f = f = f ◦ idA.

Example (Category of Functions “Sets”)

Ob (Sets) := all sets,

HomSets (A,B) := all functions from A to B.

This is a canonical example of a category. Many
other examples restrict Sets to specific objects and
functions (FinSet, Top, Gra, Grp) or generalise it
(Rel, Par).

Example (Category of Functions “Sets”)

Ob (Sets) := all sets,

HomSets (A,B) := all functions from A to B.

This is a canonical example of a category. Many
other examples restrict Sets to specific objects and
functions (FinSet, Top, Gra, Grp) or generalise it
(Rel, Par).

Example (Category of Functions “Sets”)

Ob (Sets) := all sets,

HomSets (A,B) := all functions from A to B.

This is a canonical example of a category. Many
other examples restrict Sets to specific objects and
functions (FinSet, Top, Gra, Grp) or generalise it
(Rel, Par).

Example (Category of Functions “Sets”)

Ob (Sets) := all sets,

HomSets (A,B) := all functions from A to B.

This is a canonical example of a category. Many
other examples restrict Sets to specific objects and
functions (FinSet, Top, Gra, Grp) or generalise it
(Rel, Par).

Example (Category of a Poset (X,v))

Ob ((X,v)) := X,

Hom(X,v) (A,B) :=
{
{∗} if A < B
{} otherwise ,

for A,B ∈ X.

This example illustrates that arrows are not always
function-ish.

Example (Category of a Poset (X,v))

Ob ((X,v)) := X,

Hom(X,v) (A,B) :=
{
{∗} if A < B
{} otherwise ,

for A,B ∈ X.

This example illustrates that arrows are not always
function-ish.

Example (Category of a Poset (X,v))

Ob ((X,v)) := X,

Hom(X,v) (A,B) :=
{
{∗} if A < B
{} otherwise ,

for A,B ∈ X.

This example illustrates that arrows are not always
function-ish.

Example (Category of a Poset (X,v))

Ob ((X,v)) := X,

Hom(X,v) (A,B) :=
{
{∗} if A < B
{} otherwise ,

for A,B ∈ X.

This example illustrates that arrows are not always
function-ish.

Example (Category of a Poset (M, ·, e))

Ob (Sets) := {∗},

HomSets (∗, ∗) := M.

This example emphasises the “monoidal” nature of
categories.

Example (Category of a Poset (M, ·, e))

Ob (Sets) := {∗},

HomSets (∗, ∗) := M.

This example emphasises the “monoidal” nature of
categories.

Example (Category of a Poset (M, ·, e))

Ob (Sets) := {∗},

HomSets (∗, ∗) := M.

This example emphasises the “monoidal” nature of
categories.

Example (Category of a Poset (M, ·, e))

Ob (Sets) := {∗},

HomSets (∗, ∗) := M.

This example emphasises the “monoidal” nature of
categories.

Section 2

Selected Universal Properties of
Constructions

Fact (Fun)

Category theory allows us to
recognise different settings
where objects relate (via
arrows) to one another in

analogous ways.

Fact (Fun)

Category theory allows us to
recognise different settings
where objects relate (via
arrows) to one another in

analogous ways.

Fact (Fun, continued)

Of particular interest are
constructions that are

identified by a unique arrow.

Category Sets
For any A, there
exists exactly one

function

h : A → {∗}
a 7→ ∗

Poset (X,v)
(If there is a top
element,) for any
A ∈ X, we know

that

A v >

must hold. Hence,

Hom (A,>) = {∗}.

Monoid (M, ·, e)
There is only one
object, but not
only one arrow

(Hom (∗, ∗) = M).

Definition
A category C with a terminal object 1 ∈ Ob (C) has exactly
one arrow

! : A T, |HomC (A,T) | = 1

for every other object A ∈ Ob (C).

Category Sets
For any A, there
exists exactly one

function

h : A → {∗}
a 7→ ∗

Poset (X,v)
(If there is a top
element,) for any
A ∈ X, we know

that

A v >

must hold. Hence,

Hom (A,>) = {∗}.

Monoid (M, ·, e)
There is only one
object, but not
only one arrow

(Hom (∗, ∗) = M).

Definition
A category C with a terminal object 1 ∈ Ob (C) has exactly
one arrow

! : A T, |HomC (A,T) | = 1

for every other object A ∈ Ob (C).

Category Sets
For any A, there
exists exactly one

function

h : A → {∗}
a 7→ ∗

Poset (X,v)
(If there is a top
element,) for any
A ∈ X, we know

that

A v >

must hold. Hence,

Hom (A,>) = {∗}.

Monoid (M, ·, e)
There is only one
object, but not
only one arrow

(Hom (∗, ∗) = M).

Definition
A category C with a terminal object 1 ∈ Ob (C) has exactly
one arrow

! : A T, |HomC (A,T) | = 1

for every other object A ∈ Ob (C).

Category Sets
For any A, there
exists exactly one

function

h : A → {∗}
a 7→ ∗

Poset (X,v)
(If there is a top
element,) for any
A ∈ X, we know

that

A v >

must hold. Hence,

Hom (A,>) = {∗}.

Monoid (M, ·, e)
There is only one
object, but not
only one arrow

(Hom (∗, ∗) = M).

Definition
A category C with a terminal object 1 ∈ Ob (C) has exactly
one arrow

! : A T, |HomC (A,T) | = 1

for every other object A ∈ Ob (C).

