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Abstract
Goal: We want to extend the Logic-Language correspondance

by Categories:

Simply-Typed
λ-Calculus

Minimal Intu-
itionistic Logic

Cartesian Closed
Categories

Each edge represents a “moment” of the essence of
computation?
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Part I

Yet Another Introduction to
Category Theory



Section 1

The Definition of a Category



Set-theoretic
functions Posets Monoids

Functions “connect” Sets N B
isPrime

is0
even

Every set has an “identity function”

N B
isPrime

is0
even

idN idB

Functions can be composed (associativley)

R N B
fifthDecimal

round
const0

isPrime

is0
even



Set-theoretic
functions Posets Monoids

Functions “connect” Sets N B
isPrime

is0
even

Every set has an “identity function”

N B
isPrime

is0
even

idN idB

Functions can be composed (associativley)

R N B
fifthDecimal

round
const0

isPrime

is0
even



Set-theoretic
functions Posets Monoids

Functions “connect” Sets N B
isPrime

is0
even

Every set has an “identity function”

N B
isPrime

is0
even

idN idB

Functions can be composed (associativley)

R N B
fifthDecimal

round
const0

isPrime

is0
even



Set-theoretic
functions Posets Monoids

A relation “connect” elements
{a, b} ⊆ {a, b, c}

The relation is reflexive
{a, b} ⊆ {a, b}

The relation is transitive
{a} ⊆ {a, b} ⊆ {a, b, c} and
{a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}

grants
{a} ⊆ {a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}



Set-theoretic
functions Posets Monoids

A relation “connect” elements
{a, b} ⊆ {a, b, c}

The relation is reflexive
{a, b} ⊆ {a, b}

The relation is transitive
{a} ⊆ {a, b} ⊆ {a, b, c} and
{a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}

grants
{a} ⊆ {a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}



Set-theoretic
functions Posets Monoids

A relation “connect” elements
{a, b} ⊆ {a, b, c}

The relation is reflexive
{a, b} ⊆ {a, b}

The relation is transitive
{a} ⊆ {a, b} ⊆ {a, b, c} and
{a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}

grants
{a} ⊆ {a, b} ⊆ {a, b, c} ⊆ {a, b, c, d}



Set-theoretic
functions Posets Monoids

Elements of a monoid (e.g. (N,+, 0)) “connect”

• •
3

10
1

There is a unique neutral “arrow” • •0

All “arrows” are associative

• • • • •3

5

11

2
3

8

1

6

5



Set-theoretic
functions Posets Monoids

Elements of a monoid (e.g. (N,+, 0)) “connect”

• •
3

10
1

There is a unique neutral “arrow” • •0

All “arrows” are associative

• • • • •3

5

11

2
3

8

1

6

5



Set-theoretic
functions Posets Monoids

Elements of a monoid (e.g. (N,+, 0)) “connect”

• •
3

10
1

There is a unique neutral “arrow” • •0

All “arrows” are associative

• • • • •3

5

11

2
3

8

1

6

5



Definition (Category)
A category C is a

collection of objects
A,B ∈ Ob (C ) and arrows HomC (A,B) that
associate objects. For A,B,C ∈ Ob (C ),
categories must satisfy the properties:

idA : A A (neutral)

f : A B g : B C
g ◦ f : A C (comp)

s.t. idB ◦ f = f = f ◦ idA.
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Example (Category of Functions “Sets”)

Ob (Sets) := all sets,

HomSets (A,B) := all functions from A to B.

This is a canonical example of a category. Many
other examples restrict Sets to specific objects and
functions (FinSet, Top, Gra, Grp) or generalise it
(Rel, Par).
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Example (Category of a Poset (X,v))

Ob ((X,v)) := X,

Hom(X,v) (A,B) :=
{
{∗} if A < B
{} otherwise ,

for A,B ∈ X.

This example illustrates that arrows are not always
function-ish.
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This example emphasises the “monoidal” nature of
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Fact (Fun)

Category theory allows us to
recognise different settings
where objects relate (via
arrows) to one another in

analogous ways.
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Fact (Fun, continued)

Of particular interest are
constructions that are

identified by a unique arrow.



Category Sets
For any A, there
exists exactly one

function

h : A → {∗}
a 7→ ∗

Poset (X,v)
(If there is a top
element,) for any
A ∈ X, we know

that

A v >

must hold. Hence,

Hom (A,>) = {∗}.

Monoid (M, ·, e)
There is only one
object, but not
only one arrow

(Hom (∗, ∗) = M).

Definition
A category C with a terminal object 1 ∈ Ob (C ) has exactly
one arrow

! : A T, |HomC (A,T) | = 1

for every other object A ∈ Ob (C ).
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sets has two projections

π1 : A × B → A
(a, b) 7→ a

π2 : A × B → B
(a, b) 7→ b

Poset (X,v)
For the meet A u B we

know that

A u B v A and
A u B v B

must hold.

