An Exordium on Computational Trinitarianism *

Curry-Howard-Lambek Correspondence

As revealed by KALUĐERČIĆ, Philip; *Questions or Complaints?* Mail philip.kaludercic *at* fau.de.

2024-12-19, last typeset December 19, 2024, 19:20

^{*} Available on the WWW: https://wwwcip.cs.fau.de/~oj14ozun/src+etc/chl.pdf

Abstract

Goal: We want to extend the *Logic-Language* correspondance by *Categories*:

Abstract

Goal: We want to extend the *Logic-Language* correspondance by *Categories*:

Each edge represents a "moment" of the essence of computation?

Part I

Yet Another Introduction to Category Theory

Section 1

The Definition of a Category

Functions "connect" Sets \mathbb{N}

Set-theoretic functions A relation "connect" elements

$$\{a,b\} \subseteq \{a,b,c\}$$

Monoids

A relation "connect" elements

$$\{a,b\} \subseteq \{a,b,c\}$$

The relation is reflexive

$$\{a,b\} \subseteq \{a,b\}$$

A relation "connect" elements

$$\{a, b\} \subseteq \{a, b, c\}$$

The relation is reflexive

$$\{a, b\} \subseteq \{a, b\}$$

The relation is transitive

$$\{a\} \subseteq \{a, b\} \subseteq \{a, b, c\} \text{ and}$$
$$\{a, b\} \subseteq \{a, b, c\} \subseteq \{a, b, c, d\}$$
grants

 $\{a\} \subseteq \{a, b\} \subseteq \{a, b, c\} \subseteq \{a, b, c, d\}$

Elements of a monoid (e.g. $(\mathbb{N}, +, 0)$) "connect"

Elements of a monoid (e.g. $(\mathbb{N}, +, 0)$) "connect"

There is a unique neutral "arrow" $\bullet \xrightarrow{0} \bullet$

Elements of a monoid (e.g. $(\mathbb{N}, +, 0)$) "connect"

There is a unique neutral "arrow" $\bullet \xrightarrow{0} \bullet$ All "arrows" are associative

A category ${\mathscr C}$ is a

A category \mathscr{C} is a collection of objects $A, B \in \mathsf{Ob}\,(\mathscr{C})$

A category \mathscr{C} is a collection of objects $A, B \in \mathsf{Ob}(\mathscr{C})$ and arrows $\operatorname{Hom}_{\mathscr{C}}(A, B)$ that associate objects.

A category \mathscr{C} is a collection of objects $A, B \in \mathsf{Ob}(\mathscr{C})$ and arrows $\operatorname{Hom}_{\mathscr{C}}(A, B)$ that associate objects. For $A, B, C \in \mathsf{Ob}(\mathscr{C})$, categories must satisfy the properties:

$$\overline{\mathrm{id}_A\colon A \longrightarrow A} \ (\mathsf{neutral})$$

A category \mathscr{C} is a collection of objects $A, B \in \mathsf{Ob}(\mathscr{C})$ and arrows $\operatorname{Hom}_{\mathscr{C}}(A, B)$ that associate objects. For $A, B, C \in \mathsf{Ob}(\mathscr{C})$, categories must satisfy the properties:

$$\overline{\mathrm{id}_A\colon A\to A} \ (\mathsf{neutral})$$

 $f: A \longrightarrow B$

A category \mathscr{C} is a collection of objects $A, B \in \mathsf{Ob}(\mathscr{C})$ and arrows $\operatorname{Hom}_{\mathscr{C}}(A, B)$ that associate objects. For $A, B, C \in \mathsf{Ob}(\mathscr{C})$, categories must satisfy the properties:

$$\overline{\mathrm{id}_A\colon A \longrightarrow A} \ (\mathsf{neutral})$$

 $f: A \longrightarrow B \qquad g: B \longrightarrow C$

A category \mathscr{C} is a collection of objects $A, B \in \mathsf{Ob}(\mathscr{C})$ and arrows $\operatorname{Hom}_{\mathscr{C}}(A, B)$ that associate objects. For $A, B, C \in \mathsf{Ob}(\mathscr{C})$, categories must satisfy the properties:

$$\overline{\mathrm{id}_A\colon A \longrightarrow A} \ (\mathsf{neutral})$$

$$\frac{f: A \longrightarrow B \quad g: B \longrightarrow C}{g \circ f: A \longrightarrow C} \ (\mathsf{comp})$$