Category Sets
For any A, there
exists exactly one

function

h : A → {∗}
a 7→ ∗

Poset (X,v)
(If there is a top
element,) for any
A ∈ X, we know

that

A v >

must hold. Hence,

Hom (A,>) = {∗}.

Monoid (M, ·, e)
There is only one
object, but not
only one arrow

(Hom (∗, ∗) = M).

Definition
A category C with a terminal object 1 ∈ Ob (C) has exactly
one arrow

! : A T, |HomC (A,T) | = 1

for every other object A ∈ Ob (C).

Category Sets

A product A × B of two
sets has two projections

π1 : A × B → A
(a, b) 7→ a

π2 : A × B → B
(a, b) 7→ b

Poset (X,v)
For the meet A u B we

know that

A u B v A and
A u B v B

must hold.

Definition (Preliminary?)
A product “A × B” of two objects A,B ∈ Ob (C)
has two arrows A × B A and A × B B.

Category Sets
A product A × B of two
sets has two projections

π1 : A × B → A
(a, b) 7→ a

π2 : A × B → B
(a, b) 7→ b

Poset (X,v)
For the meet A u B we

know that

A u B v A and
A u B v B

must hold.

Definition (Preliminary?)
A product “A × B” of two objects A,B ∈ Ob (C)
has two arrows A × B A and A × B B.

Category Sets
A product A × B of two
sets has two projections

π1 : A × B → A
(a, b) 7→ a

π2 : A × B → B
(a, b) 7→ b

Poset (X,v)

For the meet A u B we
know that

A u B v A and
A u B v B

must hold.

Definition (Preliminary?)
A product “A × B” of two objects A,B ∈ Ob (C)
has two arrows A × B A and A × B B.

Category Sets
A product A × B of two
sets has two projections

π1 : A × B → A
(a, b) 7→ a

π2 : A × B → B
(a, b) 7→ b

Poset (X,v)
For the meet A u B we

know that

A u B v A and
A u B v B

must hold.

Definition (Preliminary?)
A product “A × B” of two objects A,B ∈ Ob (C)
has two arrows A × B A and A × B B.

Category Sets
A product A × B of two
sets has two projections

π1 : A × B → A
(a, b) 7→ a

π2 : A × B → B
(a, b) 7→ b

Poset (X,v)
For the meet A u B we

know that

A u B v A and
A u B v B

must hold.

Definition (Preliminary?)
A product “A × B” of two objects A,B ∈ Ob (C)
has two arrows A × B A and A × B B.

Definition
The product “A × B” of two objects A,B ∈ Ob (C)
has two arrows π1 : A × B A and
π2 : A × B B,

such that for any other object
C ∈ Ob (C) with τ1 : C A and τ2 : C B,

C

A A × B B

τ1 τ2χA,B

π1 π2

Definition
The product “A × B” of two objects A,B ∈ Ob (C)
has two arrows π1 : A × B A and
π2 : A × B B, such that for any other object
C ∈ Ob (C) with τ1 : C A and τ2 : C B,

C

A A × B B

τ1 τ2χA,B

π1 π2

Definition
The product “A × B” of two objects A,B ∈ Ob (C)
has two arrows π1 : A × B A and
π2 : A × B B, such that for any other object
C ∈ Ob (C) with τ1 : C A and τ2 : C B,

C

A A × B B

τ1 τ2χA,B

π1 π2

Example (In Sets (I))
Why is X × (Y × Z) not the product of X and Z?

We can define

τ1 = π1
τ2 = π2 ◦ π2

But there is a unique

h(x, y, z) = (x, z),

while there need not be a g : X × Z X × Y × Z
— let alone unique! X × Z is a more sufficient fit
than X × Y × Z.

Example (In Sets (I))
Why is X × (Y × Z) not the product of X and Z?
We can define

τ1 = π1
τ2 = π2 ◦ π2

But there is a unique

h(x, y, z) = (x, z),

while there need not be a g : X × Z X × Y × Z
— let alone unique! X × Z is a more sufficient fit
than X × Y × Z.

Example (In Sets (I))
Why is X × (Y × Z) not the product of X and Z?
We can define

τ1 = π1
τ2 = π2 ◦ π2

But there is a unique

h(x, y, z) = (x, z),

while there need not be a g : X × Z X × Y × Z

— let alone unique! X × Z is a more sufficient fit
than X × Y × Z.

Example (In Sets (I))
Why is X × (Y × Z) not the product of X and Z?
We can define

τ1 = π1
τ2 = π2 ◦ π2

But there is a unique

h(x, y, z) = (x, z),

while there need not be a g : X × Z X × Y × Z
— let alone unique!

X × Z is a more sufficient fit
than X × Y × Z.

Example (In Sets (I))
Why is X × (Y × Z) not the product of X and Z?
We can define

τ1 = π1
τ2 = π2 ◦ π2

But there is a unique

h(x, y, z) = (x, z),

while there need not be a g : X × Z X × Y × Z
— let alone unique! X × Z is a more sufficient fit
than X × Y × Z.

Example (In Sets (II))
Is Z × X a product of X and Z?

We can define

τ1 = π2 τ2 = π1

There is both a unique h : Z × X X × Z as

(z, x) 7→ (x, z)

and a unique h−1 : X × Z Z × X as

(x, z) 7→ (z, x).

