
In the Beginning... was the Command Line

Neal Stephenson

About twenty years ago Jobs and Wozniak, the founders of Apple, came up with the very
strange idea of selling information processing machines for use in the home. The busi-
ness took off, and its founders made a lot of money and received the credit they deserved
for being daring visionaries. But around the same time, Bill Gates and Paul Allen came
up with an idea even stranger and more fantastical: selling computer operating systems.
This was much weirder than the idea of Jobs and Wozniak. A computer at least had
some sort of physical reality to it. It came in a box, you could open it up and plug it in
and watch lights blink. An operating system had no tangible incarnation at all. It arrived
on a disk, of course, but the disk was, in effect, nothing more than the box that the OS
came in. The product itself was a very long string of ones and zeroes that, when properly
installed and coddled, gave you the ability to manipulate other very long strings of ones
and zeroes. Even those few who actually understood what a computer operating system
was were apt to think of it as a fantastically arcane engineering prodigy, like a breeder re-
actor or a U-2 spy plane, and not something that could ever be (in the parlance of high-
tech) “productized.”

Yet now the company that Gates and Allen founded is selling operating systems like
Gillette sells razor blades. New releases of operating systems are launched as if they
were Hollywood blockbusters, with celebrity endorsements, talk show appearances, and
world tours. The market for them is vast enough that people worry about whether it has
been monopolized by one company. Even the least technically-minded people in our so-
ciety now have at least a hazy idea of what operating systems do; what is more, they
have strong opinions about their relative merits. It is commonly understood, even by
technically unsophisticated computer users, that if you have a piece of software that
works on your Macintosh, and you move it over onto a Windows machine, it will not
run. That this would, in fact, be a laughable and idiotic mistake, like nailing horseshoes
to the tires of a Buick.

A person who went into a coma before Microsoft was founded, and woke up now, could
pick up this morning’s New York Times and understand everything in it – almost: Item:
the richest man in the world made his fortune from-what? Railways? Shipping? Oil?
No, operating systems. Item: the Department of Justice is tackling Microsoft’s supposed
OS monopoly with legal tools that were invented to restrain the power of Nineteenth-
Century robber barons. Item: a woman friend of mine recently told me that she’d broken
off a (hitherto) stimulating exchange of e-mail with a young man. At first he had seemed
like such an intelligent and interesting guy, she said, but then “he started going all PC-
versus-Mac on me.”

What the hell is going on here? And does the operating system business have a future, or
only a past? Here is my view, which is entirely subjective; but since I have spent a fair
amount of time not only using, but programming, Macintoshes, Windows machines,
Linux boxes and the BeOS, perhaps it is not so ill-informed as to be completely worthless.
This is a subjective essay, more review than research paper, and so it might seem unfair or
biased compared to the technical reviews you can find in PC magazines. But ever since

1

the Mac came out, our operating systems have been based on metaphors, and anything
with metaphors in it is fair game as far as I’m concerned.

MGBs, TANKS, AND BATMOBILES

Around the time that Jobs, Wozniak, Gates, and Allen were dreaming up these unlikely
schemes, I was a teenager living in Ames, Iowa. One of my friends’ dads had an old
MGB sports car rusting away in his garage. Sometimes he would actually manage to get
it running and then he would take us for a spin around the block, with a memorable look
of wild youthful exhiliration on his face; to his worried passengers, he was a madman,
stalling and backfiring around Ames, Iowa and eating the dust of rusty Gremlins and
Pintos, but in his own mind he was Dustin Hoffman tooling across the Bay Bridge with
the wind in his hair.

In retrospect, this was telling me two things about people’s relationship to technology.
One was that romance and image go a long way towards shaping their opinions. If you
doubt it (and if you have a lot of spare time on your hands) just ask anyone who owns a
Macintosh and who, on those grounds, imagines him- or herself to be a member of an op-
pressed minority group.

The other, somewhat subtler point, was that interface is very important. Sure, the MGB
was a lousy car in almost every way that counted: balky, unreliable, underpowered. But
it was fun to drive. It was responsive. Every pebble on the road was felt in the bones, ev-
ery nuance in the pavement transmitted instantly to the driver’s hands. He could listen
to the engine and tell what was wrong with it. The steering responded immediately to
commands from his hands. To us passengers it was a pointless exercise in going
nowhere–about as interesting as peering over someone’s shoulder while he punches
numbers into a spreadsheet. But to the driver it was an experience. For a short time he
was extending his body and his senses into a larger realm, and doing things that he
couldn’t do unassisted.

The analogy between cars and operating systems is not half bad, and so let me run with it
for a moment, as a way of giving an executive summary of our situation today.

Imagine a crossroads where four competing auto dealerships are situated. One of them
(Microsoft) is much, much bigger than the others. It started out years ago selling three-
speed bicycles (MS-DOS); these were not perfect, but they worked, and when they broke
you could easily fix them.

There was a competing bicycle dealership next door (Apple) that one day began selling
motorized vehicles–expensive but attractively styled cars with their innards hermetically
sealed, so that how they worked was something of a mystery.

The big dealership responded by rushing a moped upgrade kit (the original Windows)
onto the market. This was a Rube Goldberg contraption that, when bolted onto a three-
speed bicycle, enabled it to keep up, just barely, with Apple-cars. The users had to wear
goggles and were always picking bugs out of their teeth while Apple owners sped along
in hermetically sealed comfort, sneering out the windows. But the Micro-mopeds were
cheap, and easy to fix compared with the Apple-cars, and their market share waxed.

Eventually the big dealership came out with a full-fledged car: a colossal station wagon
(Windows 95). It had all the aesthetic appeal of a Soviet worker housing block, it leaked
oil and blew gaskets, and it was an enormous success. A little later, they also came out
with a hulking off-road vehicle intended for industrial users (Windows NT) which was
no more beautiful than the station wagon, and only a little more reliable.

2

Since then there has been a lot of noise and shouting, but little has changed. The smaller
dealership continues to sell sleek Euro-styled sedans and to spend a lot of money on ad-
vertising campaigns. They have had GOING OUT OF BUSINESS! signs taped up in their
windows for so long that they have gotten all yellow and curly. The big one keeps mak-
ing bigger and bigger station wagons and ORVs.

On the other side of the road are two competitors that have come along more recently.

One of them (Be, Inc.) is selling fully operational Batmobiles (the BeOS). They are more
beautiful and stylish even than the Euro-sedans, better designed, more technologically
advanced, and at least as reliable as anything else on the market–and yet cheaper than
the others.

With one exception, that is: Linux, which is right next door, and which is not a business at
all. It’s a bunch of RVs, yurts, tepees, and geodesic domes set up in a field and organized
by consensus. The people who live there are making tanks. These are not old-fashioned,
cast-iron Soviet tanks; these are more like the M1 tanks of the U.S. Army, made of space-
age materials and jammed with sophisticated technology from one end to the other. But
they are better than Army tanks. They’ve been modified in such a way that they never,
ever break down, are light and maneuverable enough to use on ordinary streets, and use
no more fuel than a subcompact car. These tanks are being cranked out, on the spot, at a
terrific pace, and a vast number of them are lined up along the edge of the road with keys
in the ignition. Anyone who wants can simply climb into one and drive it away for free.

Customers come to this crossroads in throngs, day and night. Ninety percent of them go
straight to the biggest dealership and buy station wagons or off-road vehicles. They do
not even look at the other dealerships.

Of the remaining ten percent, most go and buy a sleek Euro-sedan, pausing only to turn
up their noses at the philistines going to buy the station wagons and ORVs. If they even
notice the people on the opposite side of the road, selling the cheaper, technically supe-
rior vehicles, these customers deride them cranks and half-wits.

The Batmobile outlet sells a few vehicles to the occasional car nut who wants a second
vehicle to go with his station wagon, but seems to accept, at least for now, that it’s a
fringe player.

The group giving away the free tanks only stays alive because it is staffed by volunteers,
who are lined up at the edge of the street with bullhorns, trying to draw customers’ at-
tention to this incredible situation. A typical conversation goes something like this:

Hacker with bullhorn: “Save your money! Accept one of our free tanks! It is invulnerable,
and can drive across rocks and swamps at ninety miles an hour while getting a hundred
miles to the gallon!”

Prospective station wagon buyer: “I know what you say is true...but...er...I don’t know
how to maintain a tank!”

Bullhorn: “You don’t know how to maintain a station wagon either!”

Buyer: “But this dealership has mechanics on staff. If something goes wrong with my sta-
tion wagon, I can take a day off work, bring it here, and pay them to work on it while I sit
in the waiting room for hours, listening to elevator music.”

Bullhorn: “But if you accept one of our free tanks we will send volunteers to your house
to fix it for free while you sleep!”

Buyer: “Stay away from my house, you freak!”

3

Bullhorn: “But...”

Buyer: “Can’t you see that everyone is buying station wagons?”

BIT-FLINGER

The connection between cars, and ways of interacting with computers, wouldn’t have oc-
curred to me at the time I was being taken for rides in that MGB. I had signed up to take
a computer programming class at Ames High School. After a few introductory lectures,
we students were granted admission into a tiny room containing a teletype, a telephone,
and an old-fashioned modem consisting of a metal box with a pair of rubber cups on the
top (note: many readers, making their way through that last sentence, probably felt an
initial pang of dread that this essay was about to turn into a tedious, codgerly reminis-
cence about how tough we had it back in the old days; rest assured that I am actually po-
sitioning my pieces on the chessboard, as it were, in preparation to make a point about
truly hip and up-to-the minute topics like Open Source Software). The teletype was ex-
actly the same sort of machine that had been used, for decades, to send and receive tele-
grams. It was basically a loud typewriter that could only produce UPPERCASE LET-
TERS. Mounted to one side of it was a smaller machine with a long reel of paper tape on
it, and a clear plastic hopper underneath.

In order to connect this device (which was not a computer at all) to the Iowa State Uni-
versity mainframe across town, you would pick up the phone, dial the computer’s num-
ber, listen for strange noises, and then slam the handset down into the rubber cups. If
your aim was true, one would wrap its neoprene lips around the earpiece and the other
around the mouthpiece, consummating a kind of informational soixante-neuf. The tele-
type would shudder as it was possessed by the spirit of the distant mainframe, and begin
to hammer out cryptic messages.

Since computer time was a scarce resource, we used a sort of batch processing technique.
Before dialing the phone, we would turn on the tape puncher (a subsidiary machine
bolted to the side of the teletype) and type in our programs. Each time we depressed a
key, the teletype would bash out a letter on the paper in front of us, so we could read
what we’d typed; but at the same time it would convert the letter into a set of eight bi-
nary digits, or bits, and punch a corresponding pattern of holes across the width of a pa-
per tape. The tiny disks of paper knocked out of the tape would flutter down into the
clear plastic hopper, which would slowly fill up what can only be described as actual bits.
On the last day of the school year, the smartest kid in the class (not me) jumped out from
behind his desk and flung several quarts of these bits over the head of our teacher, like
confetti, as a sort of semi-affectionate practical joke. The image of this man sitting there,
gripped in the opening stages of an atavistic fight-or-flight reaction, with millions of bits
(megabytes) sifting down out of his hair and into his nostrils and mouth, his face gradu-
ally turning purple as he built up to an explosion, is the single most memorable scene
from my formal education.

Anyway, it will have been obvious that my interaction with the computer was of an ex-
tremely formal nature, being sharply divided up into different phases, viz.: (1) sitting at
home with paper and pencil, miles and miles from any computer, I would think very,
very hard about what I wanted the computer to do, and translate my intentions into a
computer language–a series of alphanumeric symbols on a page. (2) I would carry this
across a sort of informational cordon sanitaire (three miles of snowdrifts) to school and
type those letters into a machine–not a computer–which would convert the symbols into
binary numbers and record them visibly on a tape. (3) Then, through the rubber-cup mo-
dem, I would cause those numbers to be sent to the university mainframe, which would

4

(4) do arithmetic on them and send different numbers back to the teletype. (5) The tele-
type would convert these numbers back into letters and hammer them out on a page and
(6) I, watching, would construe the letters as meaningful symbols.

The division of responsibilities implied by all of this is admirably clean: computers do
arithmetic on bits of information. Humans construe the bits as meaningful symbols. But
this distinction is now being blurred, or at least complicated, by the advent of modern
operating systems that use, and frequently abuse, the power of metaphor to make com-
puters accessible to a larger audience. Along the way–possibly because of those meta-
phors, which make an operating system a sort of work of art–people start to get emo-
tional, and grow attached to pieces of software in the way that my friend’s dad did to his
MGB.

People who have only interacted with computers through graphical user interfaces like
the MacOS or Windows–which is to say, almost everyone who has ever used a com-
puter–may have been startled, or at least bemused, to hear about the telegraph machine
that I used to communicate with a computer in 1973. But there was, and is, a good reason
for using this particular kind of technology. Human beings have various ways of com-
municating to each other, such as music, art, dance, and facial expressions, but some of
these are more amenable than others to being expressed as strings of symbols. Written
language is the easiest of all, because, of course, it consists of strings of symbols to begin
with. If the symbols happen to belong to a phonetic alphabet (as opposed to, say,
ideograms), converting them into bits is a trivial procedure, and one that was nailed,
technologically, in the early nineteenth century, with the introduction of Morse code and
other forms of telegraphy.

We had a human/computer interface a hundred years before we had computers. When
computers came into being around the time of the Second World War, humans, quite nat-
urally, communicated with them by simply grafting them on to the already-existing tech-
nologies for translating letters into bits and vice versa: teletypes and punch card ma-
chines.

These embodied two fundamentally different approaches to computing. When you were
using cards, you’d punch a whole stack of them and run them through the reader all at
once, which was called batch processing. You could also do batch processing with a tele-
type, as I have already described, by using the paper tape reader, and we were certainly
encouraged to use this approach when I was in high school. But–though efforts were
made to keep us unaware of this–the teletype could do something that the card reader
could not. On the teletype, once the modem link was established, you could just type in
a line and hit the return key. The teletype would send that line to the computer, which
might or might not respond with some lines of its own, which the teletype would ham-
mer out–producing, over time, a transcript of your exchange with the machine. This way
of doing it did not even have a name at the time, but when, much later, an alternative be-
came available, it was retroactively dubbed the Command Line Interface.

When I moved on to college, I did my computing in large, stifling rooms where scores of
students would sit in front of slightly updated versions of the same machines and write
computer programs: these used dot-matrix printing mechanisms, but were (from the
computer ’s point of view) identical to the old teletypes. By that point, computers were
better at time-sharing–that is, mainframes were still mainframes, but they were better at
communicating with a large number of terminals at once. Consequently, it was no longer
necessary to use batch processing. Card readers were shoved out into hallways and
boiler rooms, and batch processing became a nerds-only kind of thing, and consequently
took on a certain eldritch flavor among those of us who even knew it existed. We were

5

all off the Batch, and on the Command Line, interface now–my very first shift in operat-
ing system paradigms, if only I’d known it.

A huge stack of accordion-fold paper sat on the floor underneath each one of these glori-
fied teletypes, and miles of paper shuddered through their platens. Almost all of this pa-
per was thrown away or recycled without ever having been touched by ink–an ecological
atrocity so glaring that those machines soon replaced by video terminals–so-called “glass
teletypes”–which were quieter and didn’t waste paper. Again, though, from the com-
puter ’s point of view these were indistinguishable from World War II-era teletype ma-
chines. In effect we still used Victorian technology to communicate with computers until
about 1984, when the Macintosh was introduced with its Graphical User Interface. Even
after that, the Command Line continued to exist as an underlying stratum–a sort of brain-
stem reflex–of many modern computer systems all through the heyday of Graphical User
Interfaces, or GUIs as I will call them from now on.

GUIs

Now the first job that any coder needs to do when writing a new piece of software is to
figure out how to take the information that is being worked with (in a graphics program,
an image; in a spreadsheet, a grid of numbers) and turn it into a linear string of bytes.
These strings of bytes are commonly called files or (somewhat more hiply) streams. They
are to telegrams what modern humans are to Cro-Magnon man, which is to say the same
thing under a different name. All that you see on your computer screen–your Tomb
Raider, your digitized voice mail messages, faxes, and word processing documents writ-
ten in thirty-seven different typefaces–is still, from the computer’s point of view, just like
telegrams, except much longer, and demanding of more arithmetic.

The quickest way to get a taste of this is to fire up your web browser, visit a site, and then
select the View/Document Source menu item. You will get a bunch of computer code
that looks something like this:

<HTML> <HEAD> <TITLE> C R Y P T O N O M I C O N</TITLE>

</HEAD> <BODY BGCOLOR="#000000" LINK="#996600" ALINK="#FFFFFF"

VLINK="#663300">

<MAP NAME="navtext"> <AREA SHAPE=RECT HREF="praise.html"

COORDS="0,37,84,55"> <AREA SHAPE=RECT HREF="author.html"

COORDS="0,59,137,75"> <AREA SHAPE=RECT HREF="text.html"

COORDS="0,81,101,96"> <AREA SHAPE=RECT HREF="tour.html"

COORDS="0,100,121,117"> <AREA SHAPE=RECT HREF="order.html"

COORDS="0,122,143,138"> <AREA SHAPE=RECT HREF="beginning.html"

COORDS="0,140,213,157"> </MAP>

<CENTER> <TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0"

WIDTH="520"> <TR>

<TD VALIGN=TOP ROWSPAN="5"> <IMG SRC="images/spacer.gif"

WIDTH="30" HEIGHT="1" BORDER="0"> </TD>

<TD VALIGN=TOP COLSPAN="2"> <IMG SRC="images/main_banner.gif"

ALT="Cryptonomincon by Neal Stephenson" WIDTH="479"

HEIGHT="122" BORDER="0"> </TD>

</TR>

6

This crud is called HTML (HyperText Markup Language) and it is basically a very simple
programming language instructing your web browser how to draw a page on a screen.
Anyone can learn HTML and many people do. The important thing is that no matter
what splendid multimedia web pages they might represent, HTML files are just tele-
grams.

When Ronald Reagan was a radio announcer, he used to call baseball games by reading
the terse descriptions that trickled in over the telegraph wire and were printed out on a
paper tape. He would sit there, all by himself in a padded room with a microphone, and
the paper tape would eke out of the machine and crawl over the palm of his hand printed
with cryptic abbreviations. If the count went to three and two, Reagan would describe
the scene as he saw it in his mind’s eye: “The brawny left-hander steps out of the batter’s
box to wipe the sweat from his brow. The umpire steps forward to sweep the dirt from
home plate.” and so on. When the cryptogram on the paper tape announced a base hit,
he would whack the edge of the table with a pencil, creating a little sound effect, and de-
scribe the arc of the ball as if he could actually see it. His listeners, many of whom pre-
sumably thought that Reagan was actually at the ballpark watching the game, would re-
construct the scene in their minds according to his descriptions.

This is exactly how the World Wide Web works: the HTML files are the pithy description
on the paper tape, and your Web browser is Ronald Reagan. The same is true of Graphi-
cal User Interfaces in general.

So an OS is a stack of metaphors and abstractions that stands between you and the tele-
grams, and embodying various tricks the programmer used to convert the information
you’re working with–be it images, e-mail messages, movies, or word processing docu-
ments–into the necklaces of bytes that are the only things computers know how to work
with. When we used actual telegraph equipment (teletypes) or their higher-tech substi-
tutes (“glass teletypes,” or the MS-DOS command line) to work with our computers, we
were very close to the bottom of that stack. When we use most modern operating sys-
tems, though, our interaction with the machine is heavily mediated. Everything we do is
interpreted and translated time and again as it works its way down through all of the
metaphors and abstractions.

The Macintosh OS was a revolution in both the good and bad senses of that word. Obvi-
ously it was true that command line interfaces were not for everyone, and that it would
be a good thing to make computers more accessible to a less technical audience–if not for
altruistic reasons, then because those sorts of people constituted an incomparably vaster
market. It was clear the the Mac’s engineers saw a whole new country stretching out be-
fore them; you could almost hear them muttering, “Wow! We don’t have to be bound by
files as linear streams of bytes anymore, vive la revolution, let’s see how far we can take
this!” No command line interface was available on the Macintosh; you talked to it with
the mouse, or not at all. This was a statement of sorts, a credential of revolutionary pu-
rity. It seemed that the designers of the Mac intended to sweep Command Line Inter-
faces into the dustbin of history.

My own personal love affair with the Macintosh began in the spring of 1984 in a com-
puter store in Cedar Rapids, Iowa, when a friend of mine – coincidentally, the son of the
MGB owner – showed me a Macintosh running MacPaint, the revolutionary drawing
program. It ended in July of 1995 when I tried to save a big important file on my Macin-
tosh Powerbook and instead instead of doing so, it annihilated the data so thoroughly
that two different disk crash utility programs were unable to find any trace that it had
ever existed. During the intervening ten years, I had a passion for the MacOS that
seemed righteous and reasonable at the time but in retrospect strikes me as being exactly

7

the same sort of goofy infatuation that my friend’s dad had with his car.

The introduction of the Mac triggered a sort of holy war in the computer world. Were
GUIs a brilliant design innovation that made computers more human-centered and there-
fore accessible to the masses, leading us toward an unprecedented revolution in human
society, or an insulting bit of audiovisual gimcrackery dreamed up by flaky Bay Area
hacker types that stripped computers of their power and flexibility and turned the noble
and serious work of computing into a childish video game?

This debate actually seems more interesting to me today than it did in the mid-1980s. But
people more or less stopped debating it when Microsoft endorsed the idea of GUIs by
coming out with the first Windows. At this point, command-line partisans were rele-
gated to the status of silly old grouches, and a new conflict was touched off, between
users of MacOS and users of Windows.