A category \mathscr{C} is a collection of objects $A, B \in \mathsf{Ob}(\mathscr{C})$ and arrows $\operatorname{Hom}_{\mathscr{C}}(A, B)$ that associate objects. For $A, B, C \in \mathsf{Ob}(\mathscr{C})$, categories must satisfy the properties:

$$\frac{1}{\mathrm{id}_A \colon A \longrightarrow A} \; (\mathsf{neutral})$$

$$\begin{array}{ccc} \underline{f: \ A \longrightarrow B} & g: \ B \longrightarrow C \\ \hline g \circ f: \ A \longrightarrow C \end{array} (\mathsf{comp}) \\ \mathsf{s.t.} \ \mathrm{id}_B \circ f = f = f \circ \mathrm{id}_A. \end{array}$$

 $\mathsf{Ob}(\mathbf{Sets}) \coloneqq \mathsf{all sets},$

 $\mathsf{Ob}(\mathbf{Sets}) \coloneqq \mathsf{all sets},$

Hom_{Sets} $(A, B) \coloneqq$ all functions from A to B.

 $\mathsf{Ob}(\mathbf{Sets}) \coloneqq \mathsf{all sets},$

Hom_{Sets} $(A, B) \coloneqq$ all functions from A to B.

This is a canonical example of a category. Many other examples restrict **Sets** to specific objects and functions (**FinSet**, **Top**, **Gra**, **Grp**) or generalise it (**Rel**, **Par**).

 $\mathsf{Ob}\left((X,\sqsubseteq)\right)\coloneqq X,$

$$\begin{split} \mathsf{Ob}\,((X,\sqsubseteq)) &\coloneqq X,\\ \mathrm{Hom}_{(X,\sqsubseteq)}\,(A,B) &\coloneqq \begin{cases} \{*\} & \text{if } A \sqsubset B\\ \{\} & \text{otherwise} \end{cases},\\ \end{split}$$
 for $A,B \in X. \end{split}$

$$\begin{aligned} & \operatorname{Ob}\left((X,\sqsubseteq)\right)\coloneqq X, \\ & \operatorname{Hom}_{(X,\sqsubseteq)}\left(A,B\right)\coloneqq \begin{cases} \{*\} & \text{if } A\sqsubset B \\ \{\} & \text{otherwise} \end{cases}, \\ & \text{for } A,B\in X. \end{aligned}$$

This example illustrates that arrows are not always function-*ish*.

$$\mathsf{Ob}\left(\mathbf{Sets}
ight)\coloneqq\{*\},$$

$$\mathsf{Ob}\left(\mathbf{Sets}
ight)\coloneqq\{*\},$$

$$\operatorname{Hom}_{\operatorname{Sets}}(*,*) \coloneqq M.$$

$$\mathsf{Ob}\left(\mathbf{Sets}
ight)\coloneqq\{*\},$$

$$\operatorname{Hom}_{\operatorname{\mathbf{Sets}}}(*,*) \coloneqq M.$$

This example emphasises the "monoidal" nature of categories.

Section 2

Selected Universal Properties of Constructions

Fact (Fun)

Category theory allows us to recognise different settings where objects relate (via arrows) to one another in analogous ways.
Fact (Fun)

Category theory allows us to recognise different settings where objects relate (via arrows) to one another in analogous ways.

Fact (Fun, continued)

Of particular interest are constructions that are identified by a unique arrow.

$$h\colon A \to \{*\}$$
$$a \mapsto *$$

 $h\colon A \to \{*\}$ $a \mapsto *$

Poset (X, \sqsubseteq) (If there is a top element,) for any $A \in X$, we know that

 $A \sqsubseteq \top$

must hold. Hence,

 $\operatorname{Hom}\left(A,\top\right)=\{*\}.$

 $h\colon A \to \{*\}$ $a \mapsto *$

Poset (X, \sqsubseteq) (If there is a top element,) for any $A \in X$, we know that Monoid (M, \cdot, e) There is only one object, but not only one arrow (Hom (*, *) = M).

must hold. Hence,

 $A \sqsubset \top$

 $\operatorname{Hom}\left(A,\top\right)=\{*\}.$

 $h\colon A \to \{*\}$ $a \mapsto *$

Poset (X, \sqsubseteq) (If there is a top element,) for any $A \in X$, we know that Monoid (M, \cdot, e) There is only one object, but not only one arrow (Hom (*, *) = M).