Both are equally well fit and are mutually
correspond to one another.

Example (In Sets (II))
Is Z × X a product of X and Z? We can define

τ1 = π2 τ2 = π1

There is both a unique h : Z × X X × Z as

(z, x) 7→ (x, z)

and a unique h−1 : X × Z Z × X as

(x, z) 7→ (z, x).

Both are equally well fit and are mutually
correspond to one another.

Example (In Sets (II))
Is Z × X a product of X and Z? We can define

τ1 = π2 τ2 = π1

There is both a unique h : Z × X X × Z as

(z, x) 7→ (x, z)

and a unique h−1 : X × Z Z × X as

(x, z) 7→ (z, x).

Both are equally well fit and are mutually
correspond to one another.

Example (In Sets (II))
Is Z × X a product of X and Z? We can define

τ1 = π2 τ2 = π1

There is both a unique h : Z × X X × Z as

(z, x) 7→ (x, z)

and a unique h−1 : X × Z Z × X as

(x, z) 7→ (z, x).

Both are equally well fit and are mutually
correspond to one another.

Fact (…up to isomorphism)
When thinking categorically and considering
the relations of objects over the contents of
the objects, we handle objects within a
equivalence class of “isomorphisms”.

A B

Cf

∼=

g

Definition
Given C with all products −× Y,

an exponential
object ZY is such that for any g : X × Y Z, there
is a unique transpose (sometimes “adjoint”)
λg : X ZY

X X × Y

ZY ZY × Y Z

λg λg×idY
g

evY,Z

Example
In Sets BA is represents all functions from A to B.

Definition
Given C with all products −× Y, an exponential
object ZY is such that for any g : X × Y Z,

there
is a unique transpose (sometimes “adjoint”)
λg : X ZY

X X × Y

ZY ZY × Y Z

λg λg×idY
g

evY,Z

Example
In Sets BA is represents all functions from A to B.

Definition
Given C with all products −× Y, an exponential
object ZY is such that for any g : X × Y Z, there
is a unique transpose (sometimes “adjoint”)
λg : X ZY

X X × Y

ZY ZY × Y Z

λg λg×idY
g

evY,Z

Example
In Sets BA is represents all functions from A to B.

Definition
Given C with all products −× Y, an exponential
object ZY is such that for any g : X × Y Z, there
is a unique transpose (sometimes “adjoint”)
λg : X ZY

X X × Y

ZY ZY × Y Z

λg λg×idY
g

evY,Z

Example
In Sets BA is represents all functions from A to B.

Definition
Given C with all products −× Y, an exponential
object ZY is such that for any g : X × Y Z, there
is a unique transpose (sometimes “adjoint”)
λg : X ZY

X X × Y

ZY ZY × Y Z

λg λg×idY
g

evY,Z

Example
In Sets BA is represents all functions from A to B.

The before can be expressed as the
equation:

HomC (X × Y,Z)∼= HomC

(
X,ZY)

Do you recognise this from
somewhere?

The before can be expressed as the
equation:

HomC (X × Y,Z)∼= HomC

(
X,ZY)

Do you recognise this from
somewhere?

Fact
We can construct a category H of a Heyting
Algebra analogously to the category of a poset.

Example
The exponential object in Heyting Algebra following
from the above, corresponds to the well-known
definition of implication:

a u b v c ⇐⇒ a v bc

Fact
We can construct a category H of a Heyting
Algebra analogously to the category of a poset.

Example
The exponential object in Heyting Algebra following
from the above, corresponds to the well-known
definition of implication:

a u b v c ⇐⇒ a v bc

Definition
A Cartesian Closed Category has…

▶ A terminal object 1,
▶ All products A × B,
▶ All exponentials BA.

Example
Categories that satisfy these properties include Sets,
categories of Heyting Algebras.

Now what does all of this have to do with the
λ-Calculus or (positive/minimal) intuitionist logic?

Definition
A Cartesian Closed Category has…
▶ A terminal object 1,

▶ All products A × B,
▶ All exponentials BA.

Example
Categories that satisfy these properties include Sets,
categories of Heyting Algebras.

Now what does all of this have to do with the
λ-Calculus or (positive/minimal) intuitionist logic?

Definition
A Cartesian Closed Category has…
▶ A terminal object 1,
▶ All products A × B,

▶ All exponentials BA.

Example
Categories that satisfy these properties include Sets,
categories of Heyting Algebras.

Now what does all of this have to do with the
λ-Calculus or (positive/minimal) intuitionist logic?

Definition
A Cartesian Closed Category has…
▶ A terminal object 1,
▶ All products A × B,
▶ All exponentials BA.

Example
Categories that satisfy these properties include Sets,
categories of Heyting Algebras.

Now what does all of this have to do with the
λ-Calculus or (positive/minimal) intuitionist logic?

Definition
A Cartesian Closed Category has…
▶ A terminal object 1,
▶ All products A × B,
▶ All exponentials BA.

Example
Categories that satisfy these properties include Sets,
categories of Heyting Algebras.

Now what does all of this have to do with the
λ-Calculus or (positive/minimal) intuitionist logic?

Definition
A Cartesian Closed Category has…
▶ A terminal object 1,
▶ All products A × B,
▶ All exponentials BA.

Example
Categories that satisfy these properties include Sets,
categories of Heyting Algebras.