There was plenty to argue about. The first Macintoshes looked different from other PCs
even when they were turned off: they consisted of one box containing both CPU (the part
of the computer that does arithmetic on bits) and monitor screen. This was billed, at the
time, as a philosophical statement of sorts: Apple wanted to make the personal computer
into an appliance, like a toaster. But it also reflected the purely technical demands of run-
ning a graphical user interface. In a GUI machine, the chips that draw things on the
screen have to be integrated with the computer’s central processing unit, or CPU, to a far
greater extent than is the case with command-line interfaces, which until recently didn’t
even know that they weren’t just talking to teletypes.

This distinction was of a technical and abstract nature, but it became clearer when the
machine crashed (it is commonly the case with technologies that you can get the best in-
sight about how they work by watching them fail). When everything went to hell and
the CPU began spewing out random bits, the result, on a CLI machine, was lines and
lines of perfectly formed but random characters on the screen – known to cognoscenti as
“going Cyrillic.” But to the MacOS, the screen was not a teletype, but a place to put
graphics; the image on the screen was a bitmap, a literal rendering of the contents of a
particular portion of the computer’s memory. When the computer crashed and wrote
gibberish into the bitmap, the result was something that looked vaguely like static on a
broken television set – a “snow crash.”

And even after the introduction of Windows, the underlying differences endured; when a
Windows machine got into trouble, the old command-line interface would fall down over
the GUI like an asbestos fire curtain sealing off the proscenium of a burning opera. When
a Macintosh got into trouble it presented you with a cartoon of a bomb, which was funny
the first time you saw it.

And these were by no means superficial differences. The reversion of Windows to a CLI
when it was in distress proved to Mac partisans that Windows was nothing more than a
cheap facade, like a garish afghan flung over a rotted-out sofa. They were disturbed and
annoyed by the sense that lurking underneath Windows’ ostensibly user-friendly inter-
face was – literally – a subtext.

For their part, Windows fans might have made the sour observation that all computers,
even Macintoshes, were built on that same subtext, and that the refusal of Mac owners to
admit that fact to themselves seemed to signal a willingness, almost an eagerness, to be
duped.

Anyway, a Macintosh had to switch individual bits in the memory chips on the video
card, and it had to do it very fast, and in arbitrarily complicated patterns. Nowadays this
is cheap and easy, but in the technological regime that prevailed in the early 1980s, the

8

only realistic way to do it was to build the motherboard (which contained the CPU) and
the video system (which contained the memory that was mapped onto the screen) as a
tightly integrated whole – hence the single, hermetically sealed case that made the Mac-
intosh so distinctive.

When Windows came out, it was conspicuous for its ugliness, and its current successors,
Windows 95 and Windows NT, are not things that people would pay money to look at ei-
ther. Microsoft’s complete disregard for aesthetics gave all of us Mac-lovers plenty of op-
portunities to look down our noses at them. That Windows looked an awful lot like a di-
rect ripoff of MacOS gave us a burning sense of moral outrage to go with it. Among peo-
ple who really knew and appreciated computers (hackers, in Steven Levy’s non-pejora-
tive sense of that word) and in a few other niches such as professional musicians, graphic
artists and schoolteachers, the Macintosh, for a while, was simply the computer. It was
seen as not only a superb piece of engineering, but an embodiment of certain ideals about
the use of technology to benefit mankind, while Windows was seen as a pathetically
clumsy imitation and a sinister world domination plot rolled into one. So very early, a
pattern had been established that endures to this day: people dislike Microsoft, which is
okay; but they dislike it for reasons that are poorly considered, and in the end, self-de-
feating. % CLASS STRUGGLE ON THE DESKTOP

Now that the Third Rail has been firmly grasped, it is worth reviewing some basic facts
here: like any other publicly traded, for-profit corporation, Microsoft has, in effect, bor-
rowed a bunch of money from some people (its stockholders) in order to be in the bit
business. As an officer of that corporation, Bill Gates has one responsibility only, which is
to maximize return on investment. He has done this incredibly well. Any actions taken
in the world by Microsoft-any software released by them, for example – are basically
epiphenomena, which can’t be interpreted or understood except insofar as they reflect
Bill Gates’s execution of his one and only responsibility.

It follows that if Microsoft sells goods that are aesthetically unappealing, or that don’t
work very well, it does not mean that they are (respectively) philistines or half-wits. It is
because Microsoft’s excellent management has figured out that they can make more
money for their stockholders by releasing stuff with obvious, known imperfections than
they can by making it beautiful or bug-free. This is annoying, but (in the end) not half so
annoying as watching Apple inscrutably and relentlessly destroy itself.

Hostility towards Microsoft is not difficult to find on the Net, and it blends two strains:
resentful people who feel Microsoft is too powerful, and disdainful people who think it’s
tacky. This is all strongly reminiscent of the heyday of Communism and Socialism, when
the bourgeoisie were hated from both ends: by the proles, because they had all the
money, and by the intelligentsia, because of their tendency to spend it on lawn orna-
ments. Microsoft is the very embodiment of modern high-tech prosperity–it is, in a
word, bourgeois–and so it attracts all of the same gripes.

The opening “splash screen” for Microsoft Word 6.0 summed it up pretty neatly: when
you started up the program you were treated to a picture of an expensive enamel pen ly-
ing across a couple of sheets of fancy-looking handmade writing paper. It was obviously
a bid to make the software look classy, and it might have worked for some, but it failed
for me, because the pen was a ballpoint, and I’m a fountain pen man. If Apple had done
it, they would’ve used a Mont Blanc fountain pen, or maybe a Chinese calligraphy brush.
And I doubt that this was an accident. Recently I spent a while re-installing Windows
NT on one of my home computers, and many times had to double-click on the “Control
Panel” icon. For reasons that are difficult to fathom, this icon consists of a picture of a
clawhammer and a chisel or screwdriver resting on top of a file folder.

9

These aesthetic gaffes give one an almost uncontrollable urge to make fun of Microsoft,
but again, it is all beside the point–if Microsoft had done focus group testing of possible
alternative graphics, they probably would have found that the average mid-level office
worker associated fountain pens with effete upper management toffs and was more com-
fortable with ballpoints. Likewise, the regular guys, the balding dads of the world who
probably bear the brunt of setting up and maintaining home computers, can probably re-
late better to a picture of a clawhammer–while perhaps harboring fantasies of taking a
real one to their balky computers.

This is the only way I can explain certain peculiar facts about the current market for oper-
ating systems, such as that ninety percent of all customers continue to buy station wag-
ons off the Microsoft lot while free tanks are there for the taking, right across the street.

A string of ones and zeroes was not a difficult thing for Bill Gates to distribute, one he’d
thought of the idea. The hard part was selling it–reassuring customers that they were ac-
tually getting something in return for their money.

Anyone who has ever bought a piece of software in a store has had the curiously deflat-
ing experience of taking the bright shrink-wrapped box home, tearing it open, finding
that it’s 95 percent air, throwing away all the little cards, party favors, and bits of trash,
and loading the disk into the computer. The end result (after you’ve lost the disk) is
nothing except some images on a computer screen, and some capabilities that weren’t
there before. Sometimes you don’t even have that–you have a string of error messages
instead. But your money is definitely gone. Now we are almost accustomed to this, but
twenty years ago it was a very dicey business proposition. Bill Gates made it work any-
way. He didn’t make it work by selling the best software or offering the cheapest price.
Instead he somehow got people to believe that they were receiving something in ex-
change for their money.

The streets of every city in the world are filled with those hulking, rattling station wag-
ons. Anyone who doesn’t own one feels a little weird, and wonders, in spite of himself,
whether it might not be time to cease resistance and buy one; anyone who does, feels
confident that he has acquired some meaningful possession, even on those days when the
vehicle is up on a lift in an auto repair shop.

All of this is perfectly congruent with membership in the bourgeoisie, which is as much a
mental, as a material state. And it explains why Microsoft is regularly attacked, on the
Net, from both sides. People who are inclined to feel poor and oppressed construe every-
thing Microsoft does as some sinister Orwellian plot. People who like to think of them-
selves as intelligent and informed technology users are driven crazy by the clunkiness of
Windows.

Nothing is more annoying to sophisticated people to see someone who is rich enough to
know better being tacky–unless it is to realize, a moment later, that they probably know
they are tacky and they simply don’t care and they are going to go on being tacky, and
rich, and happy, forever. Microsoft therefore bears the same relationship to the Silicon
Valley elite as the Beverly Hillbillies did to their fussy banker, Mr. Drysdale–who is irri-
tated not so much by the fact that the Clampetts moved to his neighborhood as by the
knowledge that, when Jethro is seventy years old, he’s still going to be talking like a hill-
billy and wearing bib overalls, and he’s still going to be a lot richer than Mr. Drysdale.

Even the hardware that Windows ran on, when compared to the machines put out by
Apple, looked like white-trash stuff, and still mostly does. The reason was that Apple
was and is a hardware company, while Microsoft was and is a software company. Apple
therefore had a monopoly on hardware that could run MacOS, whereas Windows-com-
patible hardware came out of a free market. The free market seems to have decided that

10

people will not pay for cool-looking computers; PC hardware makers who hire designers
to make their stuff look distinctive get their clocks cleaned by Taiwanese clone makers
punching out boxes that look as if they belong on cinderblocks in front of someone’s
trailer. But Apple could make their hardware as pretty as they wanted to and simply
pass the higher prices on to their besotted consumers, like me. Only last week (I am writ-
ing this sentence in early Jan. 1999) the technology sections of all the newspapers were
filled with adulatory press coverage of how Apple had released the iMac in several hap-
penin’ new colors like Blueberry and Tangerine.

Apple has always insisted on having a hardware monopoly, except for a brief period in
the mid-1990s when they allowed clone-makers to compete with them, before subse-
quently putting them out of business. Macintosh hardware was, consequently, expen-
sive. You didn’t open it up and fool around with it because doing so would void the
warranty. In fact the first Mac was specifically designed to be difficult to open–you
needed a kit of exotic tools, which you could buy through little ads that began to appear
in the back pages of magazines a few months after the Mac came out on the market.
These ads always had a certain disreputable air about them, like pitches for lock-picking
tools in the backs of lurid detective magazines.

This monopolistic policy can be explained in at least three different ways.

The charitable explanation is that the hardware monopoly policy reflected a drive on
Apple’s part to provide a seamless, unified blending of hardware, operating system, and
software. There is something to this. It is hard enough to make an OS that works well on
one specific piece of hardware, designed and tested by engineers who work down the
hallway from you, in the same company. Making an OS to work on arbitrary pieces of
hardware, cranked out by rabidly entrepeneurial clonemakers on the other side of the In-
ternational Date Line, is very difficult, and accounts for much of the troubles people have
using Windows.

The financial explanation is that Apple, unlike Microsoft, is and always has been a hard-
ware company. It simply depends on revenue from selling hardware, and cannot exist
without it.

The not-so-charitable explanation has to do with Apple’s corporate culture, which is
rooted in Bay Area Baby Boomdom.

Now, since I’m going to talk for a moment about culture, full disclosure is probably in or-
der, to protect myself against allegations of conflict of interest and ethical turpitude: (1)
Geographically I am a Seattleite, of a Saturnine temperament, and inclined to take a sour
view of the Dionysian Bay Area, just as they tend to be annoyed and appalled by us. (2)
Chronologically I am a post-Baby Boomer. I feel that way, at least, because I never expe-
rienced the fun and exciting parts of the whole Boomer scene–just spent a lot of time du-
tifully chuckling at Boomers’ maddeningly pointless anecdotes about just how stoned
they got on various occasions, and politely fielding their assertions about how great their
music was. But even from this remove it was possible to glean certain patterns, and one
that recurred as regularly as an urban legend was the one about how someone would
move into a commune populated by sandal-wearing, peace-sign flashing flower children,
and eventually discover that, underneath this facade, the guys who ran it were actually
control freaks; and that, as living in a commune, where much lip service was paid to
ideals of peace, love and harmony, had deprived them of normal, socially approved out-
lets for their control-freakdom, it tended to come out in other, invariably more sinister,
ways.

Applying this to the case of Apple Computer will be left as an exercise for the reader, and
not a very difficult exercise.

11

It is a bit unsettling, at first, to think of Apple as a control freak, because it is completely
at odds with their corporate image. Weren’t these the guys who aired the famous Super
Bowl ads showing suited, blindfolded executives marching like lemmings off a cliff?
Isn’t this the company that even now runs ads picturing the Dalai Lama (except in Hong
Kong) and Einstein and other offbeat rebels?

It is indeed the same company, and the fact that they have been able to plant this image
of themselves as creative and rebellious free-thinkers in the minds of so many intelligent
and media-hardened skeptics really gives one pause. It is testimony to the insidious
power of expensive slick ad campaigns and, perhaps, to a certain amount of wishful
thinking in the minds of people who fall for them. It also raises the question of why Mi-
crosoft is so bad at PR, when the history of Apple demonstrates that, by writing large
checks to good ad agencies, you can plant a corporate image in the minds of intelligent
people that is completely at odds with reality. (The answer, for people who don’t like
Damoclean questions, is that since Microsoft has won the hearts and minds of the silent
majority–the bourgeoisie–they don’t give a damn about having a slick image, any more
then Dick Nixon did. “I want to believe,”–the mantra that Fox Mulder has pinned to his
office wall in The X-Files–applies in different ways to these two companies; Mac parti-
sans want to believe in the image of Apple purveyed in those ads, and in the notion that
Macs are somehow fundamentally different from other computers, while Windows peo-
ple want to believe that they are getting something for their money, engaging in a re-
spectable business transaction).

In any event, as of 1987, both MacOS and Windows were out on the market, running on
hardware platforms that were radically different from each other–not only in the sense
that MacOS used Motorola CPU chips while Windows used Intel, but in the sense–then
overlooked, but in the long run, vastly more significant–that the Apple hardware busi-
ness was a rigid monopoly and the Windows side was a churning free-for-all.

But the full ramifications of this did not become clear until very recently–in fact, they are
still unfolding, in remarkably strange ways, as I’ll explain when we get to Linux. The up-
shot is that millions of people got accustomed to using GUIs in one form or another. By
doing so, they made Apple/Microsoft a lot of money. The fortunes of many people have
become bound up with the ability of these companies to continue selling products whose
salability is very much open to question.

HONEY-POT, TAR-PIT, WHATEVER

When Gates and Allen invented the idea of selling software, they ran into criticism from
both hackers and sober-sided businesspeople. Hackers understood that software was
just information, and objected to the idea of selling it. These objections were partly
moral. The hackers were coming out of the scientific and academic world where it is im-
perative to make the results of one’s work freely available to the public. They were also
partly practical; how can you sell something that can be easily copied? Businesspeople,
who are polar opposites of hackers in so many ways, had objections of their own. Accus-
tomed to selling toasters and insurance policies, they naturally had a difficult time under-
standing how a long collection of ones and zeroes could constitute a salable product.

Obviously Microsoft prevailed over these objections, and so did Apple. But the objec-
tions still exist. The most hackerish of all the hackers, the Ur-hacker as it were, was and
is Richard Stallman, who became so annoyed with the evil practice of selling software
that, in 1984 (the same year that the Macintosh went on sale) he went off and founded
something called the Free Software Foundation, which commenced work on something
called GNU. Gnu is an acronym for Gnu’s Not Unix, but this is a joke in more ways than

12

one, because GNU most certainly IS Unix,. Because of trademark concerns (“Unix” is
trademarked by AT&T) they simply could not claim that it was Unix, and so, just to be
extra safe, they claimed that it wasn’t. Notwithstanding the incomparable talent and
drive possessed by Mr. Stallman and other GNU adherents, their project to build a free
Unix to compete against Microsoft and Apple’s OSes was a little bit like trying to dig a
subway system with a teaspoon. Until, that is, the advent of Linux, which I will get to
later.

But the basic idea of re-creating an operating system from scratch was perfectly sound
and completely doable. It has been done many times. It is inherent in the very nature of
operating systems.

Operating systems are not strictly necessary. There is no reason why a sufficiently dedi-
cated coder could not start from nothing with every project and write fresh code to han-
dle such basic, low-level operations as controlling the read/write heads on the disk
drives and lighting up pixels on the screen. The very first computers had to be pro-
grammed in this way. But since nearly every program needs to carry out those same ba-
sic operations, this approach would lead to vast duplication of effort.

Nothing is more disagreeable to the hacker than duplication of effort. The first and most
important mental habit that people develop when they learn how to write computer pro-
grams is to generalize, generalize, generalize. To make their code as modular and flexible
as possible, breaking large problems down into small subroutines that can be used over
and over again in different contexts. Consequently, the development of operating sys-
tems, despite being technically unnecessary, was inevitable. Because at its heart, an oper-
ating system is nothing more than a library containing the most commonly used code,
written once (and hopefully written well) and then made available to every coder who
needs it.

So a proprietary, closed, secret operating system is a contradiction in terms. It goes
against the whole point of having an operating system. And it is impossible to keep
them secret anyway. The source code–the original lines of text written by the program-
mers–can be kept secret. But an OS as a whole is a collection of small subroutines that do
very specific, very clearly defined jobs. Exactly what those subroutines do has to be
made public, quite explicitly and exactly, or else the OS is completely useless to program-
mers; they can’t make use of those subroutines if they don’t have a complete and perfect
understanding of what the subroutines do.

The only thing that isn’t made public is exactly how the subroutines do what they do.
But once you know what a subroutine does, it’s generally quite easy (if you are a hacker)
to write one of your own that does exactly the same thing. It might take a while, and it is
tedious and unrewarding, but in most cases it’s not really hard.

What’s hard, in hacking as in fiction, is not writing; it’s deciding what to write. And the
vendors of commercial OSes have already decided, and published their decisions.

This has been generally understood for a long time. MS-DOS was duplicated, function-
ally, by a rival product, written from scratch, called ProDOS, that did all of the same
things in pretty much the same way. In other words, another company was able to write
code that did all of the same things as MS-DOS and sell it at a profit. If you are using the
Linux OS, you can get a free program called WINE which is a windows emulator; that is,
you can open up a window on your desktop that runs windows programs. It means that
a completely functional Windows OS has been recreated inside of Unix, like a ship in a
bottle. And Unix itself, which is vastly more sophisticated than MS-DOS, has been built
up from scratch many times over. Versions of it are sold by Sun, Hewlett-Packard, AT&T,
Silicon Graphics, IBM, and others.

13

People have, in other words, been re-writing basic OS code for so long that all of the tech-
nology that constituted an “operating system” in the traditional (pre-GUI) sense of that
phrase is now so cheap and common that it’s literally free. Not only could Gates and
Allen not sell MS-DOS today, they could not even give it away, because much more pow-
erful OSes are already being given away. Even the original Windows (which was the
only windows until 1995) has become worthless, in that there is no point in owning
something that can be emulated inside of Linux–which is, itself, free.

In this way the OS business is very different from, say, the car business. Even an old run-
down car has some value. You can use it for making runs to the dump, or strip it for
parts. It is the fate of manufactured goods to slowly and gently depreciate as they get old
and have to compete against more modern products.

But it is the fate of operating systems to become free.

Microsoft is a great software applications company. Applications–such as Microsoft
Word–are an area where innovation brings real, direct, tangible benefits to users. The in-
novations might be new technology straight from the research department, or they might
be in the category of bells and whistles, but in any event they are frequently useful and
they seem to make users happy. And Microsoft is in the process of becoming a great re-
search company. But Microsoft is not such a great operating systems company. And this
is not necessarily because their operating systems are all that bad from a purely techno-
logical standpoint. Microsoft’s OSes do have their problems, sure, but they are vastly
better than they used to be, and they are adequate for most people.

Why, then, do I say that Microsoft is not such a great operating systems company? Be-
cause the very nature of operating systems is such that it is senseless for them to be de-
veloped and owned by a specific company. It’s a thankless job to begin with. Applica-
tions create possibilities for millions of credulous users, whereas OSes impose limitations
on thousands of grumpy coders, and so OS-makers will forever be on the shit-list of any-
one who counts for anything in the high-tech world. Applications get used by people
whose big problem is understanding all of their features, whereas OSes get hacked by
coders who are annoyed by their limitations. The OS business has been good to Micro-
soft only insofar as it has given them the money they needed to launch a really good ap-
plications software business and to hire a lot of smart researchers. Now it really ought to
be jettisoned, like a spent booster stage from a rocket. The big question is whether Micro-
soft is capable of doing this. Or is it addicted to OS sales in the same way as Apple is to
selling hardware?

Keep in mind that Apple’s ability to monopolize its own hardware supply was once
cited, by learned observers, as a great advantage over Microsoft. At the time, it seemed
to place them in a much stronger position. In the end, it nearly killed them, and may kill
them yet. The problem, for Apple, was that most of the world’s computer users ended
up owning cheaper hardware. But cheap hardware couldn’t run MacOS, and so these
people switched to Windows.

Replace “hardware” with “operating systems,” and “Apple” with “Microsoft” and you
can see the same thing about to happen all over again. Microsoft dominates the OS mar-
ket, which makes them money and seems like a great idea for now. But cheaper and bet-
ter OSes are available, and they are growingly popular in parts of the world that are not
so saturated with computers as the US. Ten years from now, most of the world’s com-
puter users may end up owning these cheaper OSes. But these OSes do not, for the time
being, run any Microsoft applications, and so these people will use something else.

To put it more directly: every time someone decides to use a non-Microsoft OS, Micro-
soft’s OS division, obviously, loses a customer. But, as things stand now, Microsoft’s

14

applications division loses a customer too. This is not such a big deal as long as almost
everyone uses Microsoft OSes. But as soon as Windows’ market share begins to slip, the
math starts to look pretty dismal for the people in Redmond.