must hold. Hence,

 $A \sqsubset \top$

 $\operatorname{Hom}\left(A,\top\right)=\{*\}.$

Definition

A category $\mathscr C$ with a terminal object $1\in {\rm Ob}\,(\mathscr C)$ has exactly one arrow

 $!: A \longrightarrow T, \qquad |\operatorname{Hom}_{\mathscr{C}}(A, T)| = 1$

for every other object $A \in \mathsf{Ob}(\mathscr{C})$.

$$\pi_1 \colon A \times B \to A$$
$$(a, b) \mapsto a$$
$$\pi_2 \colon A \times B \to B$$
$$(a, b) \mapsto b$$

$$\pi_1 \colon A \times B \to A$$
$$(a, b) \mapsto a$$
$$\pi_2 \colon A \times B \to B$$
$$(a, b) \mapsto b$$

Poset
$$(X, \sqsubseteq)$$

$$\pi_1 \colon A \times B \to A$$
$$(a, b) \mapsto a$$
$$\pi_2 \colon A \times B \to B$$
$$(a, b) \mapsto b$$

Poset (X, \sqsubseteq) For the meet $A \sqcap B$ we know that

 $A \sqcap B \sqsubseteq A \quad \text{and} \\ A \sqcap B \sqsubseteq B$

must hold.

 $\pi_1 \colon A \times B \to A$ $(a, b) \mapsto a$ $\pi_2 \colon A \times B \to B$ $(a, b) \mapsto b$

Poset (X, \sqsubseteq) For the meet $A \sqcap B$ we know that

 $A \sqcap B \sqsubseteq A \quad \text{and} \\ A \sqcap B \sqsubseteq B$

must hold.

Definition (Preliminary?)

A product " $A \times B$ " of two objects $A, B \in \mathsf{Ob}(\mathscr{C})$ has two arrows $A \times B \longrightarrow A$ and $A \times B \longrightarrow B$.

The product " $A \times B$ " of two objects $A, B \in Ob(\mathscr{C})$ has two arrows $\pi_1 \colon A \times B \longrightarrow A$ and $\pi_2 \colon A \times B \longrightarrow B$,

The product " $A \times B$ " of two objects $A, B \in Ob(\mathscr{C})$ has two arrows $\pi_1 \colon A \times B \longrightarrow A$ and $\pi_2 \colon A \times B \longrightarrow B$, such that for any other object $C \in Ob(\mathscr{C})$ with $\tau_1 \colon C \longrightarrow A$ and $\tau_2 \colon C \longrightarrow B$,

The product " $A \times B$ " of two objects $A, B \in Ob(\mathscr{C})$ has two arrows $\pi_1 \colon A \times B \longrightarrow A$ and $\pi_2 \colon A \times B \longrightarrow B$, such that for any other object $C \in Ob(\mathscr{C})$ with $\tau_1 \colon C \longrightarrow A$ and $\tau_2 \colon C \longrightarrow B$,

Why is $X \times (Y \times Z)$ not the product of X and Z?

Why is $X \times (Y \times Z)$ not the product of X and Z? We can define

$$\tau_1 = \pi_1$$

$$\tau_2 = \pi_2 \circ \pi_2$$

Why is $X \times (Y \times Z)$ not the product of X and Z? We can define

 $\tau_1 = \pi_1$ $\tau_2 = \pi_2 \circ \pi_2$

But there is a unique

$$h(x, y, z) = (x, z),$$

while there need not be a $g: X \times Z \longrightarrow X \times Y \times Z$

Why is $X \times (Y \times Z)$ not the product of X and Z? We can define

 $\tau_1 = \pi_1$ $\tau_2 = \pi_2 \circ \pi_2$

But there is a unique

$$h(x, y, z) = (x, z),$$

while there need not be a $g: X \times Z \longrightarrow X \times Y \times Z$ — let alone unique!

Why is $X \times (Y \times Z)$ not the product of X and Z? We can define

 $\tau_1 = \pi_1$ $\tau_2 = \pi_2 \circ \pi_2$

But there is a unique

$$h(x, y, z) = (x, z),$$

while there need not be a $g: X \times Z \longrightarrow X \times Y \times Z$ — let alone unique! $X \times Z$ is a more sufficient fit than $X \times Y \times Z$.

Is $Z \times X$ a product of X and Z?