Now what does all of this have to do with the
λ-Calculus or (positive/minimal) intuitionist logic?

Before continuing; What we have omitted?
▶ Duality,

▶ Isomorphisms,
▶ Mono- and Epimorphisms,
▶ Limits,
▶ Initial Objects, Pushouts, Pullbacks,

(Co-)Equalisers,
▶ Functors,
▶ Natural Transformations,
▶ Adjunctions, units, counits,
▶ Yoneda Lemma, Embeddings, representable

objects,
▶ Kan Extensions,
▶ Twisted Generalized Cohomology in Linear Homotopy

Type Theory, …

Before continuing; What we have omitted?
▶ Duality,
▶ Isomorphisms,

▶ Mono- and Epimorphisms,
▶ Limits,
▶ Initial Objects, Pushouts, Pullbacks,

(Co-)Equalisers,
▶ Functors,
▶ Natural Transformations,
▶ Adjunctions, units, counits,
▶ Yoneda Lemma, Embeddings, representable

objects,
▶ Kan Extensions,
▶ Twisted Generalized Cohomology in Linear Homotopy

Type Theory, …

Before continuing; What we have omitted?
▶ Duality,
▶ Isomorphisms,
▶ Mono- and Epimorphisms,

▶ Limits,
▶ Initial Objects, Pushouts, Pullbacks,

(Co-)Equalisers,
▶ Functors,
▶ Natural Transformations,
▶ Adjunctions, units, counits,
▶ Yoneda Lemma, Embeddings, representable

objects,
▶ Kan Extensions,
▶ Twisted Generalized Cohomology in Linear Homotopy

Type Theory, …

Before continuing; What we have omitted?
▶ Duality,
▶ Isomorphisms,
▶ Mono- and Epimorphisms,
▶ Limits,

▶ Initial Objects, Pushouts, Pullbacks,
(Co-)Equalisers,

▶ Functors,
▶ Natural Transformations,
▶ Adjunctions, units, counits,
▶ Yoneda Lemma, Embeddings, representable

objects,
▶ Kan Extensions,
▶ Twisted Generalized Cohomology in Linear Homotopy

Type Theory, …

Before continuing; What we have omitted?
▶ Duality,
▶ Isomorphisms,
▶ Mono- and Epimorphisms,
▶ Limits,
▶ Initial Objects, Pushouts, Pullbacks,

(Co-)Equalisers,

▶ Functors,
▶ Natural Transformations,
▶ Adjunctions, units, counits,
▶ Yoneda Lemma, Embeddings, representable

objects,
▶ Kan Extensions,
▶ Twisted Generalized Cohomology in Linear Homotopy

Type Theory, …

Before continuing; What we have omitted?
▶ Duality,
▶ Isomorphisms,
▶ Mono- and Epimorphisms,
▶ Limits,
▶ Initial Objects, Pushouts, Pullbacks,

(Co-)Equalisers,
▶ Functors,

▶ Natural Transformations,
▶ Adjunctions, units, counits,
▶ Yoneda Lemma, Embeddings, representable

objects,
▶ Kan Extensions,
▶ Twisted Generalized Cohomology in Linear Homotopy

Type Theory, …

Before continuing; What we have omitted?
▶ Duality,
▶ Isomorphisms,
▶ Mono- and Epimorphisms,
▶ Limits,
▶ Initial Objects, Pushouts, Pullbacks,

(Co-)Equalisers,
▶ Functors,
▶ Natural Transformations,

▶ Adjunctions, units, counits,
▶ Yoneda Lemma, Embeddings, representable

objects,
▶ Kan Extensions,
▶ Twisted Generalized Cohomology in Linear Homotopy

Type Theory, …

Before continuing; What we have omitted?
▶ Duality,
▶ Isomorphisms,
▶ Mono- and Epimorphisms,
▶ Limits,
▶ Initial Objects, Pushouts, Pullbacks,

(Co-)Equalisers,
▶ Functors,
▶ Natural Transformations,
▶ Adjunctions, units, counits,

▶ Yoneda Lemma, Embeddings, representable
objects,

▶ Kan Extensions,
▶ Twisted Generalized Cohomology in Linear Homotopy

Type Theory, …

Before continuing; What we have omitted?
▶ Duality,
▶ Isomorphisms,
▶ Mono- and Epimorphisms,
▶ Limits,
▶ Initial Objects, Pushouts, Pullbacks,

(Co-)Equalisers,
▶ Functors,
▶ Natural Transformations,
▶ Adjunctions, units, counits,
▶ Yoneda Lemma, Embeddings, representable

objects,

▶ Kan Extensions,
▶ Twisted Generalized Cohomology in Linear Homotopy

Type Theory, …

Before continuing; What we have omitted?
▶ Duality,
▶ Isomorphisms,
▶ Mono- and Epimorphisms,
▶ Limits,
▶ Initial Objects, Pushouts, Pullbacks,

(Co-)Equalisers,
▶ Functors,
▶ Natural Transformations,
▶ Adjunctions, units, counits,
▶ Yoneda Lemma, Embeddings, representable

objects,
▶ Kan Extensions,

▶ Twisted Generalized Cohomology in Linear Homotopy
Type Theory, …

Before continuing; What we have omitted?
▶ Duality,
▶ Isomorphisms,
▶ Mono- and Epimorphisms,
▶ Limits,
▶ Initial Objects, Pushouts, Pullbacks,

(Co-)Equalisers,
▶ Functors,
▶ Natural Transformations,
▶ Adjunctions, units, counits,
▶ Yoneda Lemma, Embeddings, representable

objects,
▶ Kan Extensions,
▶ Twisted Generalized Cohomology in Linear Homotopy

Type Theory, …

Part II

Equational Theories and
λ-Theories

Definition
Equational Theories presents the rules of a formal
system with equality as the primary predicate.