Definition (Preliminary?)
A product “A × B” of two objects A,B ∈ Ob (C )
has two arrows A × B A and A × B B.
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Example (In Sets (I))
Why is X × (Y × Z) not the product of X and Z?

We can define

τ1 = π1
τ2 = π2 ◦ π2

But there is a unique

h(x, y, z) = (x, z),

while there need not be a g : X × Z X × Y × Z
— let alone unique! X × Z is a more sufficient fit
than X × Y × Z.
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We can define
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and a unique h−1 : X × Z Z × X as

(x, z) 7→ (z, x).

Both are equally well fit and are mutually
correspond to one another.
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Fact (…up to isomorphism)
When thinking categorically and considering
the relations of objects over the contents of
the objects, we handle objects within a
equivalence class of “isomorphisms”.

A B

Cf

∼=

g



Definition
Given C with all products −× Y,

an exponential
object ZY is such that for any g : X × Y Z, there
is a unique transpose (sometimes “adjoint”)
λg : X ZY

X X × Y

ZY ZY × Y Z

λg λg×idY
g

evY,Z

Example
In Sets BA is represents all functions from A to B.
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Do you recognise this from
somewhere?
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Fact
We can construct a category H of a Heyting
Algebra analogously to the category of a poset.

Example
The exponential object in Heyting Algebra following
from the above, corresponds to the well-known
definition of implication:

a u b v c ⇐⇒ a v bc
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Definition
A Cartesian Closed Category has…

▶ A terminal object 1,
▶ All products A × B,
▶ All exponentials BA.

Example
Categories that satisfy these properties include Sets,
categories of Heyting Algebras.

Now what does all of this have to do with the
λ-Calculus or (positive/minimal) intuitionist logic?
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Before continuing; What we have omitted?
▶ Duality,

▶ Isomorphisms,
▶ Mono- and Epimorphisms,
▶ Limits,
▶ Initial Objects, Pushouts, Pullbacks,

(Co-)Equalisers,
▶ Functors,
▶ Natural Transformations,
▶ Adjunctions, units, counits,
▶ Yoneda Lemma, Embeddings, representable

objects,
▶ Kan Extensions,
▶ Twisted Generalized Cohomology in Linear Homotopy

Type Theory, …
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Part II

Equational Theories and
λ-Theories



Definition
Equational Theories presents the rules of a formal
system with equality as the primary predicate.

For example, we expect the following to hold for a
equivalence relation:

A = A (refl)

B = A
A = B (sym)

A = B B = C
A = C (trans)
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Definition
A (simply typed) λ Theory is an equational theory
that describes what a equivalence relation between
λ-terms should ensure.
We write

Γ ` s = t : A
to state that s : A and t : A are equal in the same
context Γ.

Γ ` s = t : A Γ, x : A ` u = v : B
Γ ` u [x 7→ s] = v [x 7→ t] : B (subst)

Γ ` s = t : A → B Γ ` u = v : A
Γ ` su = tv : B (app)

Γ, x : A ` t = s : B
Γ ` λ x. t = λ x. s : A → B (abstr)

Γ ` λ x. ts = t [x 7→ s] : B (β)

…rules for product and unit types …
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Part III

Qu’est-ce qui correspond
à quoi ?

(What does correspond to what?)



Fact
The general idea of the correspondence is…

Types ⇐⇒ Objects

( ⇐⇒ Propositions)

Terms ⇐⇒ Arrows

( ⇐⇒ Proofs)

So demonstrating the existence of a arrow is the
same “moral act” as a constructive proof of a
proposition or inhabiting a type.
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Fact (Intermission)
Any CCC promises the (conditional) existence
following arrows:

1. For any object A, we have ! : A 1

2. For any objects A,B and a sufficient C, we
have χA,B : C A × B.

3. For any A × B we have π1 : A × B A and
π2 : A × B B.

4. For any arrow g : A × B C we have a
corresponding λg : A CB (and vice versa).

5. For any A and BA we have a
evA,B : A × BA B
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λ-Calculus CCC

Application of terms:

s : A → B, t : A ` st : B

The evaluation arrow:

evA,B : BA × A B

Lambda Abstractions:

` λ x. t : A → B

The global element/point:

λg : 1 BA

…or by deduction theorem

x : A ` t : B

…or by transposition

g : 1× A ∼= A B
With the obvious correspondences between product types and
categorical products (fst ≈ π1, snd ≈ π2, …).
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We can inhabit type

(A → B)× ((A → B) → C) → A → B × C

by the term

λ p. λ a. ((fst p)a, (snd p)(fst p))

Proof.
Obvious, duh.
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Obvious, duh.