Is $Z \times X$ a product of X and Z? We can define

 $\tau_1 = \pi_2 \qquad \tau_2 = \pi_1$

Is $Z \times X$ a product of X and Z? We can define

$$\tau_1 = \pi_2 \qquad \tau_2 = \pi_1$$

There is both a unique $h: Z \times X \longrightarrow X \times Z$ as

$$(z, x) \mapsto (x, z)$$

and a unique $h^{-1} \colon X \times Z \longrightarrow Z \times X$ as

$$(x, z) \mapsto (z, x).$$

Is $Z \times X$ a product of X and Z? We can define

$$\tau_1 = \pi_2 \qquad \tau_2 = \pi_1$$

There is both a unique $h: Z \times X \longrightarrow X \times Z$ as

$$(z, x) \mapsto (x, z)$$

and a unique $h^{-1} \colon X \times Z \longrightarrow Z \times X$ as

$$(x,z)\mapsto(z,x).$$

Both are equally well fit and are mutually correspond to one another.

Fact (...up to isomorphism)

When thinking categorically and considering the relations of objects over the contents of the objects, we handle objects within a equivalence class of "isomorphisms".

Given ${\mathscr C}$ with all products $- \times Y$,

Given \mathscr{C} with all products $- \times Y$, an exponential object Z^Y is such that for any $g: X \times Y \longrightarrow Z$,

Given \mathscr{C} with all products $- \times Y$, an exponential object Z^Y is such that for any $g: X \times Y \longrightarrow Z$, there is a unique transpose (sometimes "adjoint") $\lambda g: X \longrightarrow Z^Y$

Given \mathscr{C} with all products $- \times Y$, an exponential object Z^Y is such that for any $g: X \times Y \longrightarrow Z$, there is a unique transpose (sometimes "adjoint") $\lambda g: X \longrightarrow Z^Y$

Given \mathscr{C} with all products $- \times Y$, an exponential object Z^Y is such that for any $g: X \times Y \longrightarrow Z$, there is a unique transpose (sometimes "adjoint") $\lambda g: X \longrightarrow Z^Y$

Example

In Sets B^A is represents all functions from A to B.

The before can be expressed as the equation:

$\operatorname{Hom}_{\mathscr{C}}\left(X \times Y, Z\right) \cong \operatorname{Hom}_{\mathscr{C}}\left(X, Z^{Y}\right)$

The before can be expressed as the equation:

$\operatorname{Hom}_{\mathscr{C}}\left(X \times Y, Z\right) \cong \operatorname{Hom}_{\mathscr{C}}\left(X, Z^{Y}\right)$

Do you recognise this from somewhere?

Fact

We can construct a category *H* of a Heyting Algebra analogously to the category of a poset.

Fact

We can construct a category *H* of a Heyting Algebra analogously to the category of a poset.

Example

The exponential object in Heyting Algebra following from the above, corresponds to the well-known definition of implication:

$$a \sqcap b \sqsubseteq c \iff a \sqsubseteq b^c$$

A Cartesian Closed Category has...

A Cartesian Closed Category has...

► A terminal object 1,
A Cartesian Closed Category has...

- ► A terminal object 1,
- All products $A \times B$,

A Cartesian Closed Category has...

- A terminal object 1,
- All products $A \times B$,
- All exponentials B^A .

A Cartesian Closed Category has...

- A terminal object 1,
- All products $A \times B$,
- All exponentials B^A .

Example

Categories that satisfy these properties include **Sets**, categories of Heyting Algebras.

A Cartesian Closed Category has...

- A terminal object 1,
- All products $A \times B$,
- All exponentials B^A .

Example

Categories that satisfy these properties include **Sets**, categories of Heyting Algebras.

Now what does all of this have to do with the λ -Calculus or (positive/minimal) intuitionist logic?

- Duality,
- Isomorphisms,

- Duality,
- Isomorphisms,
- Mono- and Epimorphisms,

- Duality,
- Isomorphisms,
- Mono- and Epimorphisms,
- Limits,

- Duality,
- Isomorphisms,
- Mono- and Epimorphisms,
- Limits,
- Initial Objects, Pushouts, Pullbacks, (Co-)Equalisers,

- Duality,
- Isomorphisms,
- Mono- and Epimorphisms,
- Limits,
- Initial Objects, Pushouts, Pullbacks, (Co-)Equalisers,
- Functors,

- Duality,
- Isomorphisms,
- Mono- and Epimorphisms,
- Limits,
- Initial Objects, Pushouts, Pullbacks, (Co-)Equalisers,
- Functors,
- Natural Transformations,