For example, we expect the following to hold for a
equivalence relation:

A = A (refl)

B = A
A = B (sym)

A = B B = C
A = C (trans)

Definition
Equational Theories presents the rules of a formal
system with equality as the primary predicate.

For example, we expect the following to hold for a
equivalence relation:

A = A (refl)

B = A
A = B (sym)

A = B B = C
A = C (trans)

Definition
Equational Theories presents the rules of a formal
system with equality as the primary predicate.

For example, we expect the following to hold for a
equivalence relation:

A = A (refl)

B = A
A = B (sym)

A = B B = C
A = C (trans)

Definition
Equational Theories presents the rules of a formal
system with equality as the primary predicate.

For example, we expect the following to hold for a
equivalence relation:

A = A (refl)

B = A
A = B (sym)

A = B B = C
A = C (trans)

Definition
Equational Theories presents the rules of a formal
system with equality as the primary predicate.

For example, we expect the following to hold for a
equivalence relation:

A = A (refl)

B = A
A = B (sym)

A = B B = C
A = C (trans)

Definition
A (simply typed) λ Theory is an equational theory
that describes what a equivalence relation between
λ-terms should ensure.
We write

Γ ` s = t : A
to state that s : A and t : A are equal in the same
context Γ.

Γ ` s = t : A Γ, x : A ` u = v : B
Γ ` u [x 7→ s] = v [x 7→ t] : B (subst)

Γ ` s = t : A → B Γ ` u = v : A
Γ ` su = tv : B (app)

Γ, x : A ` t = s : B
Γ ` λ x. t = λ x. s : A → B (abstr)

Γ ` λ x. ts = t [x 7→ s] : B (β)

…rules for product and unit types …

Definition
A (simply typed) λ Theory is an equational theory
that describes what a equivalence relation between
λ-terms should ensure.

Γ ` s = t : A Γ, x : A ` u = v : B
Γ ` u [x 7→ s] = v [x 7→ t] : B (subst)

Γ ` s = t : A → B Γ ` u = v : A
Γ ` su = tv : B (app)

Γ, x : A ` t = s : B
Γ ` λ x. t = λ x. s : A → B (abstr)

Γ ` λ x. ts = t [x 7→ s] : B (β)

…rules for product and unit types …

Definition
A (simply typed) λ Theory is an equational theory
that describes what a equivalence relation between
λ-terms should ensure.

Γ ` s = t : A Γ, x : A ` u = v : B
Γ ` u [x 7→ s] = v [x 7→ t] : B (subst)

Γ ` s = t : A → B Γ ` u = v : A
Γ ` su = tv : B (app)

Γ, x : A ` t = s : B
Γ ` λ x. t = λ x. s : A → B (abstr)

Γ ` λ x. ts = t [x 7→ s] : B (β)

…rules for product and unit types …

Definition
A (simply typed) λ Theory is an equational theory
that describes what a equivalence relation between
λ-terms should ensure.

Γ ` s = t : A Γ, x : A ` u = v : B
Γ ` u [x 7→ s] = v [x 7→ t] : B (subst)

Γ ` s = t : A → B Γ ` u = v : A
Γ ` su = tv : B (app)

Γ, x : A ` t = s : B
Γ ` λ x. t = λ x. s : A → B (abstr)

Γ ` λ x. ts = t [x 7→ s] : B (β)

…rules for product and unit types …

Definition
A (simply typed) λ Theory is an equational theory
that describes what a equivalence relation between
λ-terms should ensure.

Γ ` s = t : A Γ, x : A ` u = v : B
Γ ` u [x 7→ s] = v [x 7→ t] : B (subst)

Γ ` s = t : A → B Γ ` u = v : A
Γ ` su = tv : B (app)

Γ, x : A ` t = s : B
Γ ` λ x. t = λ x. s : A → B (abstr)

Γ ` λ x. ts = t [x 7→ s] : B (β)

…rules for product and unit types …

Definition
A (simply typed) λ Theory is an equational theory
that describes what a equivalence relation between
λ-terms should ensure.

Γ ` s = t : A Γ, x : A ` u = v : B
Γ ` u [x 7→ s] = v [x 7→ t] : B (subst)

Γ ` s = t : A → B Γ ` u = v : A
Γ ` su = tv : B (app)

Γ, x : A ` t = s : B
Γ ` λ x. t = λ x. s : A → B (abstr)

Γ ` λ x. ts = t [x 7→ s] : B (β)

…rules for product and unit types …

Definition
A (simply typed) λ Theory is an equational theory
that describes what a equivalence relation between
λ-terms should ensure.

Γ ` s = t : A Γ, x : A ` u = v : B
Γ ` u [x 7→ s] = v [x 7→ t] : B (subst)

Γ ` s = t : A → B Γ ` u = v : A
Γ ` su = tv : B (app)

Γ, x : A ` t = s : B
Γ ` λ x. t = λ x. s : A → B (abstr)

Γ ` λ x. ts = t [x 7→ s] : B (β)

…rules for product and unit types …

Part III

Qu’est-ce qui correspond
à quoi ?