This argument could be countered by saying that Microsoft could simply re-compile its
applications to run under other OSes. But this strategy goes against most normal corpo-
rate instincts. Again the case of Apple is instructive. When things started to go south for
Apple, they should have ported their OS to cheap PC hardware. But they didn’t. In-
stead, they tried to make the most of their brilliant hardware, adding new features and
expanding the product line. But this only had the effect of making their OS more depen-
dent on these special hardware features, which made it worse for them in the end.

Likewise, when Microsoft’s position in the OS world is threatened, their corporate in-
stincts will tell them to pile more new features into their operating systems, and then re-
jigger their software applications to exploit those special features. But this will only have
the effect of making their applications dependent on an OS with declining market share,
and make it worse for them in the end.

The operating system market is a death-trap, a tar-pit, a slough of despond. There are
only two reasons to invest in Apple and Microsoft. (1) each of these companies is in what
we would call a co-dependency relationship with their customers. The customers Want
To Believe, and Apple and Microsoft know how to give them what they want. (2) each
company works very hard to add new features to their OSes, which works to secure cus-
tomer loyalty, at least for a little while.

Accordingly, most of the remainder of this essay will be about those two topics.

THE TECHNOSPHERE

Unix is the only OS remaining whose GUI (a vast suite of code called the X Windows Sys-
tem) is separate from the OS in the old sense of the phrase. This is to say that you can
run Unix in pure command-line mode if you want to, with no windows, icons, mouses,
etc. whatsoever, and it will still be Unix and capable of doing everything Unix is sup-
posed to do. But the other OSes: MacOS, the Windows family, and BeOS, have their GUIs
tangled up with the old-fashioned OS functions to the extent that they have to run in GUI
mode, or else they are not really running. So it’s no longer really possible to think of
GUIs as being distinct from the OS; they’re now an inextricable part of the OSes that they
belong to–and they are by far the largest part, and by far the most expensive and difficult
part to create.

There are only two ways to sell a product: price and features. When OSes are free, OS
companies cannot compete on price, and so they compete on features. This means that
they are always trying to outdo each other writing code that, until recently, was not con-
sidered to be part of an OS at all: stuff like GUIs. This explains a lot about how these
companies behave.

It explains why Microsoft added a browser to their OS, for example. It is easy to get free
browsers, just as to get free OSes. If browsers are free, and OSes are free, it would seem
that there is no way to make money from browsers or OSes. But if you can integrate a
browser into the OS and thereby imbue both of them with new features, you have a sal-
able product.

Setting aside, for the moment, the fact that this makes government anti-trust lawyers re-
ally mad, this strategy makes sense. At least, it makes sense if you assume (as Micro-
soft’s management appears to) that the OS has to be protected at all costs. The real ques-
tion is whether every new technological trend that comes down the pike ought to be used

15

as a crutch to maintain the OS’s dominant position. Confronted with the Web phenome-
non, Microsoft had to develop a really good web browser, and they did. But then they
had a choice: they could have made that browser work on many different OSes, which
would give Microsoft a strong position in the Internet world no matter what happened to
their OS market share. Or they could make the browser one with the OS, gambling that
this would make the OS look so modern and sexy that it would help to preserve their
dominance in that market. The problem is that when Microsoft’s OS position begins to
erode (and since it is currently at something like ninety percent, it can’t go anywhere but
down) it will drag everything else down with it.

In your high school geology class you probably were taught that all life on earth exists in
a paper-thin shell called the biosphere, which is trapped between thousands of miles of
dead rock underfoot, and cold dead radioactive empty space above. Companies that sell
OSes exist in a sort of technosphere. Underneath is technology that has already become
free. Above is technology that has yet to be developed, or that is too crazy and specula-
tive to be productized just yet. Like the Earth’s biosphere, the technosphere is very thin
compared to what is above and what is below.

But it moves a lot faster. In various parts of our world, it is possible to go and visit rich
fossil beds where skeleton lies piled upon skeleton, recent ones on top and more ancient
ones below. In theory they go all the way back to the first single-celled organisms. And
if you use your imagination a bit, you can understand that, if you hang around long
enough, you’ll become fossilized there too, and in time some more advanced organism
will become fossilized on top of you.

The fossil record–the La Brea Tar Pit–of software technology is the Internet. Anything
that shows up there is free for the taking (possibly illegal, but free). Executives at compa-
nies like Microsoft must get used to the experience–unthinkable in other industries–of
throwing millions of dollars into the development of new technologies, such as Web
browsers, and then seeing the same or equivalent software show up on the Internet two
years, or a year, or even just a few months, later.

By continuing to develop new technologies and add features onto their products they can
keep one step ahead of the fossilization process, but on certain days they must feel like
mammoths caught at La Brea, using all their energies to pull their feet, over and over
again, out of the sucking hot tar that wants to cover and envelop them.

Survival in this biosphere demands sharp tusks and heavy, stomping feet at one end of
the organization, and Microsoft famously has those. But trampling the other mammoths
into the tar can only keep you alive for so long. The danger is that in their obsession with
staying out of the fossil beds, these companies will forget about what lies above the bio-
sphere: the realm of new technology. In other words, they must hang onto their primitive
weapons and crude competitive instincts, but also evolve powerful brains. This appears
to be what Microsoft is doing with its research division, which has been hiring smart peo-
ple right and left (Here I should mention that although I know, and socialize with, several
people in that company’s research division, we never talk about business issues and I
have little to no idea what the hell they are up to. I have learned much more about Mi-
crosoft by using the Linux operating system than I ever would have done by using Win-
dows).

Never mind how Microsoft used to make money; today, it is making its money on a kind
of temporal arbitrage. “Arbitrage,” in the usual sense, means to make money by taking
advantage of differences in the price of something between different markets. It is spa-
tial, in other words, and hinges on the arbitrageur knowing what is going on simultane-
ously in different places. Microsoft is making money by taking advantage of differences

16

in the price of technology in different times. Temporal arbitrage, if I may coin a phrase,
hinges on the arbitrageur knowing what technologies people will pay money for next
year, and how soon afterwards those same technologies will become free. What spatial
and temporal arbitrage have in common is that both hinge on the arbitrageur’s being ex-
tremely well-informed; one about price gradients across space at a given time, and the
other about price gradients over time in a given place.

So Apple/Microsoft shower new features upon their users almost daily, in the hopes that
a steady stream of genuine technical innovations, combined with the “I want to believe”
phenomenon, will prevent their customers from looking across the road towards the
cheaper and better OSes that are available to them. The question is whether this makes
sense in the long run. If Microsoft is addicted to OSes as Apple is to hardware, then they
will bet the whole farm on their OSes, and tie all of their new applications and technolo-
gies to them. Their continued survival will then depend on these two things: adding
more features to their OSes so that customers will not switch to the cheaper alternatives,
and maintaining the image that, in some mysterious way, gives those customers the feel-
ing that they are getting something for their money.

The latter is a truly strange and interesting cultural phenomenon.

THE INTERFACE CULTURE

A few years ago I walked into a grocery store somewhere and was presented with the fol-
lowing tableau vivant: near the entrance a young couple were standing in front of a large
cosmetics display. The man was stolidly holding a shopping basket between his hands
while his mate raked blister-packs of makeup off the display and piled them in. Since
then I’ve always thought of that man as the personification of an interesting human ten-
dency: not only are we not offended to be dazzled by manufactured images, but we like
it. We practically insist on it. We are eager to be complicit in our own dazzlement: to pay
money for a theme park ride, vote for a guy who’s obviously lying to us, or stand there
holding the basket as it’s filled up with cosmetics.

I was in Disney World recently, specifically the part of it called the Magic Kingdom, walk-
ing up Main Street USA. This is a perfect gingerbready Victorian small town that culmi-
nates in a Disney castle. It was very crowded; we shuffled rather than walked. Directly
in front of me was a man with a camcorder. It was one of the new breed of camcorders
where instead of peering through a viewfinder you gaze at a flat-panel color screen about
the size of a playing card, which televises live coverage of whatever the camcorder is see-
ing. He was holding the appliance close to his face, so that it obstructed his view. Rather
than go see a real small town for free, he had paid money to see a pretend one, and rather
than see it with the naked eye he was watching it on television.

And rather than stay home and read a book, I was watching him.

Americans’ preference for mediated experiences is obvious enough, and I’m not going to
keep pounding it into the ground. I’m not even going to make snotty comments about
it–after all, I was at Disney World as a paying customer. But it clearly relates to the colos-
sal success of GUIs and so I have to talk about it some. Disney does mediated experi-
ences better than anyone. If they understood what OSes are, and why people use them,
they could crush Microsoft in a year or two.

In the part of Disney World called the Animal Kingdom there is a new attraction, slated
to open in March 1999, called the Maharajah Jungle Trek. It was open for sneak previews
when I was there. This is a complete stone-by-stone reproduction of a hypothetical ruin
in the jungles of India. According to its backstory, it was built by a local rajah in the 16th
Century as a game reserve. He would go there with his princely guests to hunt Bengal

17

tigers. As time went on it fell into disrepair and the tigers and monkeys took it over;
eventually, around the time of India’s independence, it became a government wildlife re-
serve, now open to visitors.

The place looks more like what I have just described than any actual building you might
find in India. All the stones in the broken walls are weathered as if monsoon rains had
been trickling down them for centuries, the paint on the gorgeous murals is flaked and
faded just so, and Bengal tigers loll amid stumps of broken columns. Where modern re-
pairs have been made to the ancient structure, they’ve been done, not as Disney’s engi-
neers would do them, but as thrifty Indian janitors would–with hunks of bamboo and
rust-spotted hunks of rebar. The rust is painted on, or course, and protected from real
rust by a plastic clear-coat, but you can’t tell unless you get down on your knees.

In one place you walk along a stone wall with a series of old pitted friezes carved into it.
One end of the wall has broken off and settled into the earth, perhaps because of some
long-forgotten earthquake, and so a broad jagged crack runs across a panel or two, but
the story is still readable: first, primordial chaos leads to a flourishing of many animal
species. Next, we see the Tree of Life surrounded by diverse animals. This is an obvious
allusion (or, in showbiz lingo, a tie-in) to the gigantic Tree of Life that dominates the cen-
ter of Disney’s Animal Kingdom just as the Castle dominates the Magic Kingdom or the
Sphere does Epcot. But it’s rendered in historically correct style and could probably fool
anyone who didn’t have a Ph.D. in Indian art history.

The next panel shows a mustachioed H. sapiens chopping down the Tree of Life with a
scimitar, and the animals fleeing every which way. The one after that shows the mis-
guided human getting walloped by a tidal wave, part of a latter-day Deluge presumably
brought on by his stupidity.

The final panel, then, portrays the Sapling of Life beginning to grow back, but now Man
has ditched the edged weapon and joined the other animals in standing around to adore
and praise it.

It is, in other words, a prophecy of the Bottleneck: the scenario, commonly espoused
among modern-day environmentalists, that the world faces an upcoming period of grave
ecological tribulations that will last for a few decades or centuries and end when we find
a new harmonious modus vivendi with Nature.

Taken as a whole the frieze is a pretty brilliant piece of work. Obviously it’s not an an-
cient Indian ruin, and some person or people now living deserve credit for it. But there
are no signatures on the Maharajah’s game reserve at Disney World. There are no signa-
tures on anything, because it would ruin the whole effect to have long strings of produc-
tion credits dangling from every custom-worn brick, as they do from Hollywood movies.

Among Hollywood writers, Disney has the reputation of being a real wicked stepmother.
It’s not hard to see why. Disney is in the business of putting out a product of seamless il-
lusion–a magic mirror that reflects the world back better than it really is. But a writer is
literally talking to his or her readers, not just creating an ambience or presenting them
with something to look at; and just as the command-line interface opens a much more di-
rect and explicit channel from user to machine than the GUI, so it is with words, writer,
and reader.

The word, in the end, is the only system of encoding thoughts–the only medium–that is
not fungible, that refuses to dissolve in the devouring torrent of electronic media (the
richer tourists at Disney World wear t-shirts printed with the names of famous designers,
because designs themselves can be bootlegged easily and with impunity. The only way
to make clothing that cannot be legally bootlegged is to print copyrighted and

18

trademarked words on it; once you have taken that step, the clothing itself doesn’t really
matter, and so a t-shirt is as good as anything else. T-shirts with expensive words on
them are now the insignia of the upper class. T-shirts with cheap words, or no words at
all, are for the commoners).

But this special quality of words and of written communication would have the same ef-
fect on Disney’s product as spray-painted graffiti on a magic mirror. So Disney does
most of its communication without resorting to words, and for the most part, the words
aren’t missed. Some of Disney’s older properties, such as Peter Pan, Winnie the Pooh,
and Alice in Wonderland, came out of books. But the authors’ names are rarely if ever
mentioned, and you can’t buy the original books at the Disney store. If you could, they
would all seem old and queer, like very bad knockoffs of the purer, more authentic Dis-
ney versions. Compared to more recent productions like Beauty and the Beast and Mu-
lan, the Disney movies based on these books (particularly Alice in Wonderland and Peter
Pan) seem deeply bizarre, and not wholly appropriate for children. That stands to rea-
son, because Lewis Carroll and J.M. Barrie were very strange men, and such is the nature
of the written word that their personal strangeness shines straight through all the layers
of Disneyfication like x-rays through a wall. Probably for this very reason, Disney seems
to have stopped buying books altogether, and now finds its themes and characters in folk
tales, which have the lapidary, time-worn quality of the ancient bricks in the Maharajah’s
ruins.

If I can risk a broad generalization, most of the people who go to Disney World have zero
interest in absorbing new ideas from books. Which sounds snide, but listen: they have no
qualms about being presented with ideas in other forms. Disney World is stuffed with
environmental messages now, and the guides at Animal Kingdom can talk your ear off
about biology.

If you followed those tourists home, you might find art, but it would be the sort of un-
signed folk art that’s for sale in Disney World’s African- and Asian-themed stores. In
general they only seem comfortable with media that have been ratified by great age, mas-
sive popular acceptance, or both.

In this world, artists are like the anonymous, illiterate stone carvers who built the great
cathedrals of Europe and then faded away into unmarked graves in the churchyard. The
cathedral as a whole is awesome and stirring in spite, and possibly because, of the fact
that we have no idea who built it. When we walk through it we are communing not with
individual stone carvers but with an entire culture.

Disney World works the same way. If you are an intellectual type, a reader or writer of
books, the nicest thing you can say about this is that the execution is superb. But it’s easy
to find the whole environment a little creepy, because something is missing: the transla-
tion of all its content into clear explicit written words, the attribution of the ideas to spe-
cific people. You can’t argue with it. It seems as if a hell of a lot might be being glossed
over, as if Disney World might be putting one over on us, and possibly getting away with
all kinds of buried assumptions and muddled thinking.

But this is precisely the same as what is lost in the transition from the command-line in-
terface to the GUI.

Disney and Apple/Microsoft are in the same business: short-circuiting laborious, explicit
verbal communication with expensively designed interfaces. Disney is a sort of user in-
terface unto itself–and more than just graphical. Let’s call it a Sensorial Interface. It can
be applied to anything in the world, real or imagined, albeit at staggering expense.

19

Why are we rejecting explicit word-based interfaces, and embracing graphical or senso-
rial ones–a trend that accounts for the success of both Microsoft and Disney?

Part of it is simply that the world is very complicated now–much more complicated than
the hunter-gatherer world that our brains evolved to cope with–and we simply can’t han-
dle all of the details. We have to delegate. We have no choice but to trust some nameless
artist at Disney or programmer at Apple or Microsoft to make a few choices for us, close
off some options, and give us a conveniently packaged executive summary.

But more importantly, it comes out of the fact that, during this century, intellectualism
failed, and everyone knows it. In places like Russia and Germany, the common people
agreed to loosen their grip on traditional folkways, mores, and religion, and let the intel-
lectuals run with the ball, and they screwed everything up and turned the century into an
abbatoir. Those wordy intellectuals used to be merely tedious; now they seem kind of
dangerous as well.

We Americans are the only ones who didn’t get creamed at some point during all of this.
We are free and prosperous because we have inherited political and values systems fabri-
cated by a particular set of eighteenth-century intellectuals who happened to get it right.
But we have lost touch with those intellectuals, and with anything like intellectualism,
even to the point of not reading books any more, though we are literate. We seem much
more comfortable with propagating those values to future generations nonverbally,
through a process of being steeped in media. Apparently this actually works to some de-
gree, for police in many lands are now complaining that local arrestees are insisting on
having their Miranda rights read to them, just like perps in American TV cop shows.
When it’s explained to them that they are in a different country, where those rights do not
exist, they become outraged. Starsky and Hutch reruns, dubbed into diverse languages,
may turn out, in the long run, to be a greater force for human rights than the Declaration
of Independence.

A huge, rich, nuclear-tipped culture that propagates its core values through media steep-
age seems like a bad idea. There is an obvious risk of running astray here. Words are the
only immutable medium we have, which is why they are the vehicle of choice for ex-
tremely important concepts like the Ten Commandments, the Koran, and the Bill of
Rights. Unless the messages conveyed by our media are somehow pegged to a fixed,
written set of precepts, they can wander all over the place and possibly dump loads of
crap into people’s minds.

Orlando used to have a military installation called McCoy Air Force Base, with long run-
ways from which B-52s could take off and reach Cuba, or just about anywhere else, with
loads of nukes. But now McCoy has been scrapped and repurposed. It has been ab-
sorbed into Orlando’s civilian airport. The long runways are being used to land
747-loads of tourists from Brazil, Italy, Russia and Japan, so that they can come to Disney
World and steep in our media for a while.

To traditional cultures, especially word-based ones such as Islam, this is infinitely more
threatening than the B-52s ever were. It is obvious, to everyone outside of the United
States, that our arch-buzzwords, multiculturalism and diversity, are false fronts that are
being used (in many cases unwittingly) to conceal a global trend to eradicate cultural dif-
ferences. The basic tenet of multiculturalism (or “honoring diversity” or whatever you
want to call it) is that people need to stop judging each other-to stop asserting (and, even-
tually, to stop believing) that this is right and that is wrong, this true and that false, one
thing ugly and another thing beautiful, that God exists and has this or that set of quali-
ties.

20

The lesson most people are taking home from the Twentieth Century is that, in order for
a large number of different cultures to coexist peacefully on the globe (or even in a neigh-
borhood) it is necessary for people to suspend judgment in this way. Hence (I would ar-
gue) our suspicion of, and hostility towards, all authority figures in modern culture. As
David Foster Wallace has explained in his essay “E Unibus Pluram,” this is the funda-
mental message of television; it is the message that people take home, anyway, after they
have steeped in our media long enough. It’s not expressed in these highfalutin terms, of
course. It comes through as the presumption that all authority figures–teachers, generals,
cops, ministers, politicians–are hypocritical buffoons, and that hip jaded coolness is the
only way to be.

The problem is that once you have done away with the ability to make judgments as to
right and wrong, true and false, etc., there’s no real culture left. All that remains is clog
dancing and macrame. The ability to make judgments, to believe things, is the entire it
point of having a culture. I think this is why guys with machine guns sometimes pop up
in places like Luxor, and begin pumping bullets into Westerners. They perfectly under-
stand the lesson of McCoy Air Force Base. When their sons come home wearing Chicago
Bulls caps with the bills turned sideways, the dads go out of their minds.

The global anti-culture that has been conveyed into every cranny of the world by televi-
sion is a culture unto itself, and by the standards of great and ancient cultures like Islam
and France, it seems grossly inferior, at least at first. The only good thing you can say
about it is that it makes world wars and Holocausts less likely–and that is actually a
pretty good thing!

The only real problem is that anyone who has no culture, other than this global monocul-
ture, is completely screwed. Anyone who grows up watching TV, never sees any religion
or philosophy, is raised in an atmosphere of moral relativism, learns about civics from
watching bimbo eruptions on network TV news, and attends a university where post-
modernists vie to outdo each other in demolishing traditional notions of truth and qual-
ity, is going to come out into the world as one pretty feckless human being.
And–again–perhaps the goal of all this is to make us feckless so we won’t nuke each
other.

On the other hand, if you are raised within some specific culture, you end up with a basic
set of tools that you can use to think about and understand the world. You might use
those tools to reject the culture you were raised in, but at least you’ve got some tools.

In this country, the people who run things–who populate major law firms and corporate
boards–understand all of this at some level. They pay lip service to multiculturalism and
diversity and non-judgmentalness, but they don’t raise their own children that way. I
have highly educated, technically sophisticated friends who have moved to small towns
in Iowa to live and raise their children, and there are Hasidic Jewish enclaves in New
York where large numbers of kids are being brought up according to traditional beliefs.
Any suburban community might be thought of as a place where people who hold certain
(mostly implicit) beliefs go to live among others who think the same way.

And not only do these people feel some responsibility to their own children, but to the
country as a whole. Some of the upper class are vile and cynical, of course, but many
spend at least part of their time fretting about what direction the country is going in, and
what responsibilities they have. And so issues that are important to book-reading intel-
lectuals, such as global environmental collapse, eventually percolate through the porous
buffer of mass culture and show up as ancient Hindu ruins in Orlando.

You may be asking: what the hell does all this have to do with operating systems? As
I’ve explained, there is no way to explain the domination of the OS market by

21

Apple/Microsoft without looking to cultural explanations, and so I can’t get anywhere,
in this essay, without first letting you know where I’m coming from vis-a-vis contempo-
rary culture.

Contemporary culture is a two-tiered system, like the Morlocks and the Eloi in H.G.
Wells’s The Time Machine, except that it’s been turned upside down. In The Time Ma-
chine the Eloi were an effete upper class, supported by lots of subterranean Morlocks
who kept the technological wheels turning. But in our world it’s the other way round.
The Morlocks are in the minority, and they are running the show, because they under-
stand how everything works. The much more numerous Eloi learn everything they
know from being steeped from birth in electronic media directed and controlled by book-
reading Morlocks. So many ignorant people could be dangerous if they got pointed in
the wrong direction, and so we’ve evolved a popular culture that is (a) almost unbeliev-
ably infectious and (b) neuters every person who gets infected by it, by rendering them
unwilling to make judgments and incapable of taking stands.

Morlocks, who have the energy and intelligence to comprehend details, go out and mas-
ter complex subjects and produce Disney-like Sensorial Interfaces so that Eloi can get the
gist without having to strain their minds or endure boredom. Those Morlocks will go to
India and tediously explore a hundred ruins, then come home and built sanitary bug-free
versions: highlight films, as it were. This costs a lot, because Morlocks insist on good cof-
fee and first-class airline tickets, but that’s no problem because Eloi like to be dazzled and
will gladly pay for it all.

Now I realize that most of this probably sounds snide and bitter to the point of absurdity:
your basic snotty intellectual throwing a tantrum about those unlettered philistines. As if
I were a self-styled Moses, coming down from the mountain all alone, carrying the stone
tablets bearing the Ten Commandments carved in immutable stone–the original com-
mand-line interface–and blowing his stack at the weak, unenlightened Hebrews worship-
ping images. Not only that, but it sounds like I’m pumping some sort of conspiracy the-
ory.

But that is not where I’m going with this. The situation I describe, here, could be bad, but
doesn’t have to be bad and isn’t necessarily bad now: It simply is the case that we are
way too busy, nowadays, to comprehend everything in detail. And it’s better to compre-
hend it dimly, through an interface, than not at all. Better for ten million Eloi to go on the
Kilimanjaro Safari at Disney World than for a thousand cardiovascular surgeons and mu-
tual fund managers to go on “real” ones in Kenya. The boundary between these two
classes is more porous than I’ve made it sound. I’m always running into regular
dudes–construction workers, auto mechanics, taxi drivers, galoots in general–who were
largely aliterate until something made it necessary for them to become readers and start
actually thinking about things. Perhaps they had to come to grips with alcoholism, per-
haps they got sent to jail, or came down with a disease, or suffered a crisis in religious
faith, or simply got bored. Such people can get up to speed on particular subjects quite
rapidly. Sometimes their lack of a broad education makes them over-apt to go off on in-
tellectual wild goose chases, but, hey, at least a wild goose chase gives you some exercise.
The spectre of a polity controlled by the fads and whims of voters who actually believe
that there are significant differences between Bud Lite and Miller Lite, and who think that
professional wrestling is for real, is naturally alarming to people who don’t. But then
countries controlled via the command-line interface, as it were, by double-domed intel-
lectuals, be they religious or secular, are generally miserable places to live. Sophisticated
people deride Disneyesque entertainments as pat and saccharine, but, hey, if the result of
that is to instill basically warm and sympathetic reflexes, at a preverbal level, into hun-
dreds of millions of unlettered media-steepers, then how bad can it be? We killed a

22

lobster in our kitchen last night and my daughter cried for an hour. The Japanese, who
used to be just about the fiercest people on earth, have become infatuated with cuddly
adorable cartoon characters. My own family–the people I know best–is divided about
evenly between people who will probably read this essay and people who almost cer-
tainly won’t, and I can’t say for sure that one group is necessarily warmer, happier, or
better-adjusted than the other.

MORLOCKS AND ELOI AT THE KEYBOARD

Back in the days of the command-line interface, users were all Morlocks who had to con-
vert their thoughts into alphanumeric symbols and type them in, a grindingly tedious
process that stripped away all ambiguity, laid bare all hidden assumptions, and cruelly
punished laziness and imprecision. Then the interface-makers went to work on their
GUIs, and introduced a new semiotic layer between people and machines. People who
use such systems have abdicated the responsibility, and surrendered the power, of send-
ing bits directly to the chip that’s doing the arithmetic, and handed that responsibility
and power over to the OS. This is tempting because giving clear instructions, to anyone
or anything, is difficult. We cannot do it without thinking, and depending on the com-
plexity of the situation, we may have to think hard about abstract things, and consider
any number of ramifications, in order to do a good job of it. For most of us, this is hard
work. We want things to be easier. How badly we want it can be measured by the size of
Bill Gates’s fortune.

The OS has (therefore) become a sort of intellectual labor-saving device that tries to trans-
late humans’ vaguely expressed intentions into bits. In effect we are asking our comput-
ers to shoulder responsibilities that have always been considered the province of human
beings–we want them to understand our desires, to anticipate our needs, to foresee con-
sequences, to make connections, to handle routine chores without being asked, to remind
us of what we ought to be reminded of while filtering out noise.

At the upper (which is to say, closer to the user) levels, this is done through a set of con-
ventions–menus, buttons, and so on. These work in the sense that analogies work: they
help Eloi understand abstract or unfamiliar concepts by likening them to something
known. But the loftier word “metaphor” is used.

The overarching concept of the MacOS was the “desktop metaphor” and it subsumed
any number of lesser (and frequently conflicting, or at least mixed) metaphors. Under a
GUI, a file (frequently called “document”) is metaphrased as a window on the screen
(which is called a “desktop”). The window is almost always too small to contain the doc-
ument and so you “move around,” or, more pretentiously, “navigate” in the document by
“clicking and dragging” the “thumb” on the “scroll bar.” When you “type” (using a key-
board) or “draw” (using a “mouse”) into the “window” or use pull-down “menus” and
“dialog boxes” to manipulate its contents, the results of your labors get stored (at least in
theory) in a “file,” and later you can pull the same information back up into another
“window.” When you don’t want it anymore, you “drag” it into the “trash.”

There is massively promiscuous metaphor-mixing going on here, and I could deconstruct
it ’til the cows come home, but I won’t. Consider only one word: “document.” When we
document something in the real world, we make fixed, permanent, immutable records of
it. But computer documents are volatile, ephemeral constellations of data. Sometimes
(as when you’ve just opened or saved them) the document as portrayed in the window is
identical to what is stored, under the same name, in a file on the disk, but other times (as
when you have made changes without saving them) it is completely different. In any
case, every time you hit “Save” you annihilate the previous version of the “document”

23

and replace it with whatever happens to be in the window at the moment. So even the
word “save” is being used in a sense that is grotesquely misleading—“destroy one ver-
sion, save another” would be more accurate.

Anyone who uses a word processor for very long inevitably has the experience of putting
hours of work into a long document and then losing it because the computer crashes or
the power goes out. Until the moment that it disappears from the screen, the document
seems every bit as solid and real as if it had been typed out in ink on paper. But in the
next moment, without warning, it is completely and irretrievably gone, as if it had never
existed. The user is left with a feeling of disorientation (to say nothing of annoyance)
stemming from a kind of metaphor shear–you realize that you’ve been living and think-
ing inside of a metaphor that is essentially bogus.

So GUIs use metaphors to make computing easier, but they are bad metaphors. Learning
to use them is essentially a word game, a process of learning new definitions of words
like “window” and “document” and “save” that are different from, and in many cases al-
most diametrically opposed to, the old. Somewhat improbably, this has worked very
well, at least from a commercial standpoint, which is to say that Apple/Microsoft have
made a lot of money off of it. All of the other modern operating systems have learned
that in order to be accepted by users they must conceal their underlying gutwork beneath
the same sort of spackle. This has some advantages: if you know how to use one GUI op-
erating system, you can probably work out how to use any other in a few minutes. Ev-
erything works a little differently, like European plumbing–but with some fiddling
around, you can type a memo or surf the web.

Most people who shop for OSes (if they bother to shop at all) are comparing not the un-
derlying functions but the superficial look and feel. The average buyer of an OS is not re-
ally paying for, and is not especially interested in, the low-level code that allocates mem-
ory or writes bytes onto the disk. What we’re really buying is a system of metaphors.
And–much more important–what we’re buying into is the underlying assumption that
metaphors are a good way to deal with the world.

Recently a lot of new hardware has become available that gives computers numerous in-
teresting ways of affecting the real world: making paper spew out of printers, causing
words to appear on screens thousands of miles away, shooting beams of radiation
through cancer patients, creating realistic moving pictures of the Titanic. Windows is
now used as an OS for cash registers and bank tellers’ terminals. My satellite TV system
uses a sort of GUI to change channels and show program guides. Modern cellular tele-
phones have a crude GUI built into a tiny LCD screen. Even Legos now have a GUI: you
can buy a Lego set called Mindstorms that enables you to build little Lego robots and
program them through a GUI on your computer.

So we are now asking the GUI to do a lot more than serve as a glorified typewriter. Now
we want to become a generalized tool for dealing with reality. This has become a bo-
nanza for companies that make a living out of bringing new technology to the mass mar-
ket.

Obviously you cannot sell a complicated technological system to people without some
sort of interface that enables them to use it. The internal combustion engine was a tech-
nological marvel in its day, but useless as a consumer good until a clutch, transmission,
steering wheel and throttle were connected to it. That odd collection of gizmos, which
survives to this day in every car on the road, made up what we would today call a user
interface. But if cars had been invented after Macintoshes, carmakers would not have
bothered to gin up all of these arcane devices. We would have a computer screen instead
of a dashboard, and a mouse (or at best a joystick) instead of a steering wheel, and we’d

24

shift gears by pulling down a menu:

PARK — REVERSE — NEUTRAL —- 3 2 1 — Help...

A few lines of computer code can thus be made to substitute for any imaginable mechan-
ical interface. The problem is that in many cases the substitute is a poor one. Driving a
car through a GUI would be a miserable experience. Even if the GUI were perfectly bug-
free, it would be incredibly dangerous, because menus and buttons simply can’t be as re-
sponsive as direct mechanical controls. My friend’s dad, the gentleman who was restor-
ing the MGB, never would have bothered with it if it had been equipped with a GUI. It
wouldn’t have been any fun.

The steering wheel and gearshift lever were invented during an era when the most com-
plicated technology in most homes was a butter churn. Those early carmakers were sim-
ply lucky, in that they could dream up whatever interface was best suited to the task of
driving an automobile, and people would learn it. Likewise with the dial telephone and
the AM radio. By the time of the Second World War, most people knew several inter-
faces: they could not only churn butter but also drive a car, dial a telephone, turn on a ra-
dio, summon flame from a cigarette lighter, and change a light bulb.

But now every little thing–wristwatches, VCRs, stoves–is jammed with features, and ev-
ery feature is useless without an interface. If you are like me, and like most other con-
sumers, you have never used ninety percent of the available features on your microwave
oven, VCR, or cellphone. You don’t even know that these features exist. The small bene-
fit they might bring you is outweighed by the sheer hassle of having to learn about them.
This has got to be a big problem for makers of consumer goods, because they can’t com-
pete without offering features.

It’s no longer acceptable for engineers to invent a wholly novel user interface for every
new product, as they did in the case of the automobile, partly because it’s too expensive
and partly because ordinary people can only learn so much. If the VCR had been in-
vented a hundred years ago, it would have come with a thumbwheel to adjust the track-
ing and a gearshift to change between forward and reverse and a big cast-iron handle to
load or to eject the cassettes. It would have had a big analog clock on the front of it, and
you would have set the time by moving the hands around on the dial. But because the
VCR was invented when it was–during a sort of awkward transitional period between
the era of mechanical interfaces and GUIs–it just had a bunch of pushbuttons on the
front, and in order to set the time you had to push the buttons in just the right way. This
must have seemed reasonable enough to the engineers responsible for it, but to many
users it was simply impossible. Thus the famous blinking 12:00 that appears on so many
VCRs. Computer people call this “the blinking twelve problem”. When they talk about
it, though, they usually aren’t talking about VCRs.

Modern VCRs usually have some kind of on-screen programming, which means that you
can set the time and control other features through a sort of primitive GUI. GUIs have
virtual pushbuttons too, of course, but they also have other types of virtual controls, like
radio buttons, checkboxes, text entry boxes, dials, and scrollbars. Interfaces made out of
these components seem to be a lot easier, for many people, than pushing those little but-
tons on the front of the machine, and so the blinking 12:00 itself is slowly disappearing
from America’s living rooms. The blinking twelve problem has moved on to plague
other technologies.

So the GUI has gone beyond being an interface to personal computers, and become a sort
of meta-interface that is pressed into service for every new piece of consumer technology.
It is rarely an ideal fit, but having an ideal, or even a good interface is no longer the

25

priority; the important thing now is having some kind of interface that customers will ac-
tually use, so that manufacturers can claim, with a straight face, that they are offering
new features.

We want GUIs largely because they are convenient and because they are easy– or at least
the GUI makes it seem that way Of course, nothing is really easy and simple, and putting
a nice interface on top of it does not change that fact. A car controlled through a GUI
would be easier to drive than one controlled through pedals and steering wheel, but it
would be incredibly dangerous.

By using GUIs all the time we have insensibly bought into a premise that few people
would have accepted if it were presented to them bluntly: namely, that hard things can be
made easy, and complicated things simple, by putting the right interface on them. In or-
der to understand how bizarre this is, imagine that book reviews were written according
to the same values system that we apply to user interfaces: “The writing in this book is
marvelously simple-minded and glib; the author glosses over complicated subjects and
employs facile generalizations in almost every sentence. Readers rarely have to think,
and are spared all of the difficulty and tedium typically involved in reading old-fash-
ioned books.” As long as we stick to simple operations like setting the clocks on our
VCRs, this is not so bad. But as we try to do more ambitious things with our technolo-
gies, we inevitably run into the problem of:

METAPHOR SHEAR

I began using Microsoft Word as soon as the first version was released around 1985. Af-
ter some initial hassles I found it to be a better tool than MacWrite, which was its only
competition at the time. I wrote a lot of stuff in early versions of Word, storing it all on
floppies, and transferred the contents of all my floppies to my first hard drive, which I ac-
quired around 1987. As new versions of Word came out I faithfully upgraded, reasoning
that as a writer it made sense for me to spend a certain amount of money on tools.

Sometime in the mid-1980’s I attempted to open one of my old, circa-1985 Word docu-
ments using the version of Word then current: 6.0 It didn’t work. Word 6.0 did not recog-
nize a document created by an earlier version of itself. By opening it as a text file, I was
able to recover the sequences of letters that made up the text of the document. My words
were still there. But the formatting had been run through a log chipper–the words I’d
written were interrupted by spates of empty rectangular boxes and gibberish.

Now, in the context of a business (the chief market for Word) this sort of thing is only an
annoyance–one of the routine hassles that go along with using computers. It’s easy to
buy little file converter programs that will take care of this problem. But if you are a
writer whose career is words, whose professional identity is a corpus of written docu-
ments, this kind of thing is extremely disquieting. There are very few fixed assumptions
in my line of work, but one of them is that once you have written a word, it is written,
and cannot be unwritten. The ink stains the paper, the chisel cuts the stone, the stylus
marks the clay, and something has irrevocably happened (my brother-in-law is a theolo-
gian who reads 3250-year-old cuneiform tablets–he can recognize the handwriting of par-
ticular scribes, and identify them by name). But word-processing software–particularly
the sort that employs special, complex file formats–has the eldritch power to unwrite
things. A small change in file formats, or a few twiddled bits, and months’ or years’ liter-
ary output can cease to exist.

Now this was technically a fault in the application (Word 6.0 for the Macintosh) not the
operating system (MacOS 7 point something) and so the initial target of my annoyance
was the people who were responsible for Word. But. On the other hand, I could have

26

chosen the “save as text” option in Word and saved all of my documents as simple tele-
grams, and this problem would not have arisen. Instead I had allowed myself to be se-
duced by all of those flashy formatting options that hadn’t even existed until GUIs had
come along to make them practicable. I had gotten into the habit of using them to make
my documents look pretty (perhaps prettier than they deserved to look; all of the old
documents on those floppies turned out to be more or less crap). Now I was paying the
price for that self-indulgence. Technology had moved on and found ways to make my
documents look even prettier, and the consequence of it was that all old ugly documents
had ceased to exist.

It was–if you’ll pardon me for a moment’s strange little fantasy–as if I’d gone to stay at
some resort, some exquisitely designed and art-directed hotel, placing myself in the
hands of past masters of the Sensorial Interface, and had sat down in my room and writ-
ten a story in ballpoint pen on a yellow legal pad, and when I returned from dinner, dis-
covered that the maid had taken my work away and left behind in its place a quill pen
and a stack of fine parchment–explaining that the room looked ever so much finer this
way, and it was all part of a routine upgrade. But written on these sheets of paper, in
flawless penmanship, were long sequences of words chosen at random from the dictio-
nary. Appalling, sure, but I couldn’t really lodge a complaint with the management, be-
cause by staying at this resort I had given my consent to it. I had surrendered my Mor-
lock credentials and become an Eloi.

LINUX

During the late 1980’s and early 1990’s I spent a lot of time programming Macintoshes,
and eventually decided for fork over several hundred dollars for an Apple product called
the Macintosh Programmer ’s Workshop, or MPW. MPW had competitors, but it was un-
questionably the premier software development system for the Mac. It was what Apple’s
own engineers used to write Macintosh code. Given that MacOS was far more technolog-
ically advanced, at the time, than its competition, and that Linux did not even exist yet,
and given that this was the actual program used by Apple’s world-class team of creative
engineers, I had high expectations. It arrived on a stack of floppy disks about a foot high,
and so there was plenty of time for my excitement to build during the endless installation
process. The first time I launched MPW, I was probably expecting some kind of touch-
feely multimedia showcase. Instead it was austere, almost to the point of being intimi-
dating. It was a scrolling window into which you could type simple, unformatted text.
The system would then interpret these lines of text as commands, and try to execute
them.

It was, in other words, a glass teletype running a command line interface. It came with
all sorts of cryptic but powerful commands, which could be invoked by typing their
names, and which I learned to use only gradually. It was not until a few years later,
when I began messing around with Unix, that I understood that the command line inter-
face embodied in MPW was a re-creation of Unix.

In other words, the first thing that Apple’s hackers had done when they’d got the MacOS
up and running–probably even before they’d gotten it up and running–was to re-create
the Unix interface, so that they would be able to get some useful work done. At the time,
I simply couldn’t get my mind around this, but: as far as Apple’s hackers were con-
cerned, the Mac’s vaunted Graphical User Interface was an impediment, something to be
circumvented before the little toaster even came out onto the market.

Even before my Powerbook crashed and obliterated my big file in July 1995, there had
been danger signs. An old college buddy of mine, who starts and runs high-tech

27

companies in Boston, had developed a commercial product using Macintoshes as the
front end. Basically the Macs were high-performance graphics terminals, chosen for their
sweet user interface, giving users access to a large database of graphical information
stored on a network of much more powerful, but less user-friendly, computers. This fel-
low was the second person who turned me on to Macintoshes, by the way, and through
the mid-1980’s we had shared the thrill of being high-tech cognoscenti, using superior
Apple technology in a world of DOS-using knuckleheads. Early versions of my friend’s
system had worked well, he told me, but when several machines joined the network,
mysterious crashes began to occur; sometimes the whole network would just freeze. It
was one of those bugs that could not be reproduced easily. Finally they figured out that
these network crashes were triggered whenever a user, scanning the menus for a particu-
lar item, held down the mouse button for more than a couple of seconds.

Fundamentally, the MacOS could only do one thing at a time. Drawing a menu on the
screen is one thing. So when a menu was pulled down, the Macintosh was not capable of
doing anything else until that indecisive user released the button.

This is not such a bad thing in a single-user, single-process machine (although it’s a fairly
bad thing), but it’s no good in a machine that is on a network, because being on a net-
work implies some kind of continual low-level interaction with other machines. By fail-
ing to respond to the network, the Mac caused a network-wide crash.

In order to work with other computers, and with networks, and with various different
types of hardware, an OS must be incomparably more complicated and powerful than ei-
ther MS-DOS or the original MacOS. The only way of connecting to the Internet that’s
worth taking seriously is PPP, the Point-to-Point Protocol, which (never mind the details)
makes your computer–temporarily–a full-fledged member of the Global Internet, with its
own unique address, and various privileges, powers, and responsibilities appertaining
thereunto. Technically it means your machine is running the TCP/IP protocol, which, to
make a long story short, revolves around sending packets of data back and forth, in no
particular order, and at unpredictable times, according to a clever and elegant set of rules.
But sending a packet of data is one thing, and so an OS that can only do one thing at a
time cannot simultaneously be part of the Internet and do anything else. When TCP/IP
was invented, running it was an honor reserved for Serious Computers–mainframes and
high-powered minicomputers used in technical and commercial settings–and so the pro-
tocol is engineered around the assumption that every computer using it is a serious ma-
chine, capable of doing many things at once. Not to put too fine a point on it, a Unix ma-
chine. Neither MacOS nor MS-DOS was originally built with that in mind, and so when
the Internet got hot, radical changes had to be made.

When my Powerbook broke my heart, and when Word stopped recognizing my old files,
I jumped to Unix. The obvious alternative to MacOS would have been Windows. I
didn’t really have anything against Microsoft, or Windows. But it was pretty obvious,
now, that old PC operating systems were overreaching, and showing the strain, and, per-
haps, were best avoided until they had learned to walk and chew gum at the same time.

The changeover took place on a particular day in the summer of 1995. I had been San
Francisco for a couple of weeks, using my PowerBook to work on a document. The docu-
ment was too big to fit onto a single floppy, and so I hadn’t made a backup since leaving
home. The PowerBook crashed and wiped out the entire file.

It happened just as I was on my way out the door to visit a company called Electric Com-
munities, which in those days was in Los Altos. I took my PowerBook with me. My
friends at Electric Communities were Mac users who had all sorts of utility software for
unerasing files and recovering from disk crashes, and I was certain I could get most of the

28

file back.

As it turned out, two different Mac crash recovery utilities were unable to find any trace
that my file had ever existed. It was completely and systematically wiped out. We went
through that hard disk block by block and found disjointed fragments of countless old,
discarded, forgotten files, but none of what I wanted. The metaphor shear was especially
brutal that day. It was sort of like watching the girl you’ve been in love with for ten years
get killed in a car wreck, and then attending her autopsy, and learning that underneath
the clothes and makeup she was just flesh and blood.

I must have been reeling around the offices of Electric Communities in some kind of pri-
mal Jungian fugue, because at this moment three weirdly synchronistic things happened.

(1) Randy Farmer, a co-founder of the company, came in for a quick visit along with his
family–he was recovering from back surgery at the time. He had some hot gossip:
“Windows 95 mastered today.” What this meant was that Microsoft’s new operat-
ing system had, on this day, been placed on a special compact disk known as a
golden master, which would be used to stamp out a jintillion copies in preparation
for its thunderous release a few weeks later. This news was received peevishly by
the staff of Electric Communities, including one whose office door was plastered
with the usual assortment of cartoons and novelties, e.g.

(2) a copy of a Dilbert cartoon in which Dilbert, the long-suffering corporate software
engineer, encounters a portly, bearded, hairy man of a certain age–a bit like Santa
Claus, but darker, with a certain edge about him. Dilbert recognizes this man,
based upon his appearance and affect, as a Unix hacker, and reacts with a certain
mixture of nervousness, awe, and hostility. Dilbert jabs weakly at the disturbing in-
terloper for a couple of frames; the Unix hacker listens with a kind of infuriating,
beatific calm, then, in the last frame, reaches into his pocket. “Here’s a nickel, kid,”
he says, “go buy yourself a real computer.”

(3) the owner of the door, and the cartoon, was one Doug Barnes. Barnes was known
to harbor certain heretical opinions on the subject of operating systems. Unlike
most Bay Area techies who revered the Macintosh, considering it to be a true
hacker ’s machine, Barnes was fond of pointing out that the Mac, with its hermeti-
cally sealed architecture, was actually hostile to hackers, who are prone to tinkering
and dogmatic about openness. By contrast, the IBM-compatible line of machines,
which can easily be taken apart and plugged back together, was much more hack-
able.

So when I got home I began messing around with Linux, which is one of many, many dif-
ferent concrete implementations of the abstract, Platonic ideal called Unix. I was not
looking forward to changing over to a new OS, because my credit cards were still smok-
ing from all the money I’d spent on Mac hardware over the years. But Linux’s great
virtue was, and is, that it would run on exactly the same sort of hardware as the Micro-
soft OSes–which is to say, the cheapest hardware in existence. As if to demonstrate why
this was a great idea, I was, within a week or two of returning home, able to get my hand
on a then-decent computer (a 33-MHz 486 box) for free, because I knew a guy who
worked in an office where they were simply being thrown away. Once I got it home, I
yanked the hood off, stuck my hands in, and began switching cards around. If some-
thing didn’t work, I went to a used-computer outlet and pawed through a bin full of
components and bought a new card for a few bucks.

The availability of all this cheap but effective hardware was an unintended consequence
of decisions that had been made more than a decade earlier by IBM and Microsoft. When
Windows came out, and brought the GUI to a much larger market, the hardware regime

29

changed: the cost of color video cards and high-resolution monitors began to drop, and is
dropping still. This free-for-all approach to hardware meant that Windows was unavoid-
ably clunky compared to MacOS. But the GUI brought computing to such a vast audi-
ence that volume went way up and prices collapsed. Meanwhile Apple, which so badly
wanted a clean, integrated OS with video neatly integrated into processing hardware,
had fallen far behind in market share, at least partly because their beautiful hardware
cost so much.

But the price that we Mac owners had to pay for superior aesthetics and engineering was
not merely a financial one. There was a cultural price too, stemming from the fact that
we couldn’t open up the hood and mess around with it. Doug Barnes was right. Apple,
in spite of its reputation as the machine of choice of scruffy, creative hacker types, had ac-
tually created a machine that discouraged hacking, while Microsoft, viewed as a techno-
logical laggard and copycat, had created a vast, disorderly parts bazaar–a primordial
soup that eventually self-assembled into Linux.

THE HOLE HAWG OF OPERATING SYSTEMS

Unix has always lurked provocatively in the background of the operating system wars,
like the Russian Army. Most people know it only by reputation, and its reputation, as the
Dilbert cartoon suggests, is mixed. But everyone seems to agree that if it could only get
its act together and stop surrendering vast tracts of rich agricultural land and hundreds
of thousands of prisoners of war to the onrushing invaders, it could stomp them (and all
other opposition) flat.

It is difficult to explain how Unix has earned this respect without going into mind-smash-
ing technical detail. Perhaps the gist of it can be explained by telling a story about drills.

The Hole Hawg is a drill made by the Milwaukee Tool Company. If you look in a typical
hardware store you may find smaller Milwaukee drills but not the Hole Hawg, which is
too powerful and too expensive for homeowners. The Hole Hawg does not have the pis-
tol-like design of a cheap homeowner’s drill. It is a cube of solid metal with a handle
sticking out of one face and a chuck mounted in another. The cube contains a disconcert-
ingly potent electric motor. You can hold the handle and operate the trigger with your
index finger, but unless you are exceptionally strong you cannot control the weight of the
Hole Hawg with one hand; it is a two-hander all the way. In order to fight off the
counter-torque of the Hole Hawg you use a separate handle (provided), which you screw
into one side of the iron cube or the other depending on whether you are using your left
or right hand to operate the trigger. This handle is not a sleek, ergonomically designed
item as it would be in a homeowner’s drill. It is simply a foot-long chunk of regular gal-
vanized pipe, threaded on one end, with a black rubber handle on the other. If you lose
it, you just go to the local plumbing supply store and buy another chunk of pipe.

During the Eighties I did some construction work. One day, another worker leaned a
ladder against the outside of the building that we were putting up, climbed up to the sec-
ond-story level, and used the Hole Hawg to drill a hole through the exterior wall. At
some point, the drill bit caught in the wall. The Hole Hawg, following its one and only
imperative, kept going. It spun the worker’s body around like a rag doll, causing him to
knock his own ladder down. Fortunately he kept his grip on the Hole Hawg, which re-
mained lodged in the wall, and he simply dangled from it and shouted for help until
someone came along and reinstated the ladder.

I myself used a Hole Hawg to drill many holes through studs, which it did as a blender
chops cabbage. I also used it to cut a few six-inch-diameter holes through an old lath-
and-plaster ceiling. I chucked in a new hole saw, went up to the second story, reached

30

down between the newly installed floor joists, and began to cut through the first-floor
ceiling below. Where my homeowner ’s drill had labored and whined to spin the huge bit
around, and had stalled at the slightest obstruction, the Hole Hawg rotated with the
stupid consistency of a spinning planet. When the hole saw seized up, the Hole Hawg
spun itself and me around, and crushed one of my hands between the steel pipe handle
and a joist, producing a few lacerations, each surrounded by a wide corona of deeply
bruised flesh. It also bent the hole saw itself, though not so badly that I couldn’t use it.
After a few such run-ins, when I got ready to use the Hole Hawg my heart actually began
to pound with atavistic terror.

But I never blamed the Hole Hawg; I blamed myself. The Hole Hawg is dangerous be-
cause it does exactly what you tell it to. It is not bound by the physical limitations that
are inherent in a cheap drill, and neither is it limited by safety interlocks that might be
built into a homeowner’s product by a liability-conscious manufacturer. The danger lies
not in the machine itself but in the user’s failure to envision the full consequences of the
instructions he gives to it.

A smaller tool is dangerous too, but for a completely different reason: it tries to do what
you tell it to, and fails in some way that is unpredictable and almost always undesirable.
But the Hole Hawg is like the genie of the ancient fairy tales, who carries out his master’s
instructions literally and precisely and with unlimited power, often with disastrous, un-
foreseen consequences.

Pre-Hole Hawg, I used to examine the drill selection in hardware stores with what I
thought was a judicious eye, scorning the smaller low-end models and hefting the big ex-
pensive ones appreciatively, wishing I could afford one of them babies. Now I view them
all with such contempt that I do not even consider them to be real drills–merely scaled-
up toys designed to exploit the self-delusional tendencies of soft-handed homeowners
who want to believe that they have purchased an actual tool. Their plastic casings, care-
fully designed and focus-group-tested to convey a feeling of solidity and power, seem
disgustingly flimsy and cheap to me, and I am ashamed that I was ever bamboozled into
buying such knicknacks.

It is not hard to imagine what the world would look like to someone who had been
raised by contractors and who had never used any drill other than a Hole Hawg. Such a
person, presented with the best and most expensive hardware-store drill, would not even
recognize it as such. He might instead misidentify it as a child’s toy, or some kind of mo-
torized screwdriver. If a salesperson or a deluded homeowner referred to it as a drill, he
would laugh and tell them that they were mistaken–they simply had their terminology
wrong. His interlocutor would go away irritated, and probably feeling rather defensive
about his basement full of cheap, dangerous, flashy, colorful tools.

Unix is the Hole Hawg of operating systems, and Unix hackers, like Doug Barnes and the
guy in the Dilbert cartoon and many of the other people who populate Silicon Valley, are
like contractor’s sons who grew up using only Hole Hawgs. They might use Apple/Mi-
crosoft OSes to write letters, play video games, or balance their checkbooks, but they can-
not really bring themselves to take these operating systems seriously.

THE ORAL TRADITION

Unix is hard to learn. The process of learning it is one of multiple small epiphanies. Typ-
ically you are just on the verge of inventing some necessary tool or utility when you real-
ize that someone else has already invented it, and built it in, and this explains some odd
file or directory or command that you have noticed but never really understood before.

31

For example there is a command (a small program, part of the OS) called whoami, which
enables you to ask the computer who it thinks you are. On a Unix machine, you are al-
ways logged in under some name–possibly even your own! What files you may work
with, and what software you may use, depends on your identity. When I started out us-
ing Linux, I was on a non-networked machine in my basement, with only one user ac-
count, and so when I became aware of the whoami command it struck me as ludicrous.
But once you are logged in as one person, you can temporarily switch over to a pseudo-
nym in order to access different files. If your machine is on the Internet, you can log onto
other computers, provided you have a user name and a password. At that point the dis-
tant machine becomes no different in practice from the one right in front of you. These
changes in identity and location can easily become nested inside each other, many layers
deep, even if you aren’t doing anything nefarious. Once you have forgotten who and
where you are, the whoami command is indispensible. I use it all the time.

The file systems of Unix machines all have the same general structure. On your flimsy
operating systems, you can create directories (folders) and give them names like Frodo or
My Stuff and put them pretty much anywhere you like. But under Unix the highest
level–the root–of the filesystem is always designated with the single character “/” and it
always contains the same set of top-level directories:

/usr /etc /var /bin /proc /boot /home /root /sbin /dev /lib /tmp

and each of these directories typically has its own distinct structure of subdirectories.
Note the obsessive use of abbreviations and avoidance of capital letters; this is a system
invented by people to whom repetitive stress disorder is what black lung is to miners.
Long names get worn down to three-letter nubbins, like stones smoothed by a river.

This is not the place to try to explain why each of the above directories exists, and what is
contained in it. At first it all seems obscure; worse, it seems deliberately obscure. When I
started using Linux I was accustomed to being able to create directories wherever I
wanted and to give them whatever names struck my fancy. Under Unix you are free to
do that, of course (you are free to do anything) but as you gain experience with the sys-
tem you come to understand that the directories listed above were created for the best of
reasons and that your life will be much easier if you follow along (within /home, by the
way, you have pretty much unlimited freedom).

After this kind of thing has happened several hundred or thousand times, the hacker un-
derstands why Unix is the way it is, and agrees that it wouldn’t be the same any other
way. It is this sort of acculturation that gives Unix hackers their confidence in the system,
and the attitude of calm, unshakable, annoying superiority captured in the Dilbert car-
toon. Windows 95 and MacOS are products, contrived by engineers in the service of spe-
cific companies. Unix, by contrast, is not so much a product as it is a painstakingly com-
piled oral history of the hacker subculture. It is our Gilgamesh epic.

What made old epics like Gilgamesh so powerful and so long-lived was that they were
living bodies of narrative that many people knew by heart, and told over and over
again–making their own personal embellishments whenever it struck their fancy. The
bad embellishments were shouted down, the good ones picked up by others, polished,
improved, and, over time, incorporated into the story. Likewise, Unix is known, loved,
and understood by so many hackers that it can be re-created from scratch whenever
someone needs it. This is very difficult to understand for people who are accustomed to
thinking of OSes as things that absolutely have to be bought.

Many hackers have launched more or less successful re-implementations of the Unix
ideal. Each one brings in new embellishments. Some of them die out quickly, some are
merged with similar, parallel innovations created by different hackers attacking the same

32

problem, others still are embraced, and adopted into the epic. Thus Unix has slowly ac-
creted around a simple kernel and acquired a kind of complexity and asymmetry about it
that is organic, like the roots of a tree, or the branchings of a coronary artery. Under-
standing it is more like anatomy than physics.

For at least a year, prior to my adoption of Linux, I had been hearing about it. Credible,
well-informed people kept telling me that a bunch of hackers had got together an implen-
tation of Unix that could be downloaded, free of charge, from the Internet. For a long
time I could not bring myself to take the notion seriously. It was like hearing rumors that
a group of model rocket enthusiasts had created a completely functional Saturn V by ex-
changing blueprints on the Net and mailing valves and flanges to each other.

But it’s true. Credit for Linux generally goes to its human namesake, one Linus Torvalds,
a Finn who got the whole thing rolling in 1991 when he used some of the GNU tools to
write the beginnings of a Unix kernel that could run on PC-compatible hardware. And
indeed Torvalds deserves all the credit he has ever gotten, and a whole lot more. But he
could not have made it happen by himself, any more than Richard Stallman could have.
To write code at all, Torvalds had to have cheap but powerful development tools, and
these he got from Stallman’s GNU project.

And he had to have cheap hardware on which to write that code. Cheap hardware is a
much harder thing to arrange than cheap software; a single person (Stallman) can write
software and put it up on the Net for free, but in order to make hardware it’s necessary to
have a whole industrial infrastructure, which is not cheap by any stretch of the imagina-
tion. Really the only way to make hardware cheap is to punch out an incredible number
of copies of it, so that the unit cost eventually drops. For reasons already explained, Ap-
ple had no desire to see the cost of hardware drop. The only reason Torvalds had cheap
hardware was Microsoft.

Microsoft refused to go into the hardware business, insisted on making its software run
on hardware that anyone could build, and thereby created the market conditions that al-
lowed hardware prices to plummet. In trying to understand the Linux phenomenon,
then, we have to look not to a single innovator but to a sort of bizarre Trinity: Linus Tor-
valds, Richard Stallman, and Bill Gates. Take away any of these three and Linux would
not exist.

OS SHOCK

Young Americans who leave their great big homogeneous country and visit some other
part of the world typically go through several stages of culture shock: first, dumb wide-
eyed astonishment. Then a tentative engagement with the new country’s manners, cui-
sine, public transit systems and toilets, leading to a brief period of fatuous confidence
that they are instant experts on the new country. As the visit wears on, homesickness be-
gins to set in, and the traveler begins to appreciate, for the first time, how much he or she
took for granted at home. At the same time it begins to seem obvious that many of one’s
own cultures and traditions are essentially arbitrary, and could have been different; driv-
ing on the right side of the road, for example. When the traveler returns home and takes
stock of the experience, he or she may have learned a good deal more about America
than about the country they went to visit.

For the same reasons, Linux is worth trying. It is a strange country indeed, but you don’t
have to live there; a brief sojourn suffices to give some flavor of the place and–more im-
portantly–to lay bare everything that is taken for granted, and all that could have been
done differently, under Windows or MacOS.

33

You can’t try it unless you install it. With any other OS, installing it would be a straight-
forward transaction: in exchange for money, some company would give you a CD-ROM,
and you would be on your way. But a lot is subsumed in that kind of transaction, and
has to be gone through and picked apart.

We like plain dealings and straightforward transactions in America. If you go to Egypt
and, say, take a taxi somewhere, you become a part of the taxi driver’s life; he refuses to
take your money because it would demean your friendship, he follows you around town,
and weeps hot tears when you get in some other guy’s taxi. You end up meeting his kids
at some point, and have to devote all sort of ingenuity to finding some way to compen-
sate him without insulting his honor. It is exhausting. Sometimes you just want a simple
Manhattan-style taxi ride.

But in order to have an American-style setup, where you can just go out and hail a taxi
and be on your way, there must exist a whole hidden apparatus of medallions, inspec-
tors, commissions, and so forth–which is fine as long as taxis are cheap and you can al-
ways get one. When the system fails to work in some way, it is mysterious and infuriat-
ing and turns otherwise reasonable people into conspiracy theorists. But when the Egyp-
tian system breaks down, it breaks down transparently. You can’t get a taxi, but your
driver ’s nephew will show up, on foot, to explain the problem and apologize.

Microsoft and Apple do things the Manhattan way, with vast complexity hidden behind
a wall of interface. Linux does things the Egypt way, with vast complexity strewn about
all over the landscape. If you’ve just flown in from Manhattan, your first impulse will be
to throw up your hands and say “For crying out loud! Will you people get a grip on
yourselves!?” But this does not make friends in Linux-land any better than it would in
Egypt.

You can suck Linux right out of the air, as it were, by downloading the right files and
putting them in the right places, but there probably are not more than a few hundred
people in the world who could create a functioning Linux system in that way. What you
really need is a distribution of Linux, which means a prepackaged set of files. But distri-
butions are a separate thing from Linux per se.

Linux per se is not a specific set of ones and zeroes, but a self-organizing Net subculture.
The end result of its collective lucubrations is a vast body of source code, almost all writ-
ten in C (the dominant computer programming language). “Source code” just means a
computer program as typed in and edited by some hacker. If it’s in C, the file name will
probably have .c or .cpp on the end of it, depending on which dialect was used; if it’s in
some other language it will have some other suffix. Frequently these sorts of files can be
found in a directory with the name /src which is the hacker’s Hebraic abbreviation of
“source.”

Source files are useless to your computer, and of little interest to most users, but they are
of gigantic cultural and political significance, because Microsoft and Apple keep them se-
cret while Linux makes them public. They are the family jewels. They are the sort of
thing that in Hollywood thrillers is used as a McGuffin: the plutonium bomb core, the
top-secret blueprints, the suitcase of bearer bonds, the reel of microfilm. If the source files
for Windows or MacOS were made public on the Net, then those OSes would become
free, like Linux–only not as good, because no one would be around to fix bugs and an-
swer questions. Linux is “open source” software meaning, simply, that anyone can get
copies of its source code files.

Your computer doesn’t want source code any more than you do; it wants object code.
Object code files typically have the suffix .o and are unreadable all but a few, highly
strange humans, because they consist of ones and zeroes. Accordingly, this sort of file

34

commonly shows up in a directory with the name /bin, for “binary.”

Source files are simply ASCII text files. ASCII denotes a particular way of encoding let-
ters into bit patterns. In an ASCII file, each character has eight bits all to itself. This cre-
ates a potential “alphabet” of 256 distinct characters, in that eight binary digits can form
that many unique patterns. In practice, of course, we tend to limit ourselves to the famil-
iar letters and digits. The bit-patterns used to represent those letters and digits are the
same ones that were physically punched into the paper tape by my high school teletype,
which in turn were the same one used by the telegraph industry for decades previously.
ASCII text files, in other words, are telegrams, and as such they have no typographical
frills. But for the same reason they are eternal, because the code never changes, and uni-
versal, because every text editing and word processing software ever written knows
about this code.

Therefore just about any software can be used to create, edit, and read source code files.
Object code files, then, are created from these source files by a piece of software called a
compiler, and forged into a working application by another piece of software called a
linker.

The triad of editor, compiler, and linker, taken together, form the core of a software devel-
opment system. Now, it is possible to spend a lot of money on shrink-wrapped develop-
ment systems with lovely graphical user interfaces and various ergonomic enhance-
ments. In some cases it might even be a good and reasonable way to spend money. But
on this side of the road, as it were, the very best software is usually the free stuff. Editor,
compiler and linker are to hackers what ponies, stirrups, and archery sets were to the
Mongols. Hackers live in the saddle, and hack on their own tools even while they are us-
ing them to create new applications. It is quite inconceivable that superior hacking tools
could have been created from a blank sheet of paper by product engineers. Even if they
are the brightest engineers in the world they are simply outnumbered.

In the GNU/Linux world there are two major text editing programs: the minimalist vi
(known in some implementations as elvis) and the maximalist emacs. I use emacs, which
might be thought of as a thermonuclear word processor. It was created by Richard Stall-
man; enough said. It is written in Lisp, which is the only computer language that is
beautiful. It is colossal, and yet it only edits straight ASCII text files, which is to say, no
fonts, no boldface, no underlining. In other words, the engineer-hours that, in the case of
Microsoft Word, were devoted to features like mail merge, and the ability to embed fea-
ture-length motion pictures in corporate memoranda, were, in the case of emacs, focused
with maniacal intensity on the deceptively simple-seeming problem of editing text. If
you are a professional writer–i.e., if someone else is getting paid to worry about how
your words are formatted and printed–emacs outshines all other editing software in ap-
proximately the same way that the noonday sun does the stars. It is not just bigger and
brighter; it simply makes everything else vanish. For page layout and printing you can
use TeX: a vast corpus of typesetting lore written in C and also available on the Net for
free.

I could say a lot about emacs and TeX, but right now I am trying to tell a story about how
to actually install Linux on your machine. The hard-core survivalist approach would be
to download an editor like emacs, and the GNU Tools–the compiler and linker–which are
polished and excellent to the same degree as emacs. Equipped with these, one would be
able to start downloading ASCII source code files (/src) and compiling them into binary
object code files (/bin) that would run on the machine. But in order to even arrive at this
point–to get emacs running, for example–you have to have Linux actually up and run-
ning on your machine. And even a minimal Linux operating system requires thousands

35

of binary files all acting in concert, and arranged and linked together just so.

Several entities have therefore taken it upon themselves to create “distributions” of
Linux. If I may extend the Egypt analogy slightly, these entities are a bit like tour guides
who meet you at the airport, who speak your language, and who help guide you through
the initial culture shock. If you are an Egyptian, of course, you see it the other way; tour
guides exist to keep brutish outlanders from traipsing through your mosques and asking
you the same questions over and over and over again.

Some of these tour guides are commercial organizations, such as Red Hat Software,
which makes a Linux distribution called Red Hat that has a relatively commercial sheen
to it. In most cases you put a Red Hat CD-ROM into your PC and reboot and it handles
the rest. Just as a tour guide in Egypt will expect some sort of compensation for his ser-
vices, commercial distributions need to be paid for. In most cases they cost almost noth-
ing and are well worth it.

I use a distribution called Debian (the word is a contraction of “Deborah” and “Ian”)
which is non-commercial. It is organized (or perhaps I should say “it has organized it-
self”) along the same lines as Linux in general, which is to say that it consists of volun-
teers who collaborate over the Net, each responsible for looking after a different chunk of
the system. These people have broken Linux down into a number of packages, which are
compressed files that can be downloaded to an already functioning Debian Linux system,
then opened up and unpacked using a free installer application. Of course, as such, De-
bian has no commercial arm–no distribution mechanism. You can download all Debian
packages over the Net, but most people will want to have them on a CD-ROM. Several
different companies have taken it upon themselves to decoct all of the current Debian
packages onto CD-ROMs and then sell them. I buy mine from Linux Systems Labs. The
cost for a three-disc set, containing Debian in its entirety, is less than three dollars. But
(and this is an important distinction) not a single penny of that three dollars is going to
any of the coders who created Linux, nor to the Debian packagers. It goes to Linux Sys-
tems Labs and it pays, not for the software, or the packages, but for the cost of stamping
out the CD-ROMs.

Every Linux distribution embodies some more or less clever hack for circumventing the
normal boot process and causing your computer, when it is turned on, to organize itself,
not as a PC running Windows, but as a “host” running Unix. This is slightly alarming
the first time you see it, but completely harmless. When a PC boots up, it goes through a
little self-test routine, taking an inventory of available disks and memory, and then be-
gins looking around for a disk to boot up from. In any normal Windows computer that
disk will be a hard drive. But if you have your system configured right, it will look first
for a floppy or CD-ROM disk, and boot from that if one is available.

Linux exploits this chink in the defenses. Your computer notices a bootable disk in the
floppy or CD-ROM drive, loads in some object code from that disk, and blindly begins to
execute it. But this is not Microsoft or Apple code, this is Linux code, and so at this point
your computer begins to behave very differently from what you are accustomed to.
Cryptic messages began to scroll up the screen. If you had booted a commercial OS, you
would, at this point, be seeing a “Welcome to MacOS” cartoon, or a screen filled with
clouds in a blue sky, and a Windows logo. But under Linux you get a long telegram
printed in stark white letters on a black screen. There is no “welcome!” message. Most of
the telegram has the semi-inscrutable menace of graffiti tags.

Dec 14 15:04:15 theRev syslogd 1.3-3#17: restart.

Dec 14 15:04:15 theRev kernel: klogd 1.3-3, log source = /proc/kmsg started.

Dec 14 15:04:15 theRev kernel: Loaded 3535 symbols from /System.map.

36

Dec 14 15:04:15 theRev kernel: Symbols match kernel version 2.0.30.

Dec 14 15:04:15 theRev kernel: No module symbols loaded.

Dec 14 15:04:15 theRev kernel: Intel MultiProcessor Specification v1.4

Dec 14 15:04:15 theRev kernel: Virtual Wire compatibility mode.

Dec 14 15:04:15 theRev kernel: OEM ID: INTEL Product ID: 440FX APIC at: 0xFEE00000

Dec 14 15:04:15 theRev kernel: Processor #0 Pentium(tm) Pro APIC version 17

Dec 14 15:04:15 theRev kernel: Processor #1 Pentium(tm) Pro APIC version 17

Dec 14 15:04:15 theRev kernel: I/O APIC #2 Version 17 at 0xFEC00000.

Dec 14 15:04:15 theRev kernel: Processors: 2

Dec 14 15:04:15 theRev kernel: Console: 16 point font, 400 scans

Dec 14 15:04:15 theRev kernel: Console: colour VGA+ 80x25, 1 virtual console (max 63)

Dec 14 15:04:15 theRev kernel: pcibios_init : BIOS32 Service Directory structure at 0x000fdb70

Dec 14 15:04:15 theRev kernel: pcibios_init : BIOS32 Service Directory entry at 0xfdb80

Dec 14 15:04:15 theRev kernel: pcibios_init : PCI BIOS revision 2.10 entry at 0xfdba1

Dec 14 15:04:15 theRev kernel: Probing PCI hardware.

Dec 14 15:04:15 theRev kernel: Warning : Unknown PCI device (10b7:9001). Please read include/linux/pci.h

Dec 14 15:04:15 theRev kernel: Calibrating delay loop.. ok - 179.40 BogoMIPS

Dec 14 15:04:15 theRev kernel: Memory: 64268k/66556k available (700k kernel code, 384k reserved, 1204k data)

Dec 14 15:04:15 theRev kernel: Swansea University Computer Society NET3.035 for Linux 2.0

Dec 14 15:04:15 theRev kernel: NET3: Unix domain sockets 0.13 for Linux NET3.035.

Dec 14 15:04:15 theRev kernel: Swansea University Computer Society TCP/IP for NET3.034

Dec 14 15:04:15 theRev kernel: IP Protocols: ICMP, UDP, TCP

Dec 14 15:04:15 theRev kernel: Checking 386/387 coupling... Ok, fpu using exception 16 error reporting.

Dec 14 15:04:15 theRev kernel: Checking 'hlt' instruction... Ok.

Dec 14 15:04:15 theRev kernel: Linux version 2.0.30 (root@theRev) (gcc version 2.7.2.1) #15 Fri Mar 27 16:37:24 PST 1998

Dec 14 15:04:15 theRev kernel: Booting processor 1 stack 00002000: Calibrating delay loop..

Dec 14 15:04:15 theRev kernel: Total of 2 processors activated (358.81 BogoMIPS).

Dec 14 15:04:15 theRev kernel: Serial driver version 4.13 with no serial options enabled

Dec 14 15:04:15 theRev kernel: tty00 at 0x03f8 (irq = 4) is a 16550A

Dec 14 15:04:15 theRev kernel: tty01 at 0x02f8 (irq = 3) is a 16550A

Dec 14 15:04:15 theRev kernel: lp1 at 0x0378, (polling)

Dec 14 15:04:15 theRev kernel: PS/2 auxiliary pointing device detected -- driver installed.

Dec 14 15:04:15 theRev kernel: Real Time Clock Driver v1.07

Dec 14 15:04:15 theRev kernel: loop: registered device at major 7

Dec 14 15:04:15 theRev kernel: ide: i82371 PIIX (Triton) on PCI bus 0 function 57

Dec 14 15:04:15 theRev kernel: ide0: BM-DMA at 0xffa0-0xffa7

Dec 14 15:04:15 theRev kernel: ide1: BM-DMA at 0xffa8-0xffaf

Dec 14 15:04:15 theRev kernel: hda: Conner Peripherals 1275MB - CFS1275A, 1219MB w/64kB Cache, LBA, CHS=619/64/63

Dec 14 15:04:15 theRev kernel: hdb: Maxtor 84320A5, 4119MB w/256kB Cache, LBA, CHS=8928/15/63, DMA

Dec 14 15:04:15 theRev kernel: hdc: , ATAPI CDROM drive

Dec 15 11:58:06 theRev kernel: ide0 at 0x1f0-0x1f7,0x3f6 on irq 14

Dec 15 11:58:06 theRev kernel: ide1 at 0x170-0x177,0x376 on irq 15

Dec 15 11:58:06 theRev kernel: Floppy drive(s): fd0 is 1.44M

Dec 15 11:58:06 theRev kernel: Started kswapd v 1.4.2.2

Dec 15 11:58:06 theRev kernel: FDC 0 is a National Semiconductor PC87306

Dec 15 11:58:06 theRev kernel: md driver 0.35 MAX_MD_DEV=4, MAX_REAL=8

Dec 15 11:58:06 theRev kernel: PPP: version 2.2.0 (dynamic channel allocation)

Dec 15 11:58:06 theRev kernel: TCP compression code copyright 1989 Regents of the University of California

Dec 15 11:58:06 theRev kernel: PPP Dynamic channel allocation code copyright 1995 Caldera, Inc.

Dec 15 11:58:06 theRev kernel: PPP line discipline registered.

Dec 15 11:58:06 theRev kernel: SLIP: version 0.8.4-NET3.019-NEWTTY (dynamic channels, max=256).

37

Dec 15 11:58:06 theRev kernel: eth0: 3Com 3c900 Boomerang 10Mbps/Combo at 0xef00, 00:60:08:a4:3c:db, IRQ 10

Dec 15 11:58:06 theRev kernel: 8K word-wide RAM 3:5 Rx:Tx split, 10base2 interface.

Dec 15 11:58:06 theRev kernel: Enabling bus-master transmits and whole-frame receives.

Dec 15 11:58:06 theRev kernel: 3c59x.c:v0.49 1/2/98 Donald Becker http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html

Dec 15 11:58:06 theRev kernel: Partition check:

Dec 15 11:58:06 theRev kernel: hda: hda1 hda2 hda3

Dec 15 11:58:06 theRev kernel: hdb: hdb1 hdb2

Dec 15 11:58:06 theRev kernel: VFS: Mounted root (ext2 filesystem) readonly.

Dec 15 11:58:06 theRev kernel: Adding Swap: 16124k swap-space (priority -1)

Dec 15 11:58:06 theRev kernel: EXT2-fs warning: maximal mount count reached, running e2fsck is recommended

Dec 15 11:58:06 theRev kernel: hdc: media changed

Dec 15 11:58:06 theRev kernel: ISO9660 Extensions: RRIP_1991A

Dec 15 11:58:07 theRev syslogd 1.3-3#17: restart.

Dec 15 11:58:09 theRev diald[87]: Unable to open options file /etc/diald/diald.options: No such file or directory

Dec 15 11:58:09 theRev diald[87]: No device specified. You must have at least one device!

Dec 15 11:58:09 theRev diald[87]: You must define a connector script (option 'connect').

Dec 15 11:58:09 theRev diald[87]: You must define the remote ip address.

Dec 15 11:58:09 theRev diald[87]: You must define the local ip address.

Dec 15 11:58:09 theRev diald[87]: Terminating due to damaged reconfigure.

The only parts of this that are readable, for normal people, are the error messages and
warnings. And yet it’s noteworthy that Linux doesn’t stop, or crash, when it encounters
an error; it spits out a pithy complaint, gives up on whatever processes were damaged,
and keeps on rolling. This was decidedly not true of the early versions of Apple and Mi-
crosoft OSes, for the simple reason that an OS that is not capable of walking and chewing
gum at the same time cannot possibly recover from errors. Looking for, and dealing
with, errors requires a separate process running in parallel with the one that has erred. A
kind of superego, if you will, that keeps an eye on all of the others, and jumps in when
one goes astray. Now that MacOS and Windows can do more than one thing at a time
they are much better at dealing with errors than they used to be, but they are not even
close to Linux or other Unices in this respect; and their greater complexity has made
them vulnerable to new types of errors.

FALLIBILITY, ATONEMENT, REDEMPTION, TRUST, AND OTHER AR-
CANE TECHNICAL CONCEPTS

Linux is not capable of having any centrally organized policies dictating how to write er-
ror messages and documentation, and so each programmer writes his own. Usually they
are in English even though tons of Linux programmers are Europeans. Frequently they
are funny. Always they are honest. If something bad has happened because the software
simply isn’t finished yet, or because the user screwed something up, this will be stated
forthrightly. The command line interface makes it easy for programs to dribble out little
comments, warnings, and messages here and there. Even if the application is imploding
like a damaged submarine, it can still usually eke out a little S.O.S. message. Sometimes
when you finish working with a program and shut it down, you find that it has left be-
hind a series of mild warnings and low-grade error messages in the command-line inter-
face window from which you launched it. As if the software were chatting to you about
how it was doing the whole time you were working with it.

Documentation, under Linux, comes in the form of man (short for manual) pages. You
can access these either through a GUI (xman) or from the command line (man). Here is a
sample from the man page for a program called rsh:

38

Stop signals stop the local rsh process only; this is arguably wrong, but cur-
rently hard to fix for reasons too complicated to explain here.

The man pages contain a lot of such material, which reads like the terse mutterings of pi-
lots wrestling with the controls of damaged airplanes. The general feel is of a thousand
monumental but obscure struggles seen in the stop-action light of a strobe. Each pro-
grammer is dealing with his own obstacles and bugs; he is too busy fixing them, and im-
proving the software, to explain things at great length or to maintain elaborate preten-
sions.

In practice you hardly ever encounter a serious bug while running Linux. When you do,
it is almost always with commercial software (several vendors sell software that runs un-
der Linux). The operating system and its fundamental utility programs are too important
to contain serious bugs. I have been running Linux every day since late 1995 and have
seen many application programs go down in flames, but I have never seen the operating
system crash. Never. Not once. There are quite a few Linux systems that have been run-
ning continuously and working hard for months or years without needing to be re-
booted.

Commercial OSes have to adopt the same official stance towards errors as Communist
countries had towards poverty. For doctrinal reasons it was not possible to admit that
poverty was a serious problem in Communist countries, because the whole point of
Communism was to eradicate poverty. Likewise, commercial OS companies like Apple
and Microsoft can’t go around admitting that their software has bugs and that it crashes
all the time, any more than Disney can issue press releases stating that Mickey Mouse is
an actor in a suit.

This is a problem, because errors do exist and bugs do happen. Every few months Bill
Gates tries to demo a new Microsoft product in front of a large audience only to have it
blow up in his face. Commercial OS vendors, as a direct consequence of being commer-
cial, are forced to adopt the grossly disingenuous position that bugs are rare aberrations,
usually someone else’s fault, and therefore not really worth talking about in any detail.
This posture, which everyone knows to be absurd, is not limited to press releases and ad
campaigns. It informs the whole way these companies do business and relate to their
customers. If the documentation were properly written, it would mention bugs, errors,
and crashes on every single page. If the on-line help systems that come with these OSes
reflected the experiences and concerns of their users, they would largely be devoted to in-
structions on how to cope with crashes and errors.

But this does not happen. Joint stock corporations are wonderful inventions that have
given us many excellent goods and services. They are good at many things. Admitting
failure is not one of them. Hell, they can’t even admit minor shortcomings.

Of course, this behavior is not as pathological in a corporation as it would be in a human
being. Most people, nowadays, understand that corporate press releases are issued for
the benefit of the corporation’s shareholders and not for the enlightenment of the public.
Sometimes the results of this institutional dishonesty can be dreadful, as with tobacco
and asbestos. In the case of commercial OS vendors it is nothing of the kind, of course; it
is merely annoying.

Some might argue that consumer annoyance, over time, builds up into a kind of hard-
ened plaque that can conceal serious decay, and that honesty might therefore be the best
policy in the long run; the jury is still out on this in the operating system market. The
business is expanding fast enough that it’s still much better to have billions of chronically
annoyed customers than millions of happy ones.

39

Most system administrators I know who work with Windows NT all the time agree that
when it hits a snag, it has to be re-booted, and when it gets seriously messed up, the only
way to fix it is to re-install the operating system from scratch. Or at least this is the only
way that they know of to fix it, which amounts to the same thing. It is quite possible that
the engineers at Microsoft have all sorts of insider knowledge on how to fix the system
when it goes awry, but if they do, they do not seem to be getting the message out to any
of the actual system administrators I know.

Because Linux is not commercial–because it is, in fact, free, as well as rather difficult to
obtain, install, and operate–it does not have to maintain any pretensions as to its reliabil-
ity. Consequently, it is much more reliable. When something goes wrong with Linux, the
error is noticed and loudly discussed right away. Anyone with the requisite technical
knowledge can go straight to the source code and point out the source of the error, which
is then rapidly fixed by whichever hacker has carved out responsibility for that particular
program.

As far as I know, Debian is the only Linux distribution that has its own constitution
(http://www.debian.org/devel/constitution), but what really sold me on it was its phe-
nomenal bug database (http://www.debian.org/Bugs), which is a sort of interactive
Doomsday Book of error, fallibility, and redemption. It is simplicity itself. When had a
problem with Debian in early January of 1997, I sent in a message describing the problem
to submit@bugs.debian.org. My problem was promptly assigned a bug report number
(#6518) and a severity level (the available choices being critical, grave, important, normal,
fixed, and wishlist) and forwarded to mailing lists where Debian people hang out.
Within twenty-four hours I had received five e-mails telling me how to fix the problem:
two from North America, two from Europe, and one from Australia. All of these e-mails
gave me the same suggestion, which worked, and made my problem go away. But at the
same time, a transcript of this exchange was posted to Debian’s bug database, so that if
other users had the same problem later, they would be able to search through and find
the solution without having to enter a new, redundant bug report.

Contrast this with the experience that I had when I tried to install Windows NT 4.0 on the
very same machine about ten months later, in late 1997. The installation program simply
stopped in the middle with no error messages. I went to the Microsoft Support website
and tried to perform a search for existing help documents that would address my prob-
lem. The search engine was completely nonfunctional; it did nothing at all. It did not
even give me a message telling me that it was not working.

Eventually I decided that my motherboard must be at fault; it was of a slightly unusual
make and model, and NT did not support as many different motherboards as Linux. I
am always looking for excuses, no matter how feeble, to buy new hardware, so I bought a
new motherboard that was Windows NT logo-compatible, meaning that the Windows
NT logo was printed right on the box. I installed this into my computer and got Linux
running right away, then attempted to install Windows NT again. Again, the installation
died without any error message or explanation. By this time a couple of weeks had gone
by and I thought that perhaps the search engine on the Microsoft Support website might
be up and running. I gave that a try but it still didn’t work.

So I created a new Microsoft support account, then logged on to submit the incident. I
supplied my product ID number when asked, and then began to follow the instructions
on a series of help screens. In other words, I was submitting a bug report just as with the
Debian bug tracking system. It’s just that the interface was slicker–I was typing my com-
plaint into little text-editing boxes on Web forms, doing it all through the GUI, whereas
with Debian you send in an e-mail telegram. I knew that when I was finished submitting

40

the bug report, it would become proprietary Microsoft information, and other users
wouldn’t be able to see it. Many Linux users would refuse to participate in such a
scheme on ethical grounds, but I was willing to give it a shot as an experiment. In the
end, though I was never able to submit my bug report, because the series of linked web
pages that I was filling out eventually led me to a completely blank page: a dead end.

So I went back and clicked on the buttons for “phone support” and eventually was given
a Microsoft telephone number. When I dialed this number I got a series of piercing beeps
and a recorded message from the phone company saying “We’re sorry, your call cannot
be completed as dialed.”

I tried the search page again–it was still completely nonfunctional. Then I tried PPI (Pay
Per Incident) again. This led me through another series of Web pages until I dead-ended
at one reading: “Notice-there is no Web page matching your request.”

I tried it again, and eventually got to a Pay Per Incident screen reading: “OUT OF INCI-
DENTS. There are no unused incidents left in your account. If you would like to purchase
a support incident, click OK-you will then be able to prepay for an incident....” The cost
per incident was $95.

The experiment was beginning to seem rather expensive, so I gave up on the PPI ap-
proach and decided to have a go at the FAQs posted on Microsoft’s website. None of the
available FAQs had anything to do with my problem except for one entitled “I am having
some problems installing NT” which appeared to have been written by flacks, not engi-
neers.

So I gave up and still, to this day, have never gotten Windows NT installed on that partic-
ular machine. For me, the path of least resistance was simply to use Debian Linux.

In the world of open source software, bug reports are useful information. Making them
public is a service to other users, and improves the OS. Making them public systemati-
cally is so important that highly intelligent people voluntarily put time and money into
running bug databases. In the commercial OS world, however, reporting a bug is a privi-
lege that you have to pay lots of money for. But if you pay for it, it follows that the bug
report must be kept confidential–otherwise anyone could get the benefit of your ninety-
five bucks! And yet nothing prevents NT users from setting up their own public bug
database.

This is, in other words, another feature of the OS market that simply makes no sense un-
less you view it in the context of culture. What Microsoft is selling through Pay Per Inci-
dent isn’t technical support so much as the continued illusion that its customers are en-
gaging in some kind of rational business transaction. It is a sort of routine maintenance
fee for the upkeep of the fantasy. If people really wanted a solid OS they would use
Linux, and if they really wanted tech support they would find a way to get it; Microsoft’s
customers want something else.

As of this writing (Jan. 1999), something like 32,000 bugs have been reported to the De-
bian Linux bug database. Almost all of them have been fixed a long time ago. There are
twelve “critical” bugs still outstanding, of which the oldest was posted 79 days ago.
There are 20 outstanding “grave” bugs of which the oldest is 1166 days old. There are 48
“important” bugs and hundreds of “normal” and less important ones.

Likewise, BeOS (which I’ll get to in a minute) has its own bug database
(http://www.be.com/developers/bugs/index.html) with its own classification system,
including such categories as “Not a Bug,” “Acknowledged Feature,” and “Will Not Fix.”
Some of the “bugs” here are nothing more than Be hackers blowing off steam, and are
classified as “Input Acknowledged.” For example, I found one that was posted on

41

December 30th, 1998. It’s in the middle of a long list of bugs, wedged between one enti-
tled “Mouse working in very strange fashion” and another called “Change of BView
frame does not affect, if BView not attached to a BWindow.”

This one is entitled

R4: BeOS missing megalomaniacal figurehead to harness and focus developer rage

and it goes like this:

Be Status: Input Acknowledged BeOS Version: R3.2 Component: unknown

Full Description:

The BeOS needs a megalomaniacal egomaniac sitting on its throne to give it a human
character which everyone loves to hate. Without this, the BeOS will languish in the im-
personifiable realm of OSs that people can never quite get a handle on. You can judge the
success of an OS not by the quality of its features, but by how infamous and disliked the
leaders behind them are.

I believe this is a side-effect of developer comraderie under miserable conditions. After
all, misery loves company. I believe that making the BeOS less conceptually accessible
and far less reliable will require developers to band together, thus developing the kind of
community where strangers talk to one- another, kind of like at a grocery store before a
huge snowstorm.

Following this same program, it will likely be necessary to move the BeOS headquarters
to a far-less-comfortable climate. General environmental discomfort will breed this atti-
tude within and there truly is no greater recipe for success. I would suggest Seattle, but I
think it’s already taken. You might try Washington, DC, but definitely not somewhere
like San Diego or Tucson.

Unfortunately, the Be bug reporting system strips off the names of the people who report
the bugs (to protect them from retribution!?) and so I don’t know who wrote this.

So it would appear that I’m in the middle of crowing about the technical and moral supe-
riority of Debian Linux. But as almost always happens in the OS world, it’s more compli-
cated than that. I have Windows NT running on another machine, and the other day
(Jan. 1999), when I had a problem with it, I decided to have another go at Microsoft Sup-
port. This time the search engine actually worked (though in order to reach it I had to
identify myself as “advanced”). And instead of coughing up some useless FAQ, it lo-
cated about two hundred documents (I was using very vague search criteria) that were
obviously bug reports–though they were called something else. Microsoft, in other
words, has got a system up and running that is functionally equivalent to Debian’s bug
database. It looks and feels different, of course, but it contains technical nitty-gritty and
makes no bones about the existence of errors.

As I’ve explained, selling OSes for money is a basically untenable position, and the only
way Apple and Microsoft can get away with it is by pursuing technological advance-
ments as aggressively as they can, and by getting people to believe in, and to pay for, a
particular image: in the case of Apple, that of the creative free thinker, and in the case of
Microsoft, that of the respectable techno-bourgeois. Just like Disney, they’re making
money from selling an interface, a magic mirror. It has to be polished and seamless or
else the whole illusion is ruined and the business plan vanishes like a mirage.

42

Accordingly, it was the case until recently that the people who wrote manuals and cre-
ated customer support websites for commercial OSes seemed to have been barred, by
their employers’ legal or PR departments, from admitting, even obliquely, that the soft-
ware might contain bugs or that the interface might be suffering from the blinking twelve
problem. They couldn’t address users’ actual difficulties. The manuals and websites
were therefore useless, and caused even technically self-assured users to wonder whether
they were going subtly insane.

When Apple engages in this sort of corporate behavior, one wants to believe that they are
really trying their best. We all want to give Apple the benefit of the doubt, because mean
old Bill Gates kicked the crap out of them, and because they have good PR. But when
Microsoft does it, one almost cannot help becoming a paranoid conspiracist. Obviously
they are hiding something from us! And yet they are so powerful! They are trying to
drive us crazy!

This approach to dealing with one’s customers was straight out of the Central European
totalitarianism of the mid-Twentieth Century. The adjectives “Kafkaesque” and “Or-
wellian” come to mind. It couldn’t last, any more than the Berlin Wall could, and so now
Microsoft has a publicly available bug database. It’s called something else, and it takes a
while to find it, but it’s there.

They have, in other words, adapted to the two-tiered Eloi/Morlock structure of techno-
logical society. If you’re an Eloi you install Windows, follow the instructions, hope for
the best, and dumbly suffer when it breaks. If you’re a Morlock you go to the website,
tell it that you are “advanced,” find the bug database, and get the truth straight from
some anonymous Microsoft engineer.

But once Microsoft has taken this step, it raises the question, once again, of whether there
is any point to being in the OS business at all. Customers might be willing to pay $95 to
report a problem to Microsoft if, in return, they get some advice that no other user is get-
ting. This has the useful side effect of keeping the users alienated from one another,
which helps maintain the illusion that bugs are rare aberrations. But once the results of
those bug reports become openly available on the Microsoft website, everything changes.
No one is going to cough up $95 to report a problem when chances are good that some
other sucker will do it first, and that instructions on how to fix the bug will then show up,
for free, on a public website. And as the size of the bug database grows, it eventually be-
comes an open admission, on Microsoft’s part, that their OSes have just as many bugs as
their competitors’. There is no shame in that; as I mentioned, Debian’s bug database has
logged 32,000 reports so far. But it puts Microsoft on an equal footing with the others and
makes it a lot harder for their customers–who want to believe–to believe.

MEMENTO MORI

Once the Linux machine has finished spitting out its jargonic opening telegram, it
prompts me to log in with a user name and a password. At this point the machine is still
running the command line interface, with white letters on a black screen. There are no
windows, menus, or buttons. It does not respond to the mouse; it doesn’t even know
that the mouse is there. It is still possible to run a lot of software at this point. Emacs, for
example, exists in both a CLI and a GUI version (actually there are two GUI versions, re-
flecting some sort of doctrinal schism between Richard Stallman and some hackers who
got fed up with him). The same is true of many other Unix programs. Many don’t have
a GUI at all, and many that do are capable of running from the command line.

Of course, since my computer only has one monitor screen, I can only see one command
line, and so you might think that I could only interact with one program at a time. But if

43

I hold down the Alt key and then hit the F2 function button at the top of my keyboard, I
am presented with a fresh, blank, black screen with a login prompt at the top of it. I can
log in here and start some other program, then hit Alt-F1 and go back to the first screen,
which is still doing whatever it was when I left it. Or I can do Alt-F3 and log in to a third
screen, or a fourth, or a fifth. On one of these screens I might be logged in as myself, on
another as root (the system administrator), on yet another I might be logged on to some
other computer over the Internet.

Each of these screens is called, in Unix-speak, a tty, which is an abbreviation for teletype.
So when I use my Linux system in this way I am going right back to that small room at
Ames High School where I first wrote code twenty-five years ago, except that a tty is qui-
eter and faster than a teletype, and capable of running vastly superior software, such as
emacs or the GNU development tools.

It is easy (easy by Unix, not Apple/Microsoft standards) to configure a Linux machine so
that it will go directly into a GUI when you boot it up. This way, you never see a tty
screen at all. I still have mine boot into the white-on-black teletype screen however, as a
computational memento mori. It used to be fashionable for a writer to keep a human
skull on his desk as a reminder that he was mortal, that all about him was vanity. The tty
screen reminds me that the same thing is true of slick user interfaces.

The X Windows System, which is the GUI of Unix, has to be capable of running on hun-
dreds of different video cards with different chipsets, amounts of onboard memory, and
motherboard buses. Likewise, there are hundreds of different types of monitors on the
new and used market, each with different specifications, and so there are probably up-
wards of a million different possible combinations of card and monitor. The only thing
they all have in common is that they all work in VGA mode, which is the old command-
line screen that you see for a few seconds when you launch Windows. So Linux always
starts in VGA, with a teletype interface, because at first it has no idea what sort of hard-
ware is attached to your computer. In order to get beyond the glass teletype and into the
GUI, you have to tell Linux exactly what kinds of hardware you have. If you get it
wrong, you’ll get a blank screen at best, and at worst you might actually destroy your
monitor by feeding it signals it can’t handle.

When I started using Linux this had to be done by hand. I once spent the better part of a
month trying to get an oddball monitor to work for me, and filled the better part of a
composition book with increasingly desperate scrawled notes. Nowadays, most Linux
distributions ship with a program that automatically scans the video card and self-config-
ures the system, so getting X Windows up and running is nearly as easy as installing an
Apple/Microsoft GUI. The crucial information goes into a file (an ASCII text file, natu-
rally) called XF86Config, which is worth looking at even if your distribution creates it for
you automatically. For most people it looks like meaningless cryptic incantations, which
is the whole point of looking at it. An Apple/Microsoft system needs to have the same
information in order to launch its GUI, but it’s apt to be deeply hidden somewhere, and
it’s probably in a file that can’t even be opened and read by a text editor. All of the im-
portant files that make Linux systems work are right out in the open. They are always
ASCII text files, so you don’t need special tools to read them. You can look at them any
time you want, which is good, and you can mess them up and render your system totally
dysfunctional, which is not so good.

At any rate, assuming that my XF86Config file is just so, I enter the command “startx” to
launch the X Windows System. The screen blanks out for a minute, the monitor makes
strange twitching noises, then reconstitutes itself as a blank gray desktop with a mouse
cursor in the middle. At the same time it is launching a window manager. X Windows is

44

pretty low-level software; it provides the infrastructure for a GUI, and it’s a heavy indus-
trial infrastructure. But it doesn’t do windows. That’s handled by another category of
application that sits atop X Windows, called a window manager. Several of these are
available, all free of course. The classic is twm (Tom’s Window Manager) but there is a
smaller and supposedly more efficient variant of it called fvwm, which is what I use. I
have my eye on a completely different window manager called Enlightenment, which
may be the hippest single technology product I have ever seen, in that (a) it is for Linux,
(b) it is freeware, (c) it is being developed by a very small number of obsessed hackers,
and (d) it looks amazingly cool; it is the sort of window manager that might show up in
the backdrop of an Aliens movie.

Anyway, the window manager acts as an intermediary between X Windows and what-
ever software you want to use. It draws the window frames, menus, and so on, while the
applications themselves draw the actual content in the windows. The applications might
be of any sort: text editors, Web browsers, graphics packages, or utility programs, such as
a clock or calculator. In other words, from this point on, you feel as if you have been
shunted into a parallel universe that is quite similar to the familiar Apple or Microsoft
one, but slightly and pervasively different. The premier graphics program under Ap-
ple/Microsoft is Adobe Photoshop, but under Linux it’s something called The GIMP. In-
stead of the Microsoft Office Suite, you can buy something called ApplixWare. Many
commercial software packages, such as Mathematica, Netscape Communicator, and
Adobe Acrobat, are available in Linux versions, and depending on how you set up your
window manager you can make them look and behave just as they would under MacOS
or Windows.

But there is one type of window you’ll see on Linux GUI that is rare or nonexistent under
other OSes. These windows are called “xterm” and contain nothing but lines of text–this
time, black text on a white background, though you can make them be different colors if
you choose. Each xterm window is a separate command line interface–a tty in a window.
So even when you are in full GUI mode, you can still talk to your Linux machine through
a command-line interface.

There are many good pieces of Unix software that do not have GUIs at all. This might be
because they were developed before X Windows was available, or because the people
who wrote them did not want to suffer through all the hassle of creating a GUI, or be-
cause they simply do not need one. In any event, those programs can be invoked by typ-
ing their names into the command line of an xterm window. The whoami command,
mentioned earlier, is a good example. There is another called wc (“word count”) which
simply returns the number of lines, words, and characters in a text file.

The ability to run these little utility programs on the command line is a great virtue of
Unix, and one that is unlikely to be duplicated by pure GUI operating systems. The wc
command, for example, is the sort of thing that is easy to write with a command line in-
terface. It probably does not consist of more than a few lines of code, and a clever pro-
grammer could probably write it in a single line. In compiled form it takes up just a few
bytes of disk space. But the code required to give the same program a graphical user in-
terface would probably run into hundreds or even thousands of lines, depending on how
fancy the programmer wanted to make it. Compiled into a runnable piece of software, it
would have a large overhead of GUI code. It would be slow to launch and it would use
up a lot of memory. This would simply not be worth the effort, and so “wc” would never
be written as an independent program at all. Instead users would have to wait for a
word count feature to appear in a commercial software package.

45

GUIs tend to impose a large overhead on every single piece of software, even the small-
est, and this overhead completely changes the programming environment. Small utility
programs are no longer worth writing. Their functions, instead, tend to get swallowed
up into omnibus software packages. As GUIs get more complex, and impose more and
more overhead, this tendency becomes more pervasive, and the software packages grow
ever more colossal; after a point they begin to merge with each other, as Microsoft Word
and Excel and PowerPoint have merged into Microsoft Office: a stupendous software
Wal-Mart sitting on the edge of a town filled with tiny shops that are all boarded up.

It is an unfair analogy, because when a tiny shop gets boarded up it means that some
small shopkeeper has lost his business. Of course nothing of the kind happens when
“wc” becomes subsumed into one of Microsoft Word’s countless menu items. The only
real drawback is a loss of flexibility for the user, but it is a loss that most customers obvi-
ously do not notice or care about. The most serious drawback to the Wal-Mart approach
is that most users only want or need a tiny fraction of what is contained in these giant
software packages. The remainder is clutter, dead weight. And yet the user in the next
cubicle over will have completely different opinions as to what is useful and what isn’t.

The other important thing to mention, here, is that Microsoft has included a genuinely
cool feature in the Office package: a Basic programming package. Basic is the first com-
puter language that I learned, back when I was using the paper tape and the teletype. By
using the version of Basic that comes with Office you can write your own little utility
programs that know how to interact with all of the little doohickeys, gewgaws, bells, and
whistles in Office. Basic is easier to use than the languages typically employed in Unix
command-line programming, and Office has reached many, many more people than the
GNU tools. And so it is quite possible that this feature of Office will, in the end, spawn
more hacking than GNU.

But now I’m talking about application software, not operating systems. And as I’ve said,
Microsoft’s application software tends to be very good stuff. I don’t use it very much, be-
cause I am nowhere near their target market. If Microsoft ever makes a software package
that I use and like, then it really will be time to dump their stock, because I am a market
segment of one.

GEEK FATIGUE

Over the years that I’ve been working with Linux I have filled three and a half notebooks
logging my experiences. I only begin writing things down when I’m doing something
complicated, like setting up X Windows or fooling around with my Internet connection,
and so these notebooks contain only the record of my struggles and frustrations. When
things are going well for me, I’ll work along happily for many months without jotting
down a single note. So these notebooks make for pretty bleak reading. Changing any-
thing under Linux is a matter of opening up various of those little ASCII text files and
changing a word here and a character there, in ways that are extremely significant to how
the system operates.

Many of the files that control how Linux operates are nothing more than command lines
that became so long and complicated that not even Linux hackers could type them cor-
rectly. When working with something as powerful as Linux, you can easily devote a full
half-hour to engineering a single command line. For example, the “find” command,
which searches your file system for files that match certain criteria, is fantastically power-
ful and general. Its “man” is eleven pages long, and these are pithy pages; you could eas-
ily expand them into a whole book. And if that is not complicated enough in and of it-
self, you can always pipe the output of one Unix command to the input of another,

46

equally complicated one. The “pon” command, which is used to fire up a PPP connec-
tion to the Internet, requires so much detailed information that it is basically impossible
to launch it entirely from the command line. Instead you abstract big chunks of its input
into three or four different files. You need a dialing script, which is effectively a little pro-
gram telling it how to dial the phone and respond to various events; an options file,
which lists up to about sixty different options on how the PPP connection is to be set up;
and a secrets file, giving information about your password.

Presumably there are godlike Unix hackers somewhere in the world who don’t need to
use these little scripts and options files as crutches, and who can simply pound out fan-
tastically complex command lines without making typographical errors and without hav-
ing to spend hours flipping through documentation. But I’m not one of them. Like al-
most all Linux users, I depend on having all of those details hidden away in thousands of
little ASCII text files, which are in turn wedged into the recesses of the Unix filesystem.
When I want to change something about the way my system works, I edit those files. I
know that if I don’t keep track of every little change I’ve made, I won’t be able to get
your system back in working order after I’ve gotten it all messed up. Keeping hand-writ-
ten logs is tedious, not to mention kind of anachronistic. But it’s necessary.

I probably could have saved myself a lot of headaches by doing business with a company
called Cygnus Support, which exists to provide assistance to users of free software. But I
didn’t, because I wanted to see if I could do it myself. The answer turned out to be yes,
but just barely. And there are many tweaks and optimizations that I could probably
make in my system that I have never gotten around to attempting, partly because I get
tired of being a Morlock some days, and partly because I am afraid of fouling up a sys-
tem that generally works well.

Though Linux works for me and many other users, its sheer power and generality is its
Achilles’ heel. If you know what you are doing, you can buy a cheap PC from any com-
puter store, throw away the Windows discs that come with it, turn it into a Linux system
of mind-boggling complexity and power. You can hook it up to twelve other Linux boxes
and make it into part of a parallel computer. You can configure it so that a hundred dif-
ferent people can be logged onto it at once over the Internet, via as many modem lines,
Ethernet cards, TCP/IP sockets, and packet radio links. You can hang half a dozen differ-
ent monitors off of it and play DOOM with someone in Australia while tracking commu-
nications satellites in orbit and controlling your house’s lights and thermostats and
streaming live video from your web-cam and surfing the Net and designing circuit
boards on the other screens. But the sheer power and complexity of the system–the qual-
ities that make it so vastly technically superior to other OSes–sometimes make it seem too
formidable for routine day-to-day use.

Sometimes, in other words, I just want to go to Disneyland.

The ideal OS for me would be one that had a well-designed GUI that was easy to set up
and use, but that included terminal windows where I could revert to the command line
interface, and run GNU software, when it made sense. A few years ago, Be Inc. invented
exactly that OS. It is called the BeOS.

ETRE

Many people in the computer business have had a difficult time grappling with Be, Incor-
porated, for the simple reason that nothing about it seems to make any sense whatsoever.
It was launched in late 1990, which makes it roughly contemporary with Linux. From the
beginning it has been devoted to creating a new operating system that is, by design, in-
compatible with all the others (though, as we shall see, it is compatible with Unix in some

47

very important ways). If a definition of “celebrity” is someone who is famous for being
famous, then Be is an anti-celebrity. It is famous for not being famous; it is famous for be-
ing doomed. But it has been doomed for an awfully long time.

Be’s mission might make more sense to hackers than to other people. In order to explain
why I need to explain the concept of cruft, which, to people who write code, is nearly as
abhorrent as unnecessary repetition.

If you’ve been to San Francisco you may have seen older buildings that have undergone
“seismic upgrades,” which frequently means that grotesque superstructures of modern
steelwork are erected around buildings made in, say, a Classical style. When new threats
arrive–if we have an Ice Age, for example–additional layers of even more high-tech stuff
may be constructed, in turn, around these, until the original building is like a holy relic in
a cathedral–a shard of yellowed bone enshrined in half a ton of fancy protective junk.

Analogous measures can be taken to keep creaky old operating systems working. It hap-
pens all the time. Ditching an worn-out old OS ought to be simplified by the fact that,
unlike old buildings, OSes have no aesthetic or cultural merit that makes them intrinsi-
cally worth saving. But it doesn’t work that way in practice. If you work with a com-
puter, you have probably customized your “desktop,” the environment in which you sit
down to work every day, and spent a lot of money on software that works in that envi-
ronment, and devoted much time to familiarizing yourself with how it all works. This
takes a lot of time, and time is money. As already mentioned, the desire to have one’s in-
teractions with complex technologies simplified through the interface, and to surround
yourself with virtual tchotchkes and lawn ornaments, is natural and pervasive–presum-
ably a reaction against the complexity and formidable abstraction of the computer world.
Computers give us more choices than we really want. We prefer to make those choices
once, or accept the defaults handed to us by software companies, and let sleeping dogs
lie. But when an OS gets changed, all the dogs jump up and start barking.

The average computer user is a technological antiquarian who doesn’t really like things
to change. He or she is like an urban professional who has just bought a charming fixer-
upper and is now moving the furniture and knicknacks around, and reorganizing the
kitchen cupboards, so that everything’s just right. If it is necessary for a bunch of engi-
neers to scurry around in the basement shoring up the foundation so that it can support
the new cast-iron claw-foot bathtub, and snaking new wires and pipes through the walls
to supply modern appliances, why, so be it–engineers are cheap, at least when millions of
OS users split the cost of their services.

Likewise, computer users want to have the latest Pentium in their machines, and to be
able to surf the web, without messing up all the stuff that makes them feel as if they
know what the hell is going on. Sometimes this is actually possible. Adding more RAM
to your system is a good example of an upgrade that is not likely to screw anything up.

Alas, very few upgrades are this clean and simple. Lawrence Lessig, the whilom Special
Master in the Justice Department’s antitrust suit against Microsoft, complained that he
had installed Internet Explorer on his computer, and in so doing, lost all of his book-
marks–his personal list of signposts that he used to navigate through the maze of the In-
ternet. It was as if he’d bought a new set of tires for his car, and then, when pulling away
from the garage, discovered that, owing to some inscrutable side-effect, every signpost
and road map in the world had been destroyed. If he’s like most of us, he had put a lot of
work into compiling that list of bookmarks. This is only a small taste of the sort of trou-
ble that upgrades can cause. Crappy old OSes have value in the basically negative sense
that changing to new ones makes us wish we’d never been born.

48

All of the fixing and patching that engineers must do in order to give us the benefits of
new technology without forcing us to think about it, or to change our ways, produces a
lot of code that, over time, turns into a giant clot of bubble gum, spackle, baling wire and
duct tape surrounding every operating system. In the jargon of hackers, it is called
“cruft.” An operating system that has many, many layers of it is described as “crufty.”
Hackers hate to do things twice, but when they see something crufty, their first impulse is
to rip it out, throw it away, and start anew.

If Mark Twain were brought back to San Francisco today and dropped into one of these
old seismically upgraded buildings, it would look just the same to him, with all the doors
and windows in the same places–but if he stepped outside, he wouldn’t recognize it.
And–if he’d been brought back with his wits intact–he might question whether the build-
ing had been worth going to so much trouble to save. At some point, one must ask the
question: is this really worth it, or should we maybe just tear it down and put up a good
one? Should we throw another human wave of structural engineers at stabilizing the
Leaning Tower of Pisa, or should we just let the damn thing fall over and build a tower
that doesn’t suck?

Like an upgrade to an old building, cruft always seems like a good idea when the first
layers of it go on–just routine maintenance, sound prudent management. This is espe-
cially true if (as it were) you never look into the cellar, or behind the drywall. But if you
are a hacker who spends all his time looking at it from that point of view, cruft is funda-
mentally disgusting, and you can’t avoid wanting to go after it with a crowbar. Or, better
yet, simply walk out of the building–let the Leaning Tower of Pisa fall over–and go make
a new one THAT DOESN’T LEAN.

For a long time it was obvious to Apple, Microsoft, and their customers that the first gen-
eration of GUI operating systems was doomed, and that they would eventually need to
be ditched and replaced with completely fresh ones. During the late Eighties and early
Nineties, Apple launched a few abortive efforts to make fundamentally new post-Mac
OSes such as Pink and Taligent. When those efforts failed they launched a new project
called Copland which also failed. In 1997 they flirted with the idea of acquiring Be, but
instead they acquired Next, which has an OS called NextStep that is, in effect, a variant of
Unix. As these efforts went on, and on, and on, and failed and failed and failed, Apple’s
engineers, who were among the best in the business, kept layering on the cruft. They
were gamely trying to turn the little toaster into a multi-tasking, Internet-savvy machine,
and did an amazingly good job of it for a while–sort of like a movie hero running across a
jungle river by hopping across crocodiles’ backs. But in the real world you eventually
run out of crocodiles, or step on a really smart one.

Speaking of which, Microsoft tackled the same problem in a considerably more orderly
way by creating a new OS called Windows NT, which is explicitly intended to be a direct
competitor of Unix. NT stands for “New Technology” which might be read as an explicit
rejection of cruft. And indeed, NT is reputed to be a lot less crufty than what MacOS
eventually turned into; at one point the documentation needed to write code on the Mac
filled something like 24 binders. Windows 95 was, and Windows 98 is, crufty because
they have to be backward-compatible with older Microsoft OSes. Linux deals with the
cruft problem in the same way that Eskimos supposedly dealt with senior citizens: if you
insist on using old versions of Linux software, you will sooner or later find yourself drift-
ing through the Bering Straits on a dwindling ice floe. They can get away with this be-
cause most of the software is free, so it costs nothing to download up-to-date versions,
and because most Linux users are Morlocks.

49

The great idea behind BeOS was to start from a clean sheet of paper and design an OS the
right way. And that is exactly what they did. This was obviously a good idea from an
aesthetic standpoint, but does not a sound business plan make. Some people I know in
the GNU/Linux world are annoyed with Be for going off on this quixotic adventure
when their formidable skills could have been put to work helping to promulgate Linux.

Indeed, none of it makes sense until you remember that the founder of the company,
Jean-Louis Gassee, is from France–a country that for many years maintained its own sep-
arate and independent version of the English monarchy at a court in St. Germaines, com-
plete with courtiers, coronation ceremonies, a state religion and a foreign policy. Now,
the same annoying yet admirable stiff-neckedness that gave us the Jacobites, the force de
frappe, Airbus, and ARRET signs in Quebec, has brought us a really cool operating sys-
tem. I fart in your general direction, Anglo-Saxon pig-dogs!

To create an entirely new OS from scratch, just because none of the existing ones was ex-
actly right, struck me as an act of such colossal nerve that I felt compelled to support it. I
bought a BeBox as soon as I could. The BeBox was a dual-processor machine, powered
by Motorola chips, made specifically to run the BeOS; it could not run any other operat-
ing system. That’s why I bought it. I felt it was a way to burn my bridges. Its most dis-
tinctive feature is two columns of LEDs on the front panel that zip up and down like
tachometers to convey a sense of how hard each processor is working. I thought it
looked cool, and besides, I reckoned that when the company went out of business in a
few months, my BeBox would be a valuable collector’s item.

Now it is about two years later and I am typing this on my BeBox. The LEDs (Das
Blinkenlights, as they are called in the Be community) flash merrily next to my right el-
bow as I hit the keys. Be, Inc. is still in business, though they stopped making BeBoxes
almost immediately after I bought mine. They made the sad, but probably quite wise de-
cision that hardware was a sucker’s game, and ported the BeOS to Macintoshes and Mac
clones. Since these used the same sort of Motorola chips that powered the BeBox, this
wasn’t especially hard.

Very soon afterwards, Apple strangled the Mac-clone makers and restored its hardware
monopoly. So, for a while, the only new machines that could run BeOS were made by
Apple.

By this point Be, like Spiderman with his Spider-sense, had developed a keen sense of
when they were about to get crushed like a bug. Even if they hadn’t, the notion of being
dependent on Apple–so frail and yet so vicious–for their continued existence should
have put a fright into anyone. Now engaged in their own crocodile-hopping adventure,
they ported the BeOS to Intel chips–the same chips used in Windows machines. And not
a moment too soon, for when Apple came out with its new top-of-the-line hardware,
based on the Motorola G3 chip, they withheld the technical data that Be’s engineers
would need to make the BeOS run on those machines. This would have killed Be, just
like a slug between the eyes, if they hadn’t made the jump to Intel.

So now BeOS runs on an assortment of hardware that is almost incredibly motley: Be-
Boxes, aging Macs and Mac orphan-clones, and Intel machines that are intended to be
used for Windows. Of course the latter type are ubiquitous and shockingly cheap nowa-
days, so it would appear that Be’s hardware troubles are finally over. Some German
hackers have even come up with a Das Blinkenlights replacement: it’s a circuit board kit
that you can plug into PC-compatible machines running BeOS. It gives you the zooming
LED tachometers that were such a popular feature of the BeBox.

My BeBox is already showing its age, as all computers do after a couple of years, and
sooner or later I’ll probably have to replace it with an Intel machine. Even after that,

50

though, I will still be able to use it. Because, inevitably, someone has now ported Linux
to the BeBox.

At any rate, BeOS has an extremely well-thought-out GUI built on a technological frame-
work that is solid. It is based from the ground up on modern object-oriented software
principles. BeOS software consists of quasi-independent software entities called objects,
which communicate by sending messages to each other. The OS itself is made up of such
objects, and serves as a kind of post office or Internet that routes messages to and fro,
from object to object. The OS is multi-threaded, which means that like all other modern
OSes it can walk and chew gum at the same time; but it gives programmers a lot of
power over spawning and terminating threads, or independent sub-processes. It is also a
multi-processing OS, which means that it is inherently good at running on computers
that have more than one CPU (Linux and Windows NT can also do this proficiently).

For this user, a big selling point of BeOS is the built-in Terminal application, which en-
ables you to open up windows that are equivalent to the xterm windows in Linux. In
other words, the command line interface is available if you want it. And because BeOS
hews to a certain standard called POSIX, it is capable of running most of the GNU soft-
ware. That is to say that the vast array of command-line software developed by the GNU
crowd will work in BeOS terminal windows without complaint. This includes the GNU
development tools-the compiler and linker. And it includes all of the handy little utility
programs. I’m writing this using a modern sort of user-friendly text editor called Pe,
written by a Dutchman named Maarten Hekkelman, but when I want to find out how
long it is, I jump to a terminal window and run “wc.”

As is suggested by the sample bug report I quoted earlier, people who work for Be, and
developers who write code for BeOS, seem to be enjoying themselves more than their
counterparts in other OSes. They also seem to be a more diverse lot in general. A couple
of years ago I went to an auditorium at a local university to see some representatives of
Be put on a dog-and-pony show. I went because I assumed that the place would be
empty and echoing, and I felt that they deserved an audience of at least one. In fact, I
ended up standing in an aisle, for hundreds of students had packed the place. It was like
a rock concert. One of the two Be engineers on the stage was a black man, which unfor-
tunately is a very odd thing in the high-tech world. The other made a ringing denuncia-
tion of cruft, and extolled BeOS for its cruft-free qualities, and actually came out and said
that in ten or fifteen years, when BeOS had become all crufty like MacOS and Windows
95, it would be time to simply throw it away and create a new OS from scratch. I doubt
that this is an official Be, Inc. policy, but it sure made a big impression on everyone in the
room! During the late Eighties, the MacOS was, for a time, the OS of cool people-artists
and creative-minded hackers-and BeOS seems to have the potential to attract the same
crowd now. Be mailing lists are crowded with hackers with names like Vladimir and
Olaf and Pierre, sending flames to each other in fractured techno-English.

The only real question about BeOS is whether or not it is doomed.

Of late, Be has responded to the tiresome accusation that they are doomed with the asser-
tion that BeOS is “a media operating system” made for media content creators, and hence
is not really in competition with Windows at all. This is a little bit disingenuous. To go
back to the car dealership analogy, it is like the Batmobile dealer claiming that he is not
really in competition with the others because his car can go three times as fast as theirs
and is also capable of flying.

Be has an office in Paris, and, as mentioned, the conversation on Be mailing lists has a
strongly European flavor. At the same time they have made strenuous efforts to find a
niche in Japan, and Hitachi has recently begun bundling BeOS with their PCs. So if I had

51

to make wild guess I’d say that they are playing Go while Microsoft is playing chess.
They are staying clear, for now, of Microsoft’s overwhelmingly strong position in North
America. They are trying to get themselves established around the edges of the board, as
it were, in Europe and Japan, where people may be more open to alternative OSes, or at
least more hostile to Microsoft, than they are in the United States.

What holds Be back in this country is that the smart people are afraid to look like suckers.
You run the risk of looking naive when you say “I’ve tried the BeOS and here’s what I
think of it.” It seems much more sophisticated to say “Be’s chances of carving out a new
niche in the highly competitive OS market are close to nil.”

It is, in techno-speak, a problem of mindshare. And in the OS business, mindshare is
more than just a PR issue; it has direct effects on the technology itself. All of the periph-
eral gizmos that can be hung off of a personal computer–the printers, scanners, PalmPilot
interfaces, and Lego Mindstorms–require pieces of software called drivers. Likewise,
video cards and (to a lesser extent) monitors need drivers. Even the different types of
motherboards on the market relate to the OS in different ways, and separate code is re-
quired for each one. All of this hardware-specific code must not only written but also
tested, debugged, upgraded, maintained, and supported. Because the hardware market
has become so vast and complicated, what really determines an OS’s fate is not how good
the OS is technically, or how much it costs, but rather the availability of hardware-specific
code. Linux hackers have to write that code themselves, and they have done an amaz-
ingly good job of keeping up to speed. Be, Inc. has to write all their own drivers, though
as BeOS has begun gathering momentum, third-party developers have begun to contrib-
ute drivers, which are available on Be’s web site.

But Microsoft owns the high ground at the moment, because it doesn’t have to write its
own drivers. Any hardware maker bringing a new video card or peripheral device to
market today knows that it will be unsalable unless it comes with the hardware-specific
code that will make it work under Windows, and so each hardware maker has accepted
the burden of creating and maintaining its own library of drivers.

MINDSHARE

The U.S. Government’s assertion that Microsoft has a monopoly in the OS market might
be the most patently absurd claim ever advanced by the legal mind. Linux, a technically
superior operating system, is being given away for free, and BeOS is available at a nomi-
nal price. This is simply a fact, which has to be accepted whether or not you like Micro-
soft.

Microsoft is really big and rich, and if some of the government’s witnesses are to be be-
lieved, they are not nice guys. But the accusation of a monopoly simply does not make
any sense.

What is really going on is that Microsoft has seized, for the time being, a certain type of
high ground: they dominate in the competition for mindshare, and so any hardware or
software maker who wants to be taken seriously feels compelled to make a product that
is compatible with their operating systems. Since Windows-compatible drivers get writ-
ten by the hardware makers, Microsoft doesn’t have to write them; in effect, the hardware
makers are adding new components to Windows, making it a more capable OS, without
charging Microsoft for the service. It is a very good position to be in. The only way to
fight such an opponent is to have an army of highly competetent coders who write equiv-
alent drivers for free, which Linux does.

But possession of this psychological high ground is different from a monopoly in any
normal sense of that word, because here the dominance has nothing to do with technical

52

performance or price. The old robber-baron monopolies were monopolies because they
physically controlled means of production and/or distribution. But in the software busi-
ness, the means of production is hackers typing code, and the means of distribution is the
Internet, and no one is claiming that Microsoft controls those.

Here, instead, the dominance is inside the minds of people who buy software. Microsoft
has power because people believe it does. This power is very real. It makes lots of
money. Judging from recent legal proceedings in both Washingtons, it would appear that
this power and this money have inspired some very peculiar executives to come out and
work for Microsoft, and that Bill Gates should have administered saliva tests to some of
them before issuing them Microsoft ID cards.

But this is not the sort of power that fits any normal definition of the word “monopoly,”
and it’s not amenable to a legal fix. The courts may order Microsoft to do things differ-
ently. They might even split the company up. But they can’t really do anything about a
mindshare monopoly, short of taking every man, woman, and child in the developed
world and subjecting them to a lengthy brainwashing procedure.

Mindshare dominance is, in other words, a really odd sort of beast, something that the
framers of our antitrust laws couldn’t possibly have imagined. It looks like one of these
modern, wacky chaos-theory phenomena, a complexity thing, in which a whole lot of in-
dependent but connected entities (the world’s computer users), making decisions on
their own, according to a few simple rules of thumb, generate a large phenomenon (total
domination of the market by one company) that cannot be made sense of through any
kind of rational analysis. Such phenomena are fraught with concealed tipping-points
and all a-tangle with bizarre feedback loops, and cannot be understood; people who try,
end up (a) going crazy, (b) giving up, (c) forming crackpot theories, or (d) becoming high-
paid chaos theory consultants.

Now, there might be one or two people at Microsoft who are dense enough to believe that
mindshare dominance is some kind of stable and enduring position. Maybe that even ac-
counts for some of the weirdos they’ve hired in the pure-business end of the operation,
the zealots who keep getting hauled into court by enraged judges. But most of them
must have the wit to understand that phenomena like these are maddeningly unstable,
and that there’s no telling what weird, seemingly inconsequential event might cause the
system to shift into a radically different configuration.

To put it another way, Microsoft can be confident that Thomas Penfield Jackson will not
hand down an order that the brains of everyone in the developed world are to be sum-
marily re-programmed. But there’s no way to predict when people will decide, en masse,
to re-program their own brains. This might explain some of Microsoft’s behavior, such as
their policy of keeping eerily large reserves of cash sitting around, and the extreme anxi-
ety that they display whenever something like Java comes along.

I have never seen the inside of the building at Microsoft where the top executives hang
out, but I have this fantasy that in the hallways, at regular intervals, big red alarm boxes
are bolted to the wall. Each contains a large red button protected by a windowpane. A
metal hammer dangles on a chain next to it. Above is a big sign reading: IN THE EVENT
OF A CRASH IN MARKET SHARE, BREAK GLASS.

What happens when someone shatters the glass and hits the button, I don’t know, but it
sure would be interesting to find out. One imagines banks collapsing all over the world
as Microsoft withdraws its cash reserves, and shrink-wrapped pallet-loads of hundred-
dollar bills dropping from the skies. No doubt, Microsoft has a plan. But what I would
really like to know is whether, at some level, their programmers might heave a big sigh of
relief if the burden of writing the One Universal Interface to Everything were suddenly

53

lifted from their shoulders.

THE RIGHT PINKY OF GOD

In his book The Life of the Cosmos, which everyone should read, Lee Smolin gives the
best description I’ve ever read of how our universe emerged from an uncannily precise
balancing of different fundamental constants. The mass of the proton, the strength of
gravity, the range of the weak nuclear force, and a few dozen other fundamental con-
stants completely determine what sort of universe will emerge from a Big Bang. If these
values had been even slightly different, the universe would have been a vast ocean of
tepid gas or a hot knot of plasma or some other basically uninteresting thing–a dud, in
other words. The only way to get a universe that’s not a dud–that has stars, heavy ele-
ments, planets, and life–is to get the basic numbers just right. If there were some ma-
chine, somewhere, that could spit out universes with randomly chosen values for their
fundamental constants, then for every universe like ours it would produce 10^229 duds.

Though I haven’t sat down and run the numbers on it, to me this seems comparable to
the probability of making a Unix computer do something useful by logging into a tty and
typing in command lines when you have forgotten all of the little options and keywords.
Every time your right pinky slams that ENTER key, you are making another try. In some
cases the operating system does nothing. In other cases it wipes out all of your files. In
most cases it just gives you an error message. In other words, you get many duds. But
sometimes, if you have it all just right, the computer grinds away for a while and then
produces something like emacs. It actually generates complexity, which is Smolin’s crite-
rion for interestingness.

Not only that, but it’s beginning to look as if, once you get below a certain size–way be-
low the level of quarks, down into the realm of string theory–the universe can’t be de-
scribed very well by physics as it has been practiced since the days of Newton. If you
look at a small enough scale, you see processes that look almost computational in nature.

I think that the message is very clear here: somewhere outside of and beyond our uni-
verse is an operating system, coded up over incalculable spans of time by some kind of
hacker-demiurge. The cosmic operating system uses a command-line interface. It runs
on something like a teletype, with lots of noise and heat; punched-out bits flutter down
into its hopper like drifting stars. The demiurge sits at his teletype, pounding out one
command line after another, specifying the values of fundamental constants of physics:

universe -G 6.672e-11 -e 1.602e-19 -h 6.626e-34 -protonmass 1.673e-27....

and when he’s finished typing out the command line, his right pinky hesitates above the
ENTER key for an aeon or two, wondering what’s going to happen; then down it
comes–and the WHACK you hear is another Big Bang.

Now THAT is a cool operating system, and if such a thing were actually made available
on the Internet (for free, of course) every hacker in the world would download it right
away and then stay up all night long messing with it, spitting out universes right and
left. Most of them would be pretty dull universes but some of them would be simply
amazing. Because what those hackers would be aiming for would be much more ambi-
tious than a universe that had a few stars and galaxies in it. Any run-of-the-mill hacker
would be able to do that. No, the way to gain a towering reputation on the Internet
would be to get so good at tweaking your command line that your universes would
spontaneously develop life. And once the way to do that became common knowledge,
those hackers would move on, trying to make their universes develop the right kind of
life, trying to find the one change in the Nth decimal place of some physical constant that
would give us an Earth in which, say, Hitler had been accepted into art school after all,

54

and had ended up his days as a street artist with cranky political opinions.

Even if that fantasy came true, though, most users (including myself, on certain days)
wouldn’t want to bother learning to use all of those arcane commands, and struggling
with all of the failures; a few dud universes can really clutter up your basement. After
we’d spent a while pounding out command lines and hitting that ENTER key and
spawning dull, failed universes, we would start to long for an OS that would go all the
way to the opposite extreme: an OS that had the power to do everything–to live our life
for us. In this OS, all of the possible decisions we could ever want to make would have
been anticipated by clever programmers, and condensed into a series of dialog boxes. By
clicking on radio buttons we could choose from among mutually exclusive choices (HET-
EROSEXUAL/HOMOSEXUAL). Columns of check boxes would enable us to select the
things that we wanted in our life (GET MARRIED/WRITE GREAT AMERICAN NOVEL)
and for more complicated options we could fill in little text boxes (NUMBER OF
DAUGHTERS: NUMBER OF SONS:).

Even this user interface would begin to look awfully complicated after a while, with so
many choices, and so many hidden interactions between choices. It could become damn
near unmanageable–the blinking twelve problem all over again. The people who
brought us this operating system would have to provide templates and wizards, giving
us a few default lives that we could use as starting places for designing our own.
Chances are that these default lives would actually look pretty damn good to most peo-
ple, good enough, anyway, that they’d be reluctant to tear them open and mess around
with them for fear of making them worse. So after a few releases the software would be-
gin to look even simpler: you would boot it up and it would present you with a dialog
box with a single large button in the middle labeled: LIVE. Once you had clicked that
button, your life would begin. If anything got out of whack, or failed to meet your expec-
tations, you could complain about it to Microsoft’s Customer Support Department. If
you got a flack on the line, he or she would tell you that your life was actually fine, that
there was not a thing wrong with it, and in any event it would be a lot better after the
next upgrade was rolled out. But if you persisted, and identified yourself as Advanced,
you might get through to an actual engineer.

What would the engineer say, after you had explained your problem, and enumerated all
of the dissatisfactions in your life? He would probably tell you that life is a very hard
and complicated thing; that no interface can change that; that anyone who believes other-
wise is a sucker; and that if you don’t like having choices made for you, you should start
making your own.

55

	MGBs, TANKS, AND BATMOBILES
	BIT-FLINGER
	GUIs
	HONEY-POT, TAR-PIT, WHATEVER
	THE TECHNOSPHERE
	THE INTERFACE CULTURE
	MORLOCKS AND ELOI AT THE KEYBOARD
	PARK [em] REVERSE [em] NEUTRAL [em]- 3 2 1 [em] Help&...
	METAPHOR SHEAR
	LINUX
	THE HOLE HAWG OF OPERATING SYSTEMS
	THE ORAL TRADITION
	OS SHOCK
	FALLIBILITY, ATONEMENT, REDEMPTION, TRUST, AND OTHER ARCANE TECHNICAL CONCEPTS
	MEMENTO MORI
	GEEK FATIGUE
	ETRE
	MINDSHARE
	THE RIGHT PINKY OF GOD