- Duality,
- Isomorphisms,
- Mono- and Epimorphisms,
- Limits,
- Initial Objects, Pushouts, Pullbacks, (Co-)Equalisers,
- Functors,
- Natural Transformations,
- Adjunctions, units, counits,

- Duality,
- Isomorphisms,
- Mono- and Epimorphisms,
- Limits,
- Initial Objects, Pushouts, Pullbacks, (Co-)Equalisers,
- Functors,
- Natural Transformations,
- Adjunctions, units, counits,
- Yoneda Lemma, Embeddings, representable objects,

- Duality,
- Isomorphisms,
- Mono- and Epimorphisms,
- Limits,
- Initial Objects, Pushouts, Pullbacks, (Co-)Equalisers,
- Functors,
- Natural Transformations,
- Adjunctions, units, counits,
- Yoneda Lemma, Embeddings, representable objects,
- Kan Extensions,

- Duality,
- Isomorphisms,
- Mono- and Epimorphisms,
- Limits,
- Initial Objects, Pushouts, Pullbacks, (Co-)Equalisers,
- Functors,
- Natural Transformations,
- Adjunctions, units, counits,
- Yoneda Lemma, Embeddings, representable objects,
- Kan Extensions,
- Twisted Generalized Cohomology in Linear Homotopy Type Theory, ...

Part II

Equational Theories and λ -Theories

Equational Theories presents the rules of a formal system with equality as the primary predicate.

Equational Theories presents the rules of a formal system with equality as the primary predicate.

Equational Theories presents the rules of a formal system with equality as the primary predicate.

$$\overline{A=A} \ (\mathsf{refl})$$

Equational Theories presents the rules of a formal system with equality as the primary predicate.

$$\overline{A=A} \ (\mathsf{refl})$$

$$\frac{B=A}{A=B}\left(\mathsf{sym}\right)$$

Equational Theories presents the rules of a formal system with equality as the primary predicate.

$$\overline{A=A} \ (\mathsf{refl})$$

$$\frac{B=A}{A=B} (\mathsf{sym})$$

$$\frac{A=B}{A=C} = C \text{ (trans)}$$

A (simply typed) λ Theory is an equational theory that describes what a equivalence relation between λ -terms should ensure.

We write

$$\Gamma \vdash s = t \colon A$$

to state that s: A and t: A are equal in the same context Γ .

$$\frac{\Gamma \vdash s = t \colon A \quad \Gamma, x \colon A \vdash u = v \colon B}{\Gamma \vdash u \ [x \mapsto s] = v \ [x \mapsto t] \colon B} \text{ (subst)}$$

$$\begin{array}{ll} \frac{\Gamma \vdash s = t \colon A & \Gamma, x \colon A \vdash u = v \colon B}{\Gamma \vdash u \; [x \mapsto s] = v \; [x \mapsto t] \colon B} \; (\mathsf{subst}) \\ \\ \frac{\Gamma \vdash s = t \colon A \to B \quad \Gamma \vdash u = v \colon A}{\Gamma \vdash su = tv \colon B} \; (\mathsf{app}) \end{array}$$

$$\begin{array}{c} \Gamma \vdash s = t \colon A & \Gamma, x \colon A \vdash u = v \colon B \\ \hline \Gamma \vdash u \ [x \mapsto s] = v \ [x \mapsto t] \colon B \end{array} (\mathsf{subst}) \\ \hline \frac{\Gamma \vdash s = t \colon A \to B & \Gamma \vdash u = v \colon A \\ \hline \Gamma \vdash su = tv \colon B \end{array} (\mathsf{app}) \\ \hline \frac{\Gamma, x \colon A \vdash t = s \colon B}{\Gamma \vdash \lambda \, x \colon t = \lambda \, x \colon s \colon A \to B} (\mathsf{abstr}) \end{array}$$

$$\begin{array}{l} \Gamma \vdash s = t \colon A & \Gamma, x \colon A \vdash u = v \colon B \\ \overline{\Gamma} \vdash u & [x \mapsto s] = v & [x \mapsto t] \colon B \end{array} (\text{subst} \\ \\ \hline \frac{\Gamma \vdash s = t \colon A \to B & \Gamma \vdash u = v \colon A \\ \overline{\Gamma} \vdash su = tv \colon B \end{array} (\text{app}) \\ \\ \hline \frac{\Gamma, x \colon A \vdash t = s \colon B \\ \overline{\Gamma} \vdash \lambda x \colon t = \lambda x \colon s \colon A \to B }{\Gamma \vdash \lambda x \colon t = t & [x \mapsto s] \colon B} (\beta) \end{array}$$