(What does correspond to what?)

Fact
The general idea of the correspondence is…

Types ⇐⇒ Objects

(⇐⇒ Propositions)

Terms ⇐⇒ Arrows

(⇐⇒ Proofs)

So demonstrating the existence of a arrow is the
same “moral act” as a constructive proof of a
proposition or inhabiting a type.

Fact
The general idea of the correspondence is…

Types ⇐⇒ Objects (⇐⇒ Propositions)

Terms ⇐⇒ Arrows (⇐⇒ Proofs)

So demonstrating the existence of a arrow is the
same “moral act” as a constructive proof of a
proposition or inhabiting a type.

Fact
The general idea of the correspondence is…

Types ⇐⇒ Objects (⇐⇒ Propositions)

Terms ⇐⇒ Arrows (⇐⇒ Proofs)

So demonstrating the existence of a arrow is the
same “moral act” as a constructive proof of a
proposition or inhabiting a type.

Fact (Intermission)
Any CCC promises the (conditional) existence
following arrows:

1. For any object A, we have ! : A 1

2. For any objects A,B and a sufficient C, we
have χA,B : C A × B.

3. For any A × B we have π1 : A × B A and
π2 : A × B B.

4. For any arrow g : A × B C we have a
corresponding λg : A CB (and vice versa).

5. For any A and BA we have a
evA,B : A × BA B

Fact (Intermission)
Any CCC promises the (conditional) existence
following arrows:

1. For any object A, we have ! : A 1

2. For any objects A,B and a sufficient C, we
have χA,B : C A × B.

3. For any A × B we have π1 : A × B A and
π2 : A × B B.

4. For any arrow g : A × B C we have a
corresponding λg : A CB (and vice versa).

5. For any A and BA we have a
evA,B : A × BA B

Fact (Intermission)
Any CCC promises the (conditional) existence
following arrows:

1. For any object A, we have ! : A 1

2. For any objects A,B and a sufficient C, we
have χA,B : C A × B.

3. For any A × B we have π1 : A × B A and
π2 : A × B B.

4. For any arrow g : A × B C we have a
corresponding λg : A CB (and vice versa).

5. For any A and BA we have a
evA,B : A × BA B

Fact (Intermission)
Any CCC promises the (conditional) existence
following arrows:

1. For any object A, we have ! : A 1

2. For any objects A,B and a sufficient C, we
have χA,B : C A × B.

3. For any A × B we have π1 : A × B A and
π2 : A × B B.

4. For any arrow g : A × B C we have a
corresponding λg : A CB (and vice versa).

5. For any A and BA we have a
evA,B : A × BA B

Fact (Intermission)
Any CCC promises the (conditional) existence
following arrows:

1. For any object A, we have ! : A 1

2. For any objects A,B and a sufficient C, we
have χA,B : C A × B.

3. For any A × B we have π1 : A × B A and
π2 : A × B B.

4. For any arrow g : A × B C we have a
corresponding λg : A CB (and vice versa).

5. For any A and BA we have a
evA,B : A × BA B

Fact (Intermission)
Any CCC promises the (conditional) existence
following arrows:

1. For any object A, we have ! : A 1

2. For any objects A,B and a sufficient C, we
have χA,B : C A × B.

3. For any A × B we have π1 : A × B A and
π2 : A × B B.

4. For any arrow g : A × B C we have a
corresponding λg : A CB (and vice versa).

5. For any A and BA we have a
evA,B : A × BA B

λ-Calculus CCC

Application of terms:

s : A → B, t : A ` st : B

The evaluation arrow:

evA,B : BA × A B

Lambda Abstractions:

` λ x. t : A → B

The global element/point:

λg : 1 BA

…or by deduction theorem

x : A ` t : B

…or by transposition

g : 1× A ∼= A B
With the obvious correspondences between product types and
categorical products (fst ≈ π1, snd ≈ π2, …).

λ-Calculus CCC

Application of terms:

s : A → B, t : A ` st : B

The evaluation arrow:

evA,B : BA × A B

Lambda Abstractions:

` λ x. t : A → B

The global element/point:

λg : 1 BA

…or by deduction theorem

x : A ` t : B

…or by transposition

g : 1× A ∼= A B
With the obvious correspondences between product types and
categorical products (fst ≈ π1, snd ≈ π2, …).

λ-Calculus CCC

Application of terms:

s : A → B, t : A ` st : B

The evaluation arrow:

evA,B : BA × A B

Lambda Abstractions:

` λ x. t : A → B

The global element/point:

λg : 1 BA

…or by deduction theorem

x : A ` t : B

…or by transposition

g : 1× A ∼= A B
With the obvious correspondences between product types and
categorical products (fst ≈ π1, snd ≈ π2, …).

λ-Calculus CCC

Application of terms:

s : A → B, t : A ` st : B

The evaluation arrow:

evA,B : BA × A B

Lambda Abstractions:

` λ x. t : A → B

The global element/point:

λg : 1 BA

…or by deduction theorem

x : A ` t : B

…or by transposition

g : 1× A ∼= A B

With the obvious correspondences between product types and
categorical products (fst ≈ π1, snd ≈ π2, …).

