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1 Introduction

The topic is topos.

1.1 An Overview
It is a well known fact, that an introduction has to be written last. This includes, but is not
limited to, an overview (such as this section).
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2 Technical Prolegomena

2.1 A Brief Introduction to Topos Theory
A quick and informal definition of an (elementary) Topos is a category with sufficient structure
to model at least intuitionistic set theory. This fact allows us to reason soundly about categorical
statements in the language of set theory.

As an intermediate step towards understanding what the colloquial notion “structure” of a
category designates, recall the following standard definition:

Definition 2.1 (Cartesian Closed). A cartesian closed category (CCC) is a category C with

1. a terminal object 1,

2. all binary products A×B for A,B ∈ Ob(C ),

3. all exponentials BA for A,B ∈ Ob(C ).

Categories that exhibit the sufficient properties to be CCCs include sets Sets or finite sets
FinSet, the category of G-sets of a group G, the category of presheafs SetsC and the category
of CPOs. A Counterexample is the general category of topological spaces Top, as this does not
have all exponentials.

This section formally introduces and frames the definitions necessary in the subsequent chap-
ters. At the same time, it should also serve as a general introduction to topos theory, for any reader
interested in the “set-like” and logical aspects of the field. For further general literature on the
study of toposes, consult “Sheaves in Geometry and Logic” by Mac Lane and Moerdijk [MM12],
“Elementary Categories, Elementary Toposes” by McLarty [McL92] or for more advanced details
Johnstone’s “Topos Theory”[Joh14] along with the “Sketches of an Elephant” [Joh02]. Shorter
introductions worthy of recommendation are Tom Leinster’s “An informal introduction to topos
theory” [Lei10] or John Baez’s “Topos Theory in a Nutshell” [Bae21].

2.1.1 Elementary Topos

The notion of an “elementary topos” is due to Lawvere and Tierney, trying to unify aspects
from logic and algebraic geometry [MR12, Sec. 3.1]. The conventional definition is as follows:

Definition 2.2 (Elementary Topos). A category E is an (elementary) topos if

1. E has all finite limits;

2. E is cartesian closed, as in Definition 2.1; and

3. E has a subobject classifier, i.e. an object Ω and a morphism 1 Ω (called “true”) such
that for each monomorphism m : S B in E , there is a unique characteristic morphism
ϕm : B Ω (the classifying map of m) making the following diagram a pullback-square:

S 1

B Ω

!

m true
ϕm

(2.1)
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We call a morphism e : 1 A, for some object A ∈ Ob(E ) a “global element” of A. For
example, the aforementioned true: 1 Ω is a global element denoting the truth element of a
subobject classifier.

For the sake of consistency, we will denote toposes by E or J , and arbitrary categories by C
and D .

As mentioned above, a topos has sufficient “structure” to express concepts from set theory. A
construct of particular relevance to this thesis, powersets, have a topos-theoretical generalisation:

Definition 2.3 (Power Object). The power object PB of any object B is such that for an
arbitrary f : B×A Ω, there exists a unique g : A PB such that the following commutes:

A B ×A

PB B × PB Ω

g fidB×g

∈B

(2.2)

In a category with exponentials and a subobject classifier Ω (such as a topos), the power
object PB is isomorphic to ΩB.

Definition 2.4 (Subobject). For two arbitrary monos m : S B and m′ : S′ B with the
same codomain B, the existence of a morphism f : S S′ such that m′ ◦ f = m induces a
partial order.

A subobject is an isomorphism class of monomorphisms, meaning that for the above monos
m,m′, the morphism f : S S′ is an iso.

The collection of all subobjects are denoted by SubC (B). In a topos E ,

SubE (A) ∼= HomE (A,Ω) (2.3)

holds for any object A ∈ Ob(E ) [MM12, Sec. IV.1].

Remark 2.5 (Homoousion of Subobjects). In a topos E , the following characterisations of a
subobject are equivalent [MM12, Sec. IV.1, p. 165]:

Monomorphism m : S B As discussed above,m is a representative element of the equivalence
class of monos that constitute the subobject,

Characteristic morphism ϕ : B Ω As mentioned in Definition 2.2, the characteristic mor-
phism ϕ or ϕm of any mono m is such that the pullback square ϕm ◦m = true ◦ ! commutes.

Global element s : 1 PB It is easy to see that by exponential transposition ϕ : B ∼= B ×
1 Ω corresponds to 1 ΩB ∼= PB. In the “set-like” interpretation, we read this as
the morphism that “picks out” a “subset” S of B.

Definition 2.6 ((Epi,Mono)-Factorisation). A category C has (strong epi,mono)-factorisation
when every arrow f : A B factors as f = m ◦ e, where e : A B′ is a strong epi and
m : B′ B is a mono. We refer to the subobject represented by m as the image Im f of f .

Definition 2.7 (Power Object Functor). A (covariant) power object functor maps each object
B to PB. A morphism f : A B is mapped to P f : PA PB, by the universal property
as in Equation (2.2),

PA B × PA

PB B × PB Ω

P f idB×P f
g

∈B

(2.4)
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To construct g, first take any subobject of the form

• m−→ A× PA,

and consider the corresponding characteristic morphism

A× PA
ϕm−−→ Ω.

From this point, we can extend subobject-monomorphism

• m−→ A× PA
f×idP A−−−−−→ B × PA,

the respective characteristic morphism

B × PA
ϕ(f×idP A) ◦ m−−−−−−−−−→ Ω

almost takes the necessary form to serve as g. Note that this only without further issues works if
f is itself mono. In general, we have to instead consider the image of Im((f × idP A) ◦m), and its
respective characteristic morphism ϕIm((f×idP A) ◦ m). This is elaborated on in the Elephant [Joh02,
A 2.3].

Example 2.8 (Examples of Elementary Toposes). What follows are some well known categories
that are toposes, with some comments:

Category of sets (Sets) It is well known that Sets is finitely complete and has exponential
objects (sets of functions). The subobject classifier is the two-element set Ω ∼= 2 ∼= {⊤,⊥}.
To verify that this is the subobject classifier, the following pullback square must commute:

S′

S {⊤}

B {⊤,⊥}

h

m′

!

m

!

true
ϕm

(2.5)

where true is the intuitive injection and the characteristic morphism as mentioned in
Remark 2.5 can stated directly:

ϕm(b) =
{

⊤ if ∃ s ∈ S.m(s) = b

⊥ otherwise

While it is clear that the ! = ! ◦h triangle must commute for any definition of h, for
m′ = m ◦h to commute, h must be defined as

h(s′ : S′) =
{
s : S

∣∣ m′(s′) = m(s)
}
.

The power-object functor in Sets is the power-set functor ℘ (−). Unsurprisingly, the power-
object of any set A is the power-set ℘ (A).

Category of finite sets (FinSet) For finite sets, the subobject classifier remains the same, and
the above constructions are likewise valid. All finite limits and exponentials exists as well.
We take the finite power-set functor to be the power-object functor.
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Category of Presheaves (SetsC , where C is small) This functor category is an interesting ex-
ample that doesn’t derive the “set-like” structure by being immediately “set-like” to begin
with. We do not concern ourselves with the precise definition here, but sketch Borceux’s
definition [Bor94, Ex. 5.2.5, p. 295] of the subobject classifier in SetsC : The subobject
classifier must be Ω a functor, defined for any object C ∈ Ob(C ) as Ω(C) the set of all
subfunctors of HomC (−, C), and for morphisms f : D C by the pullback diagram

Ω(f)(S) S

HomC (−, D) HomC (−, C)HomC (−,f)

(2.6)

for all S ∈ Ω(C). In any case, it clearly demonstrates that the “set-like” properties of
a topos can take form in ways that differ significantly from the notional equivalent of a
two-element set.

(Non-example:) Category of topological spaces (Top) While the Sierpinski space over {0, 1}
with the open spaces {{}, {1}, {1, 0}} would serve as a subobject classifier [nLa24, Sec.
2.2], the fact that Top is not cartesian closed is a sufficient condition to demonstrate that
Top is not a topos.

Remark 2.9 (Further definitions of toposes). In Definition 2.2 a topos was defined as a finitely
complete CCC with a subobject classifier. This is the canonical definition advanced by Mac
Lane and Moerdijk [MM12, p. IV.1], Lambek and Scott [LS88, Def. 5.4.1, p. 339] Barr and
Wells [BW00, p. 2.1], Leinster [Lei10, p. 5], Johnstone [Joh02, Def. 2.1.1], Caramello [Car18, Def.
1.3.28 (a)], Borceux [Bor94, Def. 5.1.3] and Freyd and Scedrov [FS90, p. 1.9].

Some regard this as the “category theoreticians” definition of a topos, while the “set theoreti-
cians” defines a topos as a finitely complete category with a power object functor. From this,
one can derive both the subobject classifier and all exponentials. Bell [Bel08, p. 60] gives this
definition.

Historically Lawvere [Law70] and Goldblatt [Gol14, p. 4.3] presented the canonical definition
with the additional requirement that the category is finitely cocomplete. Mikkelsen [Mik76, Thm.
2.3] showed how finite cocompleteness could be derived from the above canonical definition.

2.2 Internal Logic/Language of Categories
The previous section has insinuated the set-like properties that elementary toposes enjoy. What
follows is a presentation of how we can exploit their structure to simplify definitions and proofs.

To motivate this point concretely: In the internal logic of E , one can write down S : PA

S = { a : A | ϕB(a) ∧ ϕC(a) } ,

and be confident that this describes the pullback (or intersection) of two subobjects m : B A
and m′ : C A (with the characteristic morphisms ϕB and ϕC respectively). Likewise, we can
define any morphism point-wise: Raising a object to a “singleton set” by η : A PA has a
plain definition given by

η(a) = {a} =
{
a′ : A

∣∣ a = a′ } ,
suffices, where the latter set comprehension is just a more verbose version of the first. To prove
a claim like S ∩A = S we can argue using extensionality of sets, that is that for some element
a : A, a ∈ S ∩A ⇐⇒ a ∈ S must hold.

The intention here is not to prove that reasoning about categories in “the language” of sets is
sound or complete. To that end, see Mac Lane’s chapters on “Mitchell-Bénabou Language” and
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“Kripke-Joyal Semantics” [Mac13, Sec. IV.5 and 6], Borceux’s rigorous introduction of the infer-
ence rules in intuitionistic propositional [Bor94, Sec. 6.7, p. 395] and predicate calculus [Bor94,
Sec. 6.8, p. 400], as well as intuitionistic set theory [Bor94, Sec. 6.9, p. 409].

It is worthwhile to contemplate the notion of “internality” in category theory for a brief moment.
An instructive example is to consider the relation between HomC (A,B) and the exponential
BA ∈ Ob(C ). Assuming C is a locally small category, like Sets, that is to say that HomC (A,B)
is not a proper class, we can view the latter as an a “internal”, as in internal to the category,
representation of the latter.

A related example involves the power object PA and the collection of subobjects SubE (A).
The former gives a partial order inside the topos, while the latter is external to it. Nevertheless,
the two correspond exactly to one another.

2.2.1 The Internal Language of a CCC
As a first step, recall Definition 2.1. The well-known Curry-Howard Correspondance, that as-
sociated the inhabitation of types in the simply-typed λ-calculus (STLC) and provability of
propositions in minimal intuitionistic propositional logic can be extended to a categorical setting.
We fix C to be a Closed Cartesian category throughout this subsection.

Take the tautology (ϕ → ψ) → (ψ → χ) → ϕ → (ψ ∧ χ). Figure 2.1 gives a Sequent-style
natural deduction proof for the proposition. In STLC, we can inhabit the corresponding type
(A → B) → (B → C) → A → (B ∧ C) by the term

λ f. λ g. λ a. (fa), (g(fa)).

On closer inspection, a resemblance is found between the lambda-term and the proof in
Figure 2.1: The proof of a conjunction corresponds to the construction of a pair, modus ponens
corresponds to λ-abstraction applications, the management of a sequent context corresponds to
variable bindings.

The categorical analogue for provability or inhabitation is, in the above example, the existence
of a morphism

1
((

(B × C)A
)BC)BA

or by transposition BA × CB ×A B × C.

We recognise the objects A,B,C in C represent atomic propositions in minimal logic and
base types in STLC. Exponential objects such as BA mirror implications and function types
respectively. In general, object of C correspond to types or propositions, and the existence of
morphisms to terms or proofs. Above we considered both a map with a terminal object and a
product as the domain. These correspond to the logical judgements

⊢ (ϕ → ψ) → (ψ → χ) → ϕ → (ψ ∧ χ)

or by the deduction theorem, whereby we “extract” the “internal” implication into “external”
assumptions (and vice versa)

ϕ → ψ,ψ → χ, ϕ ⊢ ψ ∧ χ.

Compare this to the formula ϕ → ψ. We know that for arbitrary propositions, the implication
cannot always be satisfied. We know that a function type between two arbitrary types cannot
always be inhibited by a λ-term. And likewise, a morphism A B must not exist between
arbitrary objects (in Sets, HomSets({∗}, {}) is known to be empty).

This perspective is due to Lambek [Lam86] and states that λ-calculus (or minimal propositional
logic) is the “internal language” or “internal logic” of CCC. That is to say that due to the strong
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correspondence sketched above, demonstrating the existence of a morphism is exactly equivalent
to the inhabitation of a type or the proof of a formula. The appeal is that the latter two are
frequently more convenient to handle than a categorical proof, and allowing ourselves to argue
in these terms can simplify our proofs.

2.2.2 The Internal Language of a Topos
Mirroring the jump from Definition 2.1 (CCC) to Definition 2.2 (Toposes), the additional struc-
ture grants a more expressive “internal language”. As mentioned at the beginning of Section 2.2,
this approach links categorical statements to statements in intuitionistic set theory (without the
axiom of choice).

Just as in Section 2.2.1, the premise is that objects corresponds to formulae/types, and
morphisms to proofs. We will sketch these in the following. For more details, consult the previously
mentioned literature.

Any term of type Ω is a formula in the internal language. The usual connectives ∧, ∨, =⇒ ,
¬ enjoy the inference rules known from intuitionistic propositional calculus.

Formulae may have free variables x1 : X1, x1 : X2, . . . , xn : Xn, that externally appear in the
domain:

ϕ : X1 ×X2 × · · · ×Xn Ω.

These can be bound by universal and existential quantifiers:

∃x1. ϕ : X2 × · · · ×Xn Ω,

∀x1. ϕ : X2 × · · · ×Xn Ω,
and are interpreted and used according the intuitionistic predicate calculus.

Recall that a subobject of A is of type ΩA. Externally, this corresponds to an arrow A Ω,
i.e. a formula with a free variable of type A. We can use this fact to denote a specific subobject
via set-comprehension-notation:

{ a : A | ϕ } .

Note: This is a special case of a general definition of any morphism f : A B, that we can
define point-wise in the internal logic of a topos, where either

f(a) = . . . or a 7→ . . .

are both legal constructs that correspond to the set theoreticians expectations.
Returning to subobjects-as-sets, the two important applications include set membership,

∈A : A× ΩA Ω

that is easily recognised to just be evaluation, and extensional equality, where

⊢ { a : A | ϕ(a) } = { a : A | ψ(a) }

holds, when

a′ : A ⊢ a′ ∈ { a : A | ϕ(a) } ⇐⇒ a′ ∈ { a : A | ψ(a) }

and then is simplified to

a′ : A ⊢ ϕ(a′) ⇐⇒ ψ(a′).

Example 2.10 (Power Set Functor in the Internal Logic of E ). Utilising these properties is
straightforward: For example recalling Definition 2.7, an equivalent characterisation of the power
object functor’s morphism map in the internal logic of E is:

P (f) (A) := { b : B | ∃ a : A. a ∈ A ∧ b = f(a) } , (2.7)

for a f : A B.
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2.2.3 Example: Naturality of η

As a first example of how the above notions can be employed, by proving an intuitive claim
internally:

Proposition 2.11. η : Id ⇒ P is a natural transformation.

Proof. We translate the component-wise commutative diagram

A PA

B PB

f

ηA

P f

ηB

directly into the internal logic of E as the statement

⊢ P f ◦ ηA = ηB ◦ f.

As a topos is functionally extensional, we proceed to prove the equality of functions, by
ensuring that the functions behave the same on all arguments,

a : A ⊢ (P f)(ηA(a)) = ηB(f(a)).

This in turn proposes equality of subobject. As in classical set-theory, equality is extensional,
meaning subobjects are determined by their elements. Hence the above is equivalent to

a : A, b : B ⊢ b ∈ (P f)(ηA(a)) ⇐⇒ b ∈ ηB(f(a)).

Recall the definition of ηX(x) = {x′ | x′ = x } = {x}. If we expand the definition of the P f
as given in Equation (2.7), we have the following chain of reasoning:

b ∈
{
b′ : B

∣∣ b′ = f(a)
}

⇐⇒ b = f(a)
(∗)⇐⇒ ∃ a′ : A. a′ = a ∧ b = f(a′)

⇐⇒ b ∈
{
b′ : B

∣∣ ∃ a′ : A. a′ = a ∧ b′ = f(a′)
}

⇐⇒ b ∈
{
b′ : B

∣∣ ∃ a′ : A. a′ ∈ {a} ∧ b′ = f(a′)
}

⇐⇒ b ∈
{
b′ : B

∣∣ ∃ a′ : A. a′ ∈ ηA(a) ∧ b′ = f(a′)
}

⇐⇒ b ∈ (P f)(ηA(a))

As the internal logic of an arbitrary topos is intuitionistic, we can prove that the inference
annotated by (∗) is valid using the Coq1 proof assistant, which is founded on intuitionistic logic:

Parameter f : Set -> Set.
Parameter a b : Set.

Goal b = f a <-> (exists a’, a’ = a /\ b = f a’).
Proof.

split.
- intro H.

exists a.
split.

1https://coq.inria.fr/
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+ congruence.
+ assumption.

- intro H.
destruct H as [a’ [H1 H2]].
rewrite H1 in H2.
assumption.

Qed.

or now firstorder subst. if there were a need for brevity. ■

2.2.4 Example: Extension of a Function along a Monoid

As a second example, we shall foreshadow coming developments by assuming a topos E with
further structure:

Definition 2.12. A category C is countably extensive TODO

Definition 2.13. For any function f : B × A PB, the extension f(−) : B × A⋆ PB
is defined by transposing the initial algebra morphism ¡ : A⋆ P (B)B of the functor FX =
1 +A×X.

Proposition 2.14. The extension of f is well behaved.

Proof. By “well behaved”, we mean to expect that

f(b)(w) =
{

{b} if w = ϵ⋃
b′∈f(b,s) f(b′)(w′) if sw′ = w

. (2.8)

holds, in the internal logic of E .
Before proceeding, we have to likewise give an internal definition of f(−) and assure ourselves

that this corresponds to ¡ by making the following diagram commute

1 +A×A∗ A∗

1 +A× P (B)B P (B)B

[nil,cons]

id1+idA×¡ ¡

[n,c]

(2.9)

We therefore assume Equation (2.8) as the definition of ¡ or f(b), and separately define

n(∗) = b 7→ {b},

c(s, g) = b 7→
⋃

b′∈f(b,s)
g(b′).

By showing that Equation (2.9) commutes, we can conclude that f(−) = ¡. We do this by
“splitting up” the coproduct 1 +A×A∗ and looking at the resulting equations separately:

1. If x = ι2 ∗, which is to say that w = ϵ, then

(f(−) ◦ nil)(∗) = ((a 7→ b 7→ {b}) ◦ id1)(∗)

holds trivially.
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2. For a non-empty word where x = ι1(s, w) and b : B arbitrary, consider

f(−)(cons(s, w))
= b 7→

⋃
b′∈f(b,s)

f(b′)(w)

= b 7→
⋃

b′∈f(b,s)
f(−)(w)(b′)

= c(s, f(−)(w))
= (c ◦(idA × f(−)))(s, w) ■

2.3 Nondeterministic Categorical Automata
Readers not familiar with the standard construction of a nondeterministic finite automaton
(NFA), should consult Hopcroft et al. [HMU06, Sec. 2.3.2, p. 57]. In the following we will be
considering nondeterministic automata (NDA), generalising NFAs over arbitrary state spaces.

Recall that a NFA/NDA is represented by a tuple (Q,Σ, δ, I, F ):

• Q a (finite) set of states,

• Σ a (finite) set representing the input alphabet,

• δ a function representing state transitions of the type Q× Σ → Q,

• I a subset of the set Q representing the initial states,

• F a subset of the set Q representing the accepting states.

2.3.1 Categorical NDAs
Frank et al. [FMU23, Sec. 6, p. 10] present a categorification of NDA for an arbitrary category
C with finite limits and (epi,mono)-factorisations (c.f. Definition 2.6), again represented by a
tuple A = (Q,Σ, δ, I, F ):

• Q an object C of states,

• Σ a object C representing the input alphabet,

• a subobject mδ : δ Q× Σ ×Q, representing a ternary relation of legal state transitions,

• a subobject mI : I Q, representing the initial states,

• a subobject mF : F Q, representing the accepting states.

It is easy to see that for C = Sets we get NDAs, and that C = FinSet gives us NFAs. Also
note that an arbitrary topos has all the necessary structure to construct a categorical automaton.

A point of clarification regarding δ, as a subobject of Q × Σ × Q: the first element Q is a
given state, the second element the symbol in the input alphabet Σ by which the automaton
transitions to the state denoted by the third element Q. In Sets, this relation is equivalent to
functions of the types Q× Σ ℘ (Q) or Q ℘ (Q)Σ.

The semantics of a particular automaton A, in the words it will accept, i.e. the “accepting
runs” that start in an initial state and after processing a series of symbols s0, s1, s2, . . . from the
input ends up in a accepting state.

As we assume that C only has finite limits (let alone any coproducts), it is not countably
extensive (c.f. Definition 2.12). Therefore, there is no single object that can denote all words
w = s0, s1, s2, . . . , sn of arbitrary length.

12



L(0)(A) I ∩ F I

1 F Q

m
(0)
L(A)

mF

mI
!

e0,A

mI

mF

Figure 2.2: Commutative diagrams describing a NDA for n = 0

L(n)(A) AccRun(n)
A δn

Σn I × (Σ ×Q)n−1 × Σ × F (Q× Σ ×Q)n

Q× (Σ ×Q)n−1 × Σ ×Q Q× (Σ ×Q×Q)n−1 × Σ ×Q

m
(n)
L(A) m

(n)
δ

dn,Aen,A

πn
2 mn

δ

dn,A

mI×id(Σ×Q)n−1×Σ×mF

idQ×(idΣ×∆Q)n−1×idΣ×idQ

∼=

Figure 2.3: Commutative diagrams describing a NDA for n ≥ 1

For that reason, we define a language to be a family of subobjects:

L :=
(
m(L)

n : L(n) Σn
)

n∈N
, (2.10)

where each constituent of the family is respectively defined in terms of the commutative diagrams
in Figure 2.2 and Figure 2.3:
Accepted words of length n = 0 There is only a single accepted word of nil-length, ϵ (the empty

word). An automaton accepts this iff there is an “overlap” between the initial and the
accepted states. The “overlap” is expressed categorically in terms of a pullback of mI and
mF , and denoted by I ∩ F .
It is therefore not surprising to note that Σ0 ∼=1 has two subobjects: {}∼=0 and {1}∼=1∼={ϵ}.
If I ∩ F is an “empty intersection”, in which case it is isomorphic to 0, then the image
Im(!) = L(0)(A) of 0 1 is likewise 0. Otherwise, the image denotes the singleton
subobject {ϵ}. This is a satisfactory definition of m(L)

0 : L(0) Σ0 and intuitively matches
our expectations from automata theory.

Accepted words of length n ≥ 1 For any non-empty word w = s0, s1, . . ., we need to ensure
that there is a legal “accepting run”, that is to say a subobject of δn, where the right state
of the i’th entry matches the left state of the i+ 1’th entry. In Figure 2.3 we describe the
accepting runs by a pullback of the subobject mn

δ of n arbitrary legal transitions and the
morphism dn,A that reorders a

q0, s0, q1, s1, s2, . . . , qn−2, sn−2, qn−1, sn−1, qn

where q0 ∈ I ⊆ Q and qn ∈ F ⊆ Q, by duplicating each mid-state

q0, s0, q1, q1, s1, q2, . . . , qn−2, sn−2, qn−1, qn−1, sn−1, qn

and then utilising the associativity of products to re-order the product into the intended
form:

(q0, s0, q1), (q1, s1, q2), . . . , (qn−2, sn−2, qn−1), (qn−1, sn−1, qn).

The accepted words are of course a subobject of m(n)
L(A) : L(n)(A) Σn, that correspond to

the image or equivalently monomorphism of the (epi,mono)-factorisation of the morphism
πn

2 : AccRun(n)
A Σn projecting the symbols in the input alphabet that constitute the

accepting run.

13



L(0)(A) I ∩ F 1

1 F Q

m
(0)
L(A)

mF

i
!

e0,A

i

mF

Figure 2.4: Commutative diagrams describing a SISNDA for n = 0. The main difference to
Figure 2.2 is emphasised in green.

L(n)(A) AccRun(n)
A δn

Σn 1 × (Σ ×Q)n−1 × Σ × F (Q× Σ ×Q)n

Q× (Σ ×Q)n−1 × Σ ×Q Q× (Σ ×Q×Q)n−1 × Σ ×Q

m
(n)
L(A) m

(n)
δ

dn,Aen,A

πn
2 mn

δ

dn,A

i×id(Σ×Q)n−1×Σ×mF

idQ×(idΣ×∆Q)n−1×idΣ×idQ

∼=

Figure 2.5: Commutative diagrams describing a SISNDA for n ≥ 1. The main difference to
Figure 2.3 is emphasised in green.

2.3.2 Categorical Automata with a Single Initial State

It will present itself as useful to consider automata with a single initial state. We would like to
assure ourselves that this matter of convenience does not restrict the generality of our results.

The definition of a single-initial-state NDA (SISNDA) is mostly equivalent to that of a NDA,
with the difference that we do not consider a subobject I of Q to denote the possible initial
states, but just an object Q (or equivalently a global element i : 1 Q).

It should not be surprising, that the subobjects of L, that replace mI with i are mostly similar.
These are given in Figure 2.4 and Figure 2.5. Their interpretation is also equivalent to the
diagrams Figure 2.2 and Figure 2.3.

Theorem 2.15 (Single-State Automata). For any NDA, there exists exactly one SISNDA with
the same semantics.

Proof. Admitted. ■

2.4 Eilenberg-Moore Algebras and their Semantics

For readers unfamiliar with F -Coalgebras (sometimes also referred to as “algebra over an endo-
functor”), please consult Jacobs [Jac17].

Recall that a general F -Coalgebra is specified by an endofunctor F over a category C . In the
following we will consider special cases of F , that are defined by composing an arbitrary functor
G with a monad functor T . We follow and recapitulate the results of Jacobs et al. [JSS12] —
omitting proofs — to demonstrate how and under which conditions this ensures the existence
of a terminal coalgebra.

As a running example we will consider non-deterministic automata in Sets, conventionally
given by the endofunctor FQ = 2 × ℘ (Q)Σ. F is equivalently defined as the composition of
GQ = 2 ×QΣ and TQ = ℘ (Q) (by the well-known fact that powersets form a monad).

Recall that any monad

(T : C C , µ : TT ⇒ T, η : Id ⇒ X)

14



satisfies the following requirements:

TX TTX

TTX TX

ηT X

T (ηX) µX

µX

TTTX TTX

TTX TX

T (µX)

µT X

µX

µX

(2.11)

Definition 2.16 (Eilenberg-Moore Algebra). A Eilenberg-Moore algebra over a monad (T, µ, η)
is a morphism α : TX X such that

X T (X)

X

ηX

a

TTX TX

TX T

T (α)

µX

α

α

(2.12)

both commute.

Definition 2.17 (Eilenberg-Moore Category). The category of Eilenberg-Moore Algebras EM(T )
is a restriction of Alg(T ) to functors that satisfy Equation (2.12). Notions such as initial algebras
in EM(T ) exist analogously as in Alg(T ).

Definition 2.18 (EM-law). For a monad (T : C C , µ, η) and an arbitrary endo-functor
G : C C , a distributive EM-law is a natural transformation

ρ : TG ⇒ GT, (2.13)

such that the following two commutative diagrams commute:

GX

TGX GTX

ηGX G(ηX)

ρX

TTGX TGTX GTTX

TGX GTX

µGX

T (ρX) ρT X

G(µX)
ρX

(2.14)

Remark 2.19 (Interpretation in Sets for Automata). We take TQ = ℘ (Q) and GQ = 2 × QΣ.
Instantiating the type of EM-law pointwise

ρQ : ℘
(
2 ×QΣ

)
⇒ 2 × ℘ (Q)Σ , (2.15)

one can see, that this is describing the transformation of a set of deterministic automata, into a
single-non-deterministic automaton, which is supposed to be well-behaved in the intuitive sense
by Equation (2.14).

Following Jacobs et al. [JSS12, Sec. 5.1, p. 117] as define the EM-law as ρQ = ⟨ρQ,1, ρQ,2⟩,
where ρQ,1 : ℘

(
2 ×QΣ

)
2 is defined as

ρQ,1(A) = ∃ a ∈ A. π1(a) (2.16)

that determines if any of the automata in the powerset is in an accepting state, and the second
component of the type ρQ,2 : ℘

(
2 ×QΣ

)
℘ (Q)Σ as

ρQ,2(A) = s 7→ { q : Q | ∃ a ∈ A. q = π2(a)(s) } (2.17)

that applies the transition function to each automaton, aggregating the resulting deterministic
states as the next non-deterministic state.

We omit the proof that this definition satisfies the EM-law, as that result will follow from
TODO by verifying the claim in an arbitrary topos.
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Definition 2.20 (Liftings of Functors to EM-categories). Any functor G : C C can be
lifted from C to an Eilenberg-Moore category as Ĝ : EM(T ) EM(T ), given a EM-law (c.f.
Definition 2.18) ρ : TG ⇒ GT .

The object-map of Ĝ is defined as(
TX

a−→ X
)

7→
(
TGX

ρX−−→ GTX
G(a)−−−→ GX

)
(2.18)

and the morphism map of Ĝ as

f 7→ G(f). (2.19)

Jacob’s construction relies on the existence of a final (Z, ζ) in Coalg(G). Given ζ, we can
construct another object in Coalg(G)

TZ
T (ζ)−−−→ TGZ

ρZ−→ GTZ,

and know that there must be a unique morphism α : TZ Z from the latter to the former:

TZ GTZ

Z GZ

α

T (ζ) ◦ ρ

G(α)
ζ

in C

Recognising that the morphism β constitutes an Eilenberg-Moore Algebra, a change of perspec-
tive reveals an object in Coalg(Ĝ):

TZ
↓α
Z

Ĝ

(
TZ

↓α
Z

)
ζ in EM(T)

as Ĝ(α) = TGZ
G(α) ◦ ρ−−−−−→ GZ.

Example 2.21 (Semantic Map). In our example for GQ = 2 × QΣ, the carrier of the final
coalgebra is Z = ℘ (Σ⋆). Given a EM-law that distributes ℘ (−) over G and the finality of α,
the construction provides a map from an arbitrary state Q to the set of accepted words,

J−K : Q ηQ−−→ PQ
α−→ ℘ (Σ⋆) .

In Section 3.1 we will re-use these results from Sets, and verify that the construction is legal
in an arbitrary topos E .

2.5 Graded Monads
The second semantic approach will revolve around graded monads, as presented by Milius et
al. [MPS15]. All of the following definitions are taken from that reference.

Definition 2.22 (Graded Monad). A graded monad on C is a family of endofunctors

(Mn : C C )n∈N,

a natural transformation η : Id ⇒ M0 (unit) and a family of natural transformations (multipli-
cation)(

µn,k : MnMk ⇒ Mn+k

)
n∈N,m,N

.
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These satisfy the unit and associativity laws:

Mn M0Mn

MnM0 Mn

Mnη

ηMn

µ0,n

µn,0

MnMkMm MnMk+m

Mn+kMm Mn+k+m

Mnµk,m

µn,kMm µn,k+m

µn+k,m

Definition 2.23 (Graded Trace Semantics). For a F -Coalgebra X, γ the graded trace semantics
consist of

• a graded monad (Mn)n∈N,

• a natural transformation α : G ⇒ M1.

Notation 2.24 ((Graded) Kleisli Star (−)∗
n). For a f : X MkY , we write

f∗
n = µn,k

Y ◦Mnf : MnX Mn+kY. (2.20)

Definition 2.25 (α-pretrace sequence). For a graded trace semantics
(
(Mn)n∈N, α

)
, the α-

pretrace sequence is a family of maps(
γ(n) : X Mn1

)
n∈N

defined by

γ(0) := ηX : X M01
γ(n+1) := (γ(n))∗

1 ◦αX ◦ γ : X Mn+11

Notation 2.26 (up-to-n-times product). For the sake of legibility, in the following we will
abbreviate:

Σ<n :=
n∐

i=0
Σi,

where n ∈ N.

Example 2.27 (NDA in Sets ). For a F -Coalgebra FQ = 2 × ℘ (Q)Σ, we can choose(
MnQ = ℘

(
Σ<n−1 +Q× Σn

))
n∈N

and a α : G ⇒ M1 or equivalently α : 2 × ℘ (−)Σ ⇒ ℘
(
Σ<0 + − × Σ

)
defined as

α((o, t)) = { ι1 1 | o } ∪ { ι2(σ, x) | t(σ) = x } . (2.21)

It is easy to see that Mn forms a graded monad with the multiplication

µn,m
Q : ℘

((
Σ<n−1Σi

)
+ Σn × ℘

((
Σ<m−1Σi

)
+ Σm ×Q

))
℘
((

Σ<n+m−1Σi
)

+ Σn+m ×Q
)

defined as

µn,m
Q (S) := { ι2(wv, V ) | ι2(w,W ) ∈ S, ι2(v, V ) ∈ W } (2.22)

∪ { ι1(wv) | ι2(w,W ) ∈ S, ι1(v) ∈ W } (2.23)
∪ { ι1(w) | ι1(w) ∈ S } , (2.24)
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and unit being ηQ(q) := {ι1((q, ϵ))}, as this is just a variant of the standard power-set monad
in Sets.

The graded trace semantics γ(n) : Q Mn1 for a q : Q in this case are

γ(0)(q : Q) = ηQ(q) = {ι2((q, ϵ))} : M01 (2.25)

for the base-case n = 0, and for n+ 1

γ(n+1)(q) =
((
γ(n)

)∗

1
◦αF Q ◦ γ

)
(q)

=
(
µ1,n

1 ◦M1γ
(n) ◦αF Q ◦ γ

)
(q) By Equation (2.20)

=
(
µ1,n

1 ◦℘
(
id1 + idΣ × γ(n)

)
◦αF Q ◦ γ

)
(q)

= { ι1 ϵ | ι1 1 ∈ S } ∪ { ι1(σσ⃗) | ι2(σ, ι2 σ⃗) ∈ S }
∪ { ι2(σσ⃗, x) | ι2(σ, ι1(σ⃗, x)) ∈ S }
= { ι1 ϵ | π1(γ(q)) } (a)

∪
{
ι1(σσ⃗)

∣∣∣ ∃ q′ ∈ γ(q)(σ). ι1 σ⃗ ∈ γ(n)(q′)
}

(b)

∪
{
ι2(σσ⃗, x)

∣∣∣ ∃ q′ ∈ γ(q)(σ). ι2(σ⃗, x) ∈ γ(n)(q′)
}

(c)

We understand that ι1-injections represent the accumulated accepted words. From a given
state q, these are either (a) the empty word if the current state is already accepting, or in (b)
are accepting after a single-step transition . In (c) we accumulate the transitions of length n
and the respective states that these words correspond to as ι2-injections

By throwing out ι2-injections, we arrive at the accepted words up to a length of n:(
π(n+1) ◦ γ(n+1)

)
(q) =

{
σ⃗
∣∣∣ ι1 σ⃗ ∈ γ(n+1)(q)

}
. (2.26)

We will review these results and their applications in the context of an arbitrary topos E in
Chapter 4.
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3 Categorical Automata and Coalgebras

3.1 Topos Semantics of a Coalgebra
To investigate the relation of a coalgebra and a categorical automaton, we will begin by describing
the semantics of an coalgebra in an arbitrary topos. The functor of the coalgebra we will be
considering shall be

GQ = Ω × P (Q)Σ. (3.1)

We shall proceed by the approach sketched in Section 2.4, regarding Equation (3.1) as the
composition FT of the functors

FQ = Ω ×QΣ

TQ = PQ

where T has a monadic structure (T, µ, η).
Before attempting to construct the semantic map J−K : Q ℘ (Σ⋆), we have to verify that

the necessary prerequisites hold.

3.1.1 Validity of the EM-law in a Topos
In this section we will consider the EM-law (c.f. Definition 2.18), i.e. the natural transformation

ρ : P
(
Ω × −Σ

)
⇒ Ω × P (−)Σ (3.2)

and ensure that it satisfies the conditions listed in Equation (2.14). In the following, we will
reuse the Sets-definition of ρ from Equation (2.16), as it is just as valid in any topos E .

Lemma 3.1. ρ is a natural transformation.

Proof. For the sake of an overview, we want to ensure that the following diagram commutes:

Q P
(
Ω ×QΣ

)
Ω × P (Q)Σ

Q′ P
(
Ω ×Q′Σ

)
Ω × P (Q′)Σ

f T (F (f))

ρQ

F (T (f))

ρ′
Q

We can rephrase this internally as the statement

a : P
(
Ω ×QΣ

)
, f : Q Q′ ⊢ ρQ′(TF (f)(a)) = FT (f)(ρQ(a)),

that we prove by a chain of equations for each of the two components:

1. On the left component (on which f has no effect), consider

π1(ρQ′(TF (f)(a)))
⇐⇒ ρQ′,1(TF (f)(a))
⇐⇒ ρQ,1(a) ⇐⇒ π1ρQ(a) ⇐⇒ π1FT (f)(ρQ(a))
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2. For the right component, consider

π2(ρQ′(TF (f)(a)))
=ρQ′,2(TF (f)(a))
=
{
q : Q′ ∣∣ ???

}
ρQ′,2(TF (f)(a))

=π2FT (f)(ρQ(a))

■

3.2 Topos Semantics of a Categorical Automaton

I ∩ F = { q ∈ Q | (char I)(q) ∧ (charF )(q) } (3.3)

Rn,A =

 a ∈ δn

∣∣∣∣∣∣∣∣∣ π1(π1(a)) ∈ I︸ ︷︷ ︸
begins in an
initial state

∧π3(πn(a)) ∈ F︸ ︷︷ ︸
ends in final state

∧ ∀ 1 ≤ i < n. π3(πi(a)) = π1(πi+1(a))︸ ︷︷ ︸
all transitions are legal

 . (3.4)

dn,A(a) = a (3.5)

mn
δ (a) =

〈
π1 ◦π1, ⟨π2, π3⟩n−1 , π2 ◦πn, π3 ◦πn

〉
(a). (3.6)

⊢ dn,A ◦mn
δ = mn

δ ◦ dn,A = ι(Q×Σ×Q)n , (3.7)

Pb (dn,A,m
n
δ ) = { r ∈ (Q× Σ ×Q)n | r ∈ Im(dn,A) ∧ r ∈ Im(mn

δ ) } (3.8)

π1,1(r) ∈ I ∧ π3,n(r) ∈ F ∧ ∀ 1 ≤ i < n. π3,i(r) = π1,i+1(r)
⇐⇒ ∃ a : I × (Σ ×Q)n−1 × Σ × F. dn,A(a) = r,

(3.9)

pn,A ◦m(n)
δ , or πn

2 ◦mn
δ ◦ dn,A, (3.10)

πn,A(a) = πn
2 (a) (3.11)

Im(πn,A) =
{
σ⃗ ∈ Σn

∣∣∣ ∃ a ∈ AccRun(n)
A . πn,A(a) = σ⃗

}
(3.12)

{ σ⃗ ∈ Σn | ∃ a ∈ δn. π1,1(a) ∈ I ∧ π3,n(a) ∈ F ∧ (∀ i < n. π3,i(a) = π1,i+1(a)) =⇒ πn
2 (a) = σ⃗ } .

(3.13)
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3.3 Equivalence of Descriptions
The remainder of this chapter indents to equate coalgebras and categorical automata. In other
words, do the semantics of both systems (as respectively given in Equation (3.12) and ??)
coincide?

It is easy to see that it is not possible to naively compare the two semantics:{
σ⃗ ∈ Σn

∣∣∣ ∃ a ∈ AccRun(n)
A . πn,A(a) = σ⃗

}
=
{
σ⃗ ∈ Σ⋆

∣∣∣ o(t(q)(σ⃗)) = true
}
,

as the left hand side only describes words of some specific length n, while the right hand side
denotes all words.

We proceed by restricting J−K to words of a fixed length:

JqKn :=
{
σ⃗ ∈ Σ⋆

∣∣∣ σ⃗ ∈
{
σ⃗ ∈ Σ⋆

∣∣∣ o(t(q)(σ⃗)) = true
}

∧ ∥σ⃗∥ = n
}

=
{
σ⃗ ∈ Σ⋆

∣∣∣ o(t(q)(σ⃗)) = true ∧ ∥σ⃗∥ = n
}

=
{
σ⃗ ∈ Σn

∣∣∣ o(t(q)(σ⃗)) = true
}

= {σ1 . . . σn ∈ Σn | o(t(· · · t(q)(σ1) · · · ))(σn) = true }

(3.14)

The other apparent issue is that the above definitions do not speak of an automaton in the
same terms: The left hand side relies on AccRun(n)

A and the right hand side uses on o and t.
Remark 3.2. Any categorical automaton A = (Q,Σ, δ, I, F ) has an equivalent coalgebraic rep-
resentation Q

⟨o,t⟩−−→ Ω × P (Q)Σ with initial states I. In the internal logic of E , we can define
o : Q Ω and t : Q P (Q)Σ,

o(q) = (q ∈ F ) (3.15)
t(q) = σ 7→

{
q′ ∣∣ (q, σ, q′) ∈ δ

}
(3.16)

On these grounds, we can consider a modified semantic map for coalgebras, with the notable
difference that we are considering the semantics of potentially multiple initial states:

JIK∗
n :=

{
σ⃗ ∈ Σn

∣∣∣ ∃ q ∈ I. o(t(q)(σ⃗)) = true
}

(3.17)

Theorem 3.3. The accepted-runs semantics of an automaton in a topos E coincides with the
language semantics of the corresponding coalgebra.

In other words, given an categorical automaton A and the a coalgebra as described in Re-
mark 3.2, the JIK∗

n and the image of πn,A(A) coincide for n > 0:{
σ⃗ ∈ Σn

∣∣∣ ∃ q ∈ I. o(t(q)(σ⃗)) = true
}

=
{
σ⃗ ∈ Σn

∣∣∣ ∃ a ∈ AccRun(n)
A . πn,A(a) = σ⃗

}
(3.18)

For n = 0, we instead have

∃ q ∈ I. o(q) ⇐⇒ I ∩ F ≇∅. (3.19)

Proof. For the empty word, i.e. n = 0, it is easy to see that

∃ q ∈ I. o(q) ⇐⇒ ∃ q ∈ I. q ∈ F

⇐⇒ ∃ q ∈ Q. q ∈ I ∧ q ∈ F (by I ⊆ Q)
⇐⇒ { q ∈ Q | q ∈ I ∧ q ∈ F } ≇∅
⇐⇒ I ∩ F ≇∅

holds.
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For n > 0, and given a σ⃗ ∈ Σn we can prove Equation (3.18) by extensionality. Note that we
will argue the legality of the step marked by (∗) below:

σ⃗ ∈ JIK∗
n

⇐⇒ σ⃗ ∈
{
σ⃗ ∈ Σn

∣∣∣ ∃ q ∈ I. o(t(q)(σ⃗)) = true
}

⇐⇒ ∃ q ∈ I. o(t(q)(σ⃗)) = true
⇐⇒ ∃ q ∈ I. ∃ q1 ∈ t(q)(σ1). · · · ∃ qn ∈ t(qn−1)(σn). o(qn) = true
⇐⇒ ∃ q ∈ I. ∃ q1 ∈ { q̃ | (q, σ1, q̃) ∈ δ } . · · · ∃ qn ∈ { q̃ | (qn−1, σn, q̃) ∈ δ } . o(qn) = true
⇐⇒ ∃ q ∈ I. ∃ (q, σ1, q1) ∈ δ. · · · ∃ (qn−1, σn, qn) ∈ δ. o(qn) = true
⇐⇒ ∃ q ∈ I. ∃ (q, σ1, q1) ∈ δ. · · · ∃ (qn−1, σn, qn) ∈ δ. qn ∈ F

(∗)⇐⇒ ∃ a ∈ δn. (π1,1(a) ∈ I ∧ π3,n(a) ∈ F ∧ (∀ i < n. π3,i(a) = π1,i+1(a)) =⇒ πn,A(a) = σ⃗)

⇐⇒ ∃ a ∈ AccRun(n)
A . πn,A(a) = σ⃗

⇐⇒ σ⃗ ∈
{
σ⃗ ∈ Σn

∣∣∣ ∃ a ∈ AccRun(n)
A . πn,A(a) = σ⃗

}
⇐⇒ σ⃗ ∈ L(n)(A)

Considering both directions of (∗) separately,

The =⇒ direction We begin with a word σ⃗ accepted by the coalgebra, and intend to demon-
strate that it is part of the accepted run semantics. To this end we have to construct a
satisfactory δn.
Note that the

(q, σ1, q1), (q1, σ2, q2), . . . (qn−2, σn−1, qn−1), (qn−1, σn, qn)

form a tuple of the type δn. Refer to this tuples a.
By assumption π1,1(a) = q ∈ I, πn,3(a) = qn ∈ F . Furthermore, each pair of consequitive
triples (qi−1, σi, qi) and (qi, σi+1, qi+1) in a coincide in their third and first element.
By applying πn,A (defined as πn

2 ) to a, we receive σ⃗ by construction.
Therefore, a is a fit candidate for the witness, as it satisfies both the antecedent and the
consequent.

The ⇐= direction In this case we assume a word accepted by the categorical automaton, and
indent to demonstrate that it is also accepted by the coalgebra.
Taking π1,1(a) as a witness q, we know that o(π3,n(a)) = true and that for every ai

(1 ≤ 1 < n), there exist elements in δ where π3(ai) = π1(ai+1).
Therefore, we know that by iterating over σ⃗, in each case t(qi)(σi) will include a (qi, σi, qi+1) ∈
δ, such that a t(qi+1)(σi+1) will include a (qi+1, σi+1, qi+2) ∈ δ, and so forth. ■
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4 Categorical Automata and Graded Monads

The results in Chapter 3 require E to not only be a topos, but be countably extensive. This was
the case, as the Eilenberg-Moore Semantics of a Coalgebra map to Σ⋆ = ∐

i<ω Σi, which is not
a finite limit and hence not a general construction available to us in an arbitrary topos (as for
example FinSet).

Section 2.5 presented an alternative semantic approach involving graded monads. Crucially,
graded semantics involve a family of maps with “depth limited” codomains.

Conveniently it is possible to restate all the definitions from Example 2.27 (defined for Sets)
in the internal logic of E , as these do not rely on non-intuitionistic constructions. Specifically
recall Equation (2.26) that maps a state to the set of accepted words up to a determined length.

4.1 Verifying the Graded-Monad Laws
It is first necessary to assure ourselves, that Mn constitutes a graded monad, as defined in
Definition 2.22.

To recapitulate, the family of endofunctors is given by(
Mn := P

(
Σ<n + Σn × −

)
: E E

)
n∈N. (4.1)

From this, can infer the definition of the unit natural transpformation

ηX(q) := P(Σ<0︸︷︷︸
0

+ Σ0︸︷︷︸
1

×−)(q) = {ι1(ϵ, q)}, (4.2)

here given pointwise, and of multiplication

µn,m
Q (S) := { ι1(wv, V ) | ι1(w,W ) ∈ S, ι1(v, V ) ∈ W }

∪ { ι2(wv) | ι1(w,W ) ∈ S, ι2(v) ∈ W }
∪ { ι2(w) | ι2(w) ∈ S } ,

(4.3)

equivalently to the Sets-definition from Equation (2.22).

Proposition 4.1. The above Mn satisfies the graded unit law.

Proof. The equational statement is µ0,n
X ◦ ηX(Mn) = idMn = µn,0

X ◦Mn(ηX).
Take S : MnQ, for any Q ∈ Ob(E ). Then consider

µ0,n
Q (ηQ(Mn)(S))

=µ0,n
Q (ι2(ϵ, S))

= { ι1(ϵw) | ι1(w) ∈ S } ∪ { ι2(ϵw, q) | ι2(w, q) ∈ S }
=S
= { ι1(w) | ι1(w) ∈ S } ∪ { ι2(w, q) | ι2(w, q) ∈ S }
=µ0,n

Q ({ ι1(w) | ι1(w) ∈ S } ∪ { ι2(w, ι2(ϵ, q)) | ι2(w, q) ∈ S })
=µ0,n

Q (Mn(ηQ)(S)) ■

Proposition 4.2. The above Mn satisfies the graded multiplication law.
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Proof. As before, consider for any S : MnMkMmQ the following chain of equations:

µn,k+m
X (Mn(µk,m

X )(S))

=µn,k+m
X

 { ι1(w) | ι1(w) ∈ S } ∪{
ι2(w, x)

∣∣∣ ι2(w, S′) ∈ S, x ∈ µk,m
X (S′)

}

=µn,k+m
X


{ ι1(w) | ι1(w) ∈ S } ∪{
ι2(w, ι1(w′))

∣∣ ι2(w, S′) ∈ S, ι1(w′) ∈ S′ }∪{
ι2(w, ι1(w′w′′))

∣∣ ι2(w, S′) ∈ S, ι2(w′, q) ∈ S′, ι1(w′′) ∈ S′′ }∪{
ι2(w, ι2(w′w′′, q))

∣∣ ι2(w, S′) ∈ S, ι2(w′, S′′) ∈ S′, ι2(w′′, q) ∈ S′′ }



=µn,k+m
X


{ ι1(w) | ι1(w) ∈ S } ∪{
ι2(w, ι1(w′))

∣∣ ι2(w, S′) ∈ S, ι1(w′) ∈ S′ }∪{
ι2(w, ι1(w′w′′))

∣∣ ι2(w, S′) ∈ S, ι2(w′, q) ∈ S′, ι1(w′′) ∈ S′′ }∪{
ι2(w, ι2(w′w′′, q))

∣∣ ι2(w, S′) ∈ S, ι2(w′, S′′) ∈ S′, ι2(w′′, q) ∈ S′′ }



=


{ ι1(w) | ι1(w) ∈ S } ∪{
ι1(ww′)

∣∣ ι2(w, S′) ∈ S, ι1(w′) ∈ S′ }∪{
ι1(ww′w′′)

∣∣ ι2(w, S′) ∈ S, ι2(w′, S′′) ∈ S′, ι1(w′′) ∈ S′′ }∪{
ι2(ww′w′′, q)

∣∣ ι2(w, S′) ∈ S, ι2(w′, S′′) ∈ S′, ι2(w′′, q) ∈ S′′ }



=µn+k,m
X


{ ι1(w) | ι1(w) ∈ S } ∪{
ι1(ww′)

∣∣ ι2(w, S′) ∈ S, ι1(w′) ∈ S′ }∪{
ι2(ww′, ι1(w′′))

∣∣ ι2(w, S′) ∈ S, ι2(w′, S′′) ∈ S′, ι1(w′′) ∈ S′′ }∪{
ι2(ww′, ι2(w′′, q))

∣∣ ι2(w, S′) ∈ S, ι2(w′, S′′) ∈ S′, ι2(w′′, q) ∈ S′′ }



=µn+k,m
X


{ ι1(w) | ι1(w) ∈ S } ∪{
ι1(ww′)

∣∣ ι2(w, S′) ∈ S, ι1(w′) ∈ S′ }∪{
ι2(ww′, ι1(w′′))

∣∣ ι2(w, S′) ∈ S, ι2(w′, S′′) ∈ S′, ι1(w′′) ∈ S′′ }∪{
ι2(ww′, ι2(w′′, q))

∣∣ ι2(w, S′) ∈ S, ι2(w′, S′′) ∈ S′, ι2(w′′, q) ∈ S′′ }



=µn+k,m
X


{ ι1(w) | ι1(w) ∈ S } ∪{
ι1(ww′)

∣∣ ι2(w, S′) ∈ S, ι1(w′) ∈ S′ }∪{
ι2(ww′, x)

∣∣ ι2(w, S′) ∈ S, ι2(w′, S′′) ∈ S′, x ∈ S′′ }


=µn+k,m
X (µn,k

X (Mm)(S)). ■

Having established that Mn is a graded monad, the next step is to verify that α : G ⇒ M1 is
a natural transformation.

We can restate the component- and point-wise definition of α from Equation (2.21) in the
internal logic of E :

α((o, t)) = { ι1(s, q) | t(s) = q } ∪
{

{ι2 ϵ} if o = true
{} otherwise

(4.4)

Proposition 4.3. α is natural.

Proof. This is to say that

Ω × P (Q)Σ P
(
Σ0 + Σ1 ×Q

)
P Σ0 × P (Q)Σ1

Ω × P (Q′)Σ P
(
Σ0 + Σ1 ×Q′) P Σ0 × P (Q′)Σ1

Gf

αQ

M1f

∼=

αQ′ ∼=

(4.5)
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commutes.
Given an arbitrary (o, t) ∈ GQ, consider

M1(f)(αQ((o, t)))

=M1(f)
(

{ ι1(s, q) | t(s) = q } ∪
{

{ι2 ϵ} if o = true
{} otherwise

)

= { ι1(s, f(q)) | t(s) = q } ∪
{

{ι2 ϵ} if o = true
{} otherwise

= { ι1(s, q) | (ft)(s) = q } ∪
{

{ι2 ϵ} if o = true
{} otherwise

=(αQ′((o, f ◦ t)))
=(αQ′(G(f)((o, t)))) ■

With this result we have verified that all the prerequisites have been met to construct the
α-pretrace sequence using the graded trace semantics

(
γ(n)

)
n∈N

.

4.2 α-pretrace sequence and Accepted Run Semantics

To demonstrate that the α-pretrace sequence semantics and the accepted runs semantics coincide,
we demonstrate mutual subsumption.

Theorem 4.4. Each word that are part of the accepted runs semantics are also part of the
α-pretrace semantics.

First recall Theorem 2.15, allowing us to limit our considerations to single-initial-state q
automata, without loss of generality. Furthermore as pointed out in Remark 3.2, we know that
any automaton A has a coalgebra represented in E by the morphism Q

⟨o,t⟩−−→ Ω × P (Q)Σ.
We can take Theorem 4.4 to express, that for any n ∈