A (simply typed) λ Theory is an equational theory that describes what a equivalence relation between λ -terms should ensure.

$$\begin{array}{l} \Gamma \vdash s = t \colon A & \Gamma, x \colon A \vdash u = v \colon B \\ \overline{\Gamma} \vdash u & [x \mapsto s] = v & [x \mapsto t] \colon B \end{array} (\text{subst} \\ \\ \hline \frac{\Gamma \vdash s = t \colon A \to B & \Gamma \vdash u = v \colon A \\ \overline{\Gamma} \vdash su = tv \colon B \end{array} (\text{app}) \\ \\ \hline \frac{\Gamma, x \colon A \vdash t = s \colon B }{\Gamma \vdash \lambda \, x \colon t = \lambda \, x \colon s \colon A \to B} (\text{abstr}) \\ \\ \hline \overline{\Gamma \vdash \lambda \, x \colon ts = t & [x \mapsto s] \colon B} (\beta) \end{array}$$

...rules for product and unit types ...

Part III

Qu'est-ce qui correspond à quoi ?

(What does correspond to what?)

Fact

The general idea of the correspondence is...

Types
$$\iff$$
 Objects

Terms
$$\iff$$
 Arrows

Fact

The general idea of the correspondence is...

Fact

The general idea of the correspondence is...

$$Types \iff Objects \ (\iff Propositions)$$
$$Terms \iff Arrows \ (\iff Proofs)$$

So demonstrating the existence of a arrow is the same "moral act" as a constructive proof of a proposition or inhabiting a type.

Any CCC promises the (conditional) existence following arrows:

Any CCC promises the (conditional) existence following arrows:

1. For any object A, we have $!: A \rightarrow 1$

Any CCC promises the (conditional) existence following arrows:

- 1. For any object A, we have $!: A \rightarrow 1$
- 2. For any objects A, B and a sufficient C, we have $\chi_{A,B}: C \longrightarrow A \times B$.

Any CCC promises the (conditional) existence following arrows:

- 1. For any object A, we have $!: A \rightarrow 1$
- 2. For any objects A, B and a sufficient C, we have $\chi_{A,B}: C \longrightarrow A \times B$.
- 3. For any $A \times B$ we have $\pi_1 \colon A \times B \longrightarrow A$ and $\pi_2 \colon A \times B \longrightarrow B$.
Fact (Intermission)

Any CCC promises the (conditional) existence following arrows:

- 1. For any object A, we have $!: A \rightarrow 1$
- 2. For any objects A, B and a sufficient C, we have $\chi_{A,B}: C \longrightarrow A \times B$.
- 3. For any $A \times B$ we have $\pi_1 \colon A \times B \longrightarrow A$ and $\pi_2 \colon A \times B \longrightarrow B$.
- 4. For any arrow $g: A \times B \longrightarrow C$ we have a corresponding $\lambda g: A \longrightarrow C^B$ (and vice versa).

Fact (Intermission)

Any CCC promises the (conditional) existence following arrows:

- 1. For any object A, we have $!: A \rightarrow 1$
- 2. For any objects A, B and a sufficient C, we have $\chi_{A,B}: C \longrightarrow A \times B$.
- 3. For any $A \times B$ we have $\pi_1 \colon A \times B \longrightarrow A$ and $\pi_2 \colon A \times B \longrightarrow B$.
- 4. For any arrow $g: A \times B \longrightarrow C$ we have a corresponding $\lambda g: A \longrightarrow C^B$ (and vice versa).
- 5. For any A and B^A we have a $ev_{A,B}: A \times B^A \longrightarrow B$

CCC

CCC

Application of terms:

 $s: A \to B, t: A \vdash st: B$

The evaluation arrow:

$$\operatorname{ev}_{A,B} \colon B^A \times A \longrightarrow B$$

Application of terms:

 $s: A \to B, t: A \vdash st: B$

Lambda Abstractions:

$$\vdash \lambda x. t: A \to B$$

CCC

The evaluation arrow:

$$\operatorname{ev}_{A,B} \colon B^A \times A \longrightarrow B$$

The global element/point:

$$\lambda g \colon 1 \longrightarrow B^A$$

Application of terms:

 $s: A \to B, t: A \vdash st: B$

Lambda Abstractions:

 $\vdash \lambda x. t: A \rightarrow B$

... or by deduction theorem

 $x: A \vdash t: B$

The evaluation arrow:

$$\operatorname{ev}_{A,B} \colon B^A \times A \longrightarrow B$$

The global element/point:

$$\lambda g \colon 1 \longrightarrow B^A$$

... or by transposition

 $g\colon 1\times A\cong A\longrightarrow B$

Application of terms:

 $s: A \to B, t: A \vdash st: B$

Lambda Abstractions:

 $\vdash \lambda x. t: A \rightarrow B$

... or by deduction theorem

CCC

The evaluation arrow:

$$\operatorname{ev}_{A,B} \colon B^A \times A \longrightarrow B$$

The global element/point:

$$\lambda g \colon 1 \longrightarrow B^A$$

...or by transposition

 $x: A \vdash t: B \qquad \qquad g: 1 \times A \cong A \longrightarrow B$

With the obvious correspondences between product types and categorical products (fst $\approx \pi_1$, snd $\approx \pi_2$, ...).

We can inhabit type

$$(A \to B) \times ((A \to B) \to C) \to A \to B \times C$$

by the term

We can inhabit type

$$(A \to B) \times ((A \to B) \to C) \to A \to B \times C$$

by the term

$$\lambda p. \lambda a. ((\texttt{fst } p)a, (\texttt{snd } p)(\texttt{fst } p))$$

Proof.

Obvious, duh.

We can prove the intuitionistic proposition is satisfiable

$$(A \to B) \land ((A \to B) \to C) \to A \to B \land C$$

Proof.

... by constructing the proof tree

We can demonstrate that the following arrow exists

$$1 \longrightarrow (B \times C)^{A^{B^A} \times C^{B^A}}$$

We can demonstrate that the following arrow exists

$$1 \xrightarrow{\lambda \lambda f} (B \times C)^{A^{B^A} \times C^{B^A}}$$

Proof.

... as it is the transpose of

$$A \times B^A \times C^{B^A} \xrightarrow{f} (B \times C)$$

We can demonstrate that the following arrow exists

$$1 \xrightarrow{\lambda \lambda f} (B \times C)^{A^{B^A} \times C^{B^A}}$$

Proof.

... as it is the transpose of

$$A \times B^A \times C^{B^A} \xrightarrow{f} (B \times C)$$

that in turn is given by

$$f \coloneqq \left\langle \operatorname{ev}_{A,B} \circ \left\langle \pi_2, \pi_1 \right\rangle, \operatorname{ev}_{B^A,C} \circ \left\langle \pi_3, \pi_2 \right\rangle \right\rangle$$

Proof

 $\rightsquigarrow 1 \xrightarrow{f} (A^B)^{B^A}$

Proof

$$\rightsquigarrow 1 \xrightarrow{f} (A^B)^{B^A}$$

$$A^B \xrightarrow{\lambda f} B^A$$

Proof

$$\rightsquigarrow 1 \xrightarrow{f} (A^B)^{B^A}$$

$$A^B \xrightarrow{\lambda f} B^A$$

$$A \times A^B \xrightarrow{\lambda \lambda f} B$$

Proof "by exhaustion".

$$\rightsquigarrow 1 \xrightarrow{f} (A^B)^{B^A}$$

$$A^B \xrightarrow{\lambda f} B^A$$

$$A \times A^B \xrightarrow{\lambda \lambda f} B$$

doesn't leave us with any means to construct arrow in an arbitrary CCC (recall the "Intermission"). \Box

Essentially we are giving a categorical interpretation of λ terms:

$$\begin{bmatrix} A \times B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \times \begin{bmatrix} B \end{bmatrix}$$
$$\begin{bmatrix} A \to B \end{bmatrix} = \begin{bmatrix} B \end{bmatrix}^{\begin{bmatrix} A \end{bmatrix}}$$
$$\begin{bmatrix} a: A \end{bmatrix} = 1 \longrightarrow \begin{bmatrix} A \end{bmatrix}$$
$$\begin{bmatrix} \Gamma \vdash t: B \end{bmatrix} = \begin{bmatrix} \Gamma \end{bmatrix} \longrightarrow \begin{bmatrix} t: B \end{bmatrix}$$
$$\vdots$$

Essentially we are giving a categorical interpretation of λ terms:

$$\begin{bmatrix} A \times B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \times \begin{bmatrix} B \end{bmatrix}$$
$$\begin{bmatrix} A \to B \end{bmatrix} = \begin{bmatrix} B \end{bmatrix}^{\begin{bmatrix} A \end{bmatrix}}$$
$$\begin{bmatrix} a \colon A \end{bmatrix} = 1 \longrightarrow \begin{bmatrix} A \end{bmatrix}$$
$$\begin{bmatrix} \Gamma \vdash t \colon B \end{bmatrix} = \begin{bmatrix} \Gamma \end{bmatrix} \longrightarrow \begin{bmatrix} t \colon B \end{bmatrix}$$

To ensure that the interpretation is sound and complete we need to prove that the rules of the λ theory \mathbb{T} coincide with arrow-equality.

We say that λ -Calculus is the internal language of Cartesian Closed Categories.

Part IV

Pour aller plus loin

(To go further)

The more "structure" a category has, the more interesting the internal logic[†]:

[†]See https://ncatlab.org/nlab/show/internal+logic

The more "structure" a category has, the more interesting the internal $logic^{\dagger}$:

 A topos (more on that in a moment) corresponds to finitist, intuitionistic higher-order logic

[†]See https://ncatlab.org/nlab/show/internal+logic

The more "structure" a category has, the more interesting the internal $logic^{\dagger}$:

- A topos (more on that in a moment) corresponds to finitist, intuitionistic higher-order logic
- A boolean topos (ie. with well-behaved complements) corresponds to classical higher-order logic

[†]See https://ncatlab.org/nlab/show/internal+logic

The more "structure" a category has, the more interesting the internal $logic^{\dagger}$:

- A topos (more on that in a moment) corresponds to finitist, intuitionistic higher-order logic
- A boolean topos (ie. with well-behaved complements) corresponds to classical higher-order logic
- A symmetric monoidal category (generalisation of CCC) corresponds to linear logic

[†]See https://ncatlab.org/nlab/show/internal+logic

A (elementary) topos \mathscr{E} is a category is a CCC with "all finite limits" and a subobject classifier Ω .

A (elementary) topos \mathscr{E} is a category is a CCC with "all finite limits" and a subobject classifier Ω .

Fact

The internal language of a topos allows us to reason pointwise about (sub-)objects and even use set-notation:

$$\{a: A \mid \phi(a) \to \neg \psi(a, a)\}: \Omega^A$$

A (elementary) topos \mathscr{E} is a category is a CCC with "all finite limits" and a subobject classifier Ω .

Fact

The internal language of a topos allows us to reason pointwise about (sub-)objects and even use set-notation:

$$\{ a \colon A \mid \phi(a) \to \neg \psi(a, a) \} \colon \Omega^A$$

But going into this in detail would be too technical...

A (elementary) topos \mathscr{E} is a category is a CCC with "all finite limits" and a subobject classifier Ω .

Fact

The internal language of a topos allows us to reason pointwise about (sub-)objects and even use set-notation:

$$\{ a \colon A \mid \phi(a) \to \neg \psi(a, a) \} \colon \Omega^A$$

But going into this in detail would be too technical... Come back again to my master's presentation next month.

Further Reading and Sources I

Recommended Reading on Category Theory

- https://arxiv.org/pdf/1612.09375
- Book "Categories for the working mathematician" (Mac Lane)
- Book "Basic Category Theory for Computer Scientists" (Pierce)
- https://web.archive.org/web/20230301160845/ https://people.math.harvard.edu/~mazur/ preprints/when_is_one.pdf

Recommended Reading on Categorical Logic

https://awodey.github.io/catlog/notes/ (WIP)

Further Reading and Sources II

- https://plato.stanford.edu/entries/ lambda-calculus/#LThe
- https://golem.ph.utexas.edu/category/2006/08/ cartesian_closed_categories_an_1.html
- Book "Introduction to Higher Order Categorical Logic" (Lambek)
- Book "The Lambda Calculus, its Syntax and Semantics" (Barendregt)
- Book "Topoi: The Categorial Analysis of Logic" (Goldblatt)

Related and more complicated concepts

Further Reading and Sources III

- https: //math.ucr.edu/home/baez/rosetta.pdf#page=66
- Book "Elementary Categories, Elementary Toposes" (McLarty)
- Book "Sketches of an Elephant" (Johnstone)
- Book "Sheaves and Geometry in Logic" (Mac Lane)
- Book "Handbook of Categorical Algebra" (Borceux), specifically Volume 3

A possible first step in the research program is 1700 doctoral theses called "A Correspondence between x and Church's notation.".

— A popular joke