λ-Calculus CCC

Application of terms:

s : A → B, t : A ` st : B

The evaluation arrow:

evA,B : BA × A B

Lambda Abstractions:

` λ x. t : A → B

The global element/point:

λg : 1 BA

…or by deduction theorem

x : A ` t : B

…or by transposition

g : 1× A ∼= A B
With the obvious correspondences between product types and
categorical products (fst ≈ π1, snd ≈ π2, …).

We can inhabit type

(A → B)× ((A → B) → C) → A → B × C

by the term

λ p. λ a. ((fst p)a, (snd p)(fst p))

Proof.
Obvious, duh.

We can inhabit type

(A → B)× ((A → B) → C) → A → B × C

by the term

λ p. λ a. ((fst p)a, (snd p)(fst p))

Proof.
Obvious, duh.

We can prove the intuitionistic proposition is
satisfiable

(A → B) ∧ ((A → B) → C) → A → B ∧ C

Proof.
… by constructing the proof tree
(A → B) ∧ ((A → B) → C)

A → B (∧E1) A
B

(A → B) ∧ ((A → B) → C)

(A → B) → C (∧E2)
(A → B) ∧ ((A → B) → C)

A → B (∧E1)

C
B ∧ C

A → B ∧ C (→I)

(A → B) ∧ ((A → B) → C) → A → B ∧ C (→I)

We can demonstrate that the following arrow exists

1 (B × C)ABA×CBA

Proof.
… as it is the transpose of

A × BA × CBA
(B × C)

f

that in turn is given by

f :=
⟨
evA,B ◦ 〈π2, π1〉 , evBA,C ◦ 〈π3, π2〉

⟩

We can demonstrate that the following arrow exists

1 (B × C)ABA×CBA
λλf

Proof.
… as it is the transpose of

A × BA × CBA
(B × C)

f

that in turn is given by

f :=
⟨
evA,B ◦ 〈π2, π1〉 , evBA,C ◦ 〈π3, π2〉

⟩

We can demonstrate that the following arrow exists

1 (B × C)ABA×CBA
λλf

Proof.
… as it is the transpose of

A × BA × CBA
(B × C)

f

that in turn is given by

f :=
⟨
evA,B ◦ 〈π2, π1〉 , evBA,C ◦ 〈π3, π2〉

⟩

Counter-Example: We can intuit that the we can’t
satisfy ` (A → B) → (B → A).

Proof

“by exhaustion”

.

⇝ 1 (AB)
BAf

AB BAλf

A × AB Bλλf

doesn’t leave us with any means to construct arrow
in an arbitrary CCC (recall the “Intermission”).

Counter-Example: We can intuit that the we can’t
satisfy ` (A → B) → (B → A).

Proof

“by exhaustion”

.

⇝ 1 (AB)
BAf

AB BAλf

A × AB Bλλf

doesn’t leave us with any means to construct arrow
in an arbitrary CCC (recall the “Intermission”).

Counter-Example: We can intuit that the we can’t
satisfy ` (A → B) → (B → A).

Proof

“by exhaustion”

.

⇝ 1 (AB)
BAf

AB BAλf

A × AB Bλλf

doesn’t leave us with any means to construct arrow
in an arbitrary CCC (recall the “Intermission”).

Counter-Example: We can intuit that the we can’t
satisfy ` (A → B) → (B → A).

Proof

“by exhaustion”

.

⇝ 1 (AB)
BAf

AB BAλf

A × AB Bλλf

doesn’t leave us with any means to construct arrow
in an arbitrary CCC (recall the “Intermission”).

Counter-Example: We can intuit that the we can’t
satisfy ` (A → B) → (B → A).

Proof “by exhaustion”.

⇝ 1 (AB)
BAf

AB BAλf

A × AB Bλλf

doesn’t leave us with any means to construct arrow
in an arbitrary CCC (recall the “Intermission”).

Essentially we are giving a categorical interpretation
of λ terms:

JA × BK = JAK × JBKJA → BK = JBKJAKJa : AK = 1 JAKJΓ ` t : BK = JΓK Jt : BK
...

To ensure that the interpretation is sound and
complete we need to prove that the rules of the λ
theory T coincide with arrow-equality.

Essentially we are giving a categorical interpretation
of λ terms:

JA × BK = JAK × JBKJA → BK = JBKJAKJa : AK = 1 JAKJΓ ` t : BK = JΓK Jt : BK
...

To ensure that the interpretation is sound and
complete we need to prove that the rules of the λ
theory T coincide with arrow-equality.

Definition
We say that λ-Calculus is the internal language of
Cartesian Closed Categories.

Part IV

Pour aller plus loin
(To go further)

Fact
The more “structure” a category has, the more
interesting the internal logic†:

▶ A topos (more on that in a moment)
corresponds to finitist, intuitionistic
higher-order logic

▶ A boolean topos (ie. with well-behaved
complements) corresponds to classical
higher-order logic

▶ A symmetric monoidal category (generalisation
of CCC) corresponds to linear logic

†See https://ncatlab.org/nlab/show/internal+logic

https://ncatlab.org/nlab/show/internal+logic

Fact
The more “structure” a category has, the more
interesting the internal logic†:
▶ A topos (more on that in a moment)

corresponds to finitist, intuitionistic
higher-order logic

▶ A boolean topos (ie. with well-behaved
complements) corresponds to classical
higher-order logic

▶ A symmetric monoidal category (generalisation
of CCC) corresponds to linear logic

†See https://ncatlab.org/nlab/show/internal+logic

https://ncatlab.org/nlab/show/internal+logic

Fact
The more “structure” a category has, the more
interesting the internal logic†:
▶ A topos (more on that in a moment)

corresponds to finitist, intuitionistic
higher-order logic

▶ A boolean topos (ie. with well-behaved
complements) corresponds to classical
higher-order logic

▶ A symmetric monoidal category (generalisation
of CCC) corresponds to linear logic

†See https://ncatlab.org/nlab/show/internal+logic

https://ncatlab.org/nlab/show/internal+logic

Fact
The more “structure” a category has, the more
interesting the internal logic†:
▶ A topos (more on that in a moment)

corresponds to finitist, intuitionistic
higher-order logic

▶ A boolean topos (ie. with well-behaved
complements) corresponds to classical
higher-order logic

▶ A symmetric monoidal category (generalisation
of CCC) corresponds to linear logic

†See https://ncatlab.org/nlab/show/internal+logic

https://ncatlab.org/nlab/show/internal+logic

Definition
A (elementary) topos E is a category is a CCC with
“all finite limits” and a subobject classifier Ω.

Fact
The internal language of a topos allows us to reason
pointwise about (sub-)objects and even use
set-notation:

{ a : A | ϕ(a) → ¬ψ(a, a) } : ΩA

But going into this in detail would be too
technical… Come back again to my master’s
presentation next month.

Definition
A (elementary) topos E is a category is a CCC with
“all finite limits” and a subobject classifier Ω.

Fact
The internal language of a topos allows us to reason
pointwise about (sub-)objects and even use
set-notation:

{ a : A | ϕ(a) → ¬ψ(a, a) } : ΩA

But going into this in detail would be too
technical… Come back again to my master’s
presentation next month.

Definition
A (elementary) topos E is a category is a CCC with
“all finite limits” and a subobject classifier Ω.

Fact
The internal language of a topos allows us to reason
pointwise about (sub-)objects and even use
set-notation:

{ a : A | ϕ(a) → ¬ψ(a, a) } : ΩA

But going into this in detail would be too
technical…

Come back again to my master’s
presentation next month.

Definition
A (elementary) topos E is a category is a CCC with
“all finite limits” and a subobject classifier Ω.

Fact
The internal language of a topos allows us to reason
pointwise about (sub-)objects and even use
set-notation:

{ a : A | ϕ(a) → ¬ψ(a, a) } : ΩA

But going into this in detail would be too
technical… Come back again to my master’s
presentation next month.

Further Reading and Sources I
Recommended Reading on Category Theory
▶ https://arxiv.org/pdf/1612.09375

▶ Book “Categories for the working mathematician” (Mac
Lane)

▶ Book “ Basic Category Theory for Computer Scientists”
(Pierce)

▶ https://web.archive.org/web/20230301160845/
https://people.math.harvard.edu/~mazur/
preprints/when_is_one.pdf

Recommended Reading on Categorical Logic
▶ https://awodey.github.io/catlog/notes/ (WIP)

https://arxiv.org/pdf/1612.09375
https://web.archive.org/web/20230301160845/https://people.math.harvard.edu/~mazur/preprints/when_is_one.pdf
https://web.archive.org/web/20230301160845/https://people.math.harvard.edu/~mazur/preprints/when_is_one.pdf
https://web.archive.org/web/20230301160845/https://people.math.harvard.edu/~mazur/preprints/when_is_one.pdf
https://awodey.github.io/catlog/notes/

Further Reading and Sources II
▶ https://plato.stanford.edu/entries/

lambda-calculus/#LThe

▶ https://golem.ph.utexas.edu/category/2006/08/
cartesian_closed_categories_an_1.html

▶ Book “Introduction to Higher Order Categorical Logic”
(Lambek)

▶ Book “The Lambda Calculus, its Syntax and Semantics”
(Barendregt)

▶ Book “Topoi: The Categorial Analysis of Logic”
(Goldblatt)

Related and more complicated concepts

https://plato.stanford.edu/entries/lambda-calculus/#LThe
https://plato.stanford.edu/entries/lambda-calculus/#LThe
https://golem.ph.utexas.edu/category/2006/08/cartesian_closed_categories_an_1.html
https://golem.ph.utexas.edu/category/2006/08/cartesian_closed_categories_an_1.html

Further Reading and Sources III
▶ https:

//math.ucr.edu/home/baez/rosetta.pdf#page=66

▶ Book “Elementary Categories, Elementary Toposes”
(McLarty)

▶ Book “Sketches of an Elephant” (Johnstone)
▶ Book “Sheaves and Geometry in Logic” (Mac Lane)
▶ Book “Handbook of Categorical Algebra” (Borceux),

specifically Volume 3

https://math.ucr.edu/home/baez/rosetta.pdf#page=66
https://math.ucr.edu/home/baez/rosetta.pdf#page=66

A possible first step in the research pro-
gram is 1700 doctoral theses called “A
Correspondence between x and Church’s �-
notation.”.

— A popular joke

	Introduction to Category Theory
	The Definition of a Category
	Selected Universal Properties of Constructions

	 Equational Theories and -Theories
	 frenchQu'est-ce qui correspond à quoi? (What does correspond to what?)
	 frenchPour aller plus loin (To go further)