We can prove the intuitionistic proposition is
satisfiable

(A → B) ∧ ((A → B) → C) → A → B ∧ C

Proof.
… by constructing the proof tree
(A → B) ∧ ((A → B) → C)

A → B (∧E1) A
B

(A → B) ∧ ((A → B) → C)

(A → B) → C (∧E2)
(A → B) ∧ ((A → B) → C)

A → B (∧E1)

C
B ∧ C

A → B ∧ C (→I)

(A → B) ∧ ((A → B) → C) → A → B ∧ C (→I)



We can demonstrate that the following arrow exists

1 (B × C)ABA×CBA

Proof.
… as it is the transpose of

A × BA × CBA
(B × C)

f

that in turn is given by

f :=
⟨
evA,B ◦ 〈π2, π1〉 , evBA,C ◦ 〈π3, π2〉

⟩
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Counter-Example: We can intuit that the we can’t
satisfy ` (A → B) → (B → A).

Proof

“by exhaustion”

.

⇝ 1 (AB)
BAf

AB BAλf

A × AB Bλλf

doesn’t leave us with any means to construct arrow
in an arbitrary CCC (recall the “Intermission”).
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Essentially we are giving a categorical interpretation
of λ terms:

JA × BK = JAK × JBKJA → BK = JBKJAKJa : AK = 1 JAKJΓ ` t : BK = JΓK Jt : BK
...

To ensure that the interpretation is sound and
complete we need to prove that the rules of the λ
theory T coincide with arrow-equality.



Essentially we are giving a categorical interpretation
of λ terms:

JA × BK = JAK × JBKJA → BK = JBKJAKJa : AK = 1 JAKJΓ ` t : BK = JΓK Jt : BK
...

To ensure that the interpretation is sound and
complete we need to prove that the rules of the λ
theory T coincide with arrow-equality.



Definition
We say that λ-Calculus is the internal language of
Cartesian Closed Categories.



Part IV

Pour aller plus loin
(To go further)



Fact
The more “structure” a category has, the more
interesting the internal logic†:

▶ A topos (more on that in a moment)
corresponds to finitist, intuitionistic
higher-order logic

▶ A boolean topos (ie. with well-behaved
complements) corresponds to classical
higher-order logic

▶ A symmetric monoidal category (generalisation
of CCC) corresponds to linear logic

†See https://ncatlab.org/nlab/show/internal+logic

https://ncatlab.org/nlab/show/internal+logic
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Definition
A (elementary) topos E is a category is a CCC with
“all finite limits” and a subobject classifier Ω.

Fact
The internal language of a topos allows us to reason
pointwise about (sub-)objects and even use
set-notation:

{ a : A | ϕ(a) → ¬ψ(a, a) } : ΩA

But going into this in detail would be too
technical… Come back again to my master’s
presentation next month.
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Further Reading and Sources I
Recommended Reading on Category Theory
▶ https://arxiv.org/pdf/1612.09375

▶ Book “Categories for the working mathematician” (Mac
Lane)

▶ Book “ Basic Category Theory for Computer Scientists”
(Pierce)

▶ https://web.archive.org/web/20230301160845/
https://people.math.harvard.edu/~mazur/
preprints/when_is_one.pdf

Recommended Reading on Categorical Logic
▶ https://awodey.github.io/catlog/notes/ (WIP)

https://arxiv.org/pdf/1612.09375
https://web.archive.org/web/20230301160845/https://people.math.harvard.edu/~mazur/preprints/when_is_one.pdf
https://web.archive.org/web/20230301160845/https://people.math.harvard.edu/~mazur/preprints/when_is_one.pdf
https://web.archive.org/web/20230301160845/https://people.math.harvard.edu/~mazur/preprints/when_is_one.pdf
https://awodey.github.io/catlog/notes/


Further Reading and Sources II
▶ https://plato.stanford.edu/entries/

lambda-calculus/#LThe

▶ https://golem.ph.utexas.edu/category/2006/08/
cartesian_closed_categories_an_1.html

▶ Book “Introduction to Higher Order Categorical Logic”
(Lambek)

▶ Book “The Lambda Calculus, its Syntax and Semantics”
(Barendregt)

▶ Book “Topoi: The Categorial Analysis of Logic”
(Goldblatt)

Related and more complicated concepts

https://plato.stanford.edu/entries/lambda-calculus/#LThe
https://plato.stanford.edu/entries/lambda-calculus/#LThe
https://golem.ph.utexas.edu/category/2006/08/cartesian_closed_categories_an_1.html
https://golem.ph.utexas.edu/category/2006/08/cartesian_closed_categories_an_1.html


Further Reading and Sources III
▶ https:

//math.ucr.edu/home/baez/rosetta.pdf#page=66

▶ Book “Elementary Categories, Elementary Toposes”
(McLarty)

▶ Book “Sketches of an Elephant” (Johnstone)
▶ Book “Sheaves and Geometry in Logic” (Mac Lane)
▶ Book “Handbook of Categorical Algebra” (Borceux),

specifically Volume 3

https://math.ucr.edu/home/baez/rosetta.pdf#page=66
https://math.ucr.edu/home/baez/rosetta.pdf#page=66


A possible first step in the research pro-
gram is 1700 doctoral theses called “A
Correspondence between x and Church’s �-
notation.”.

— A popular joke
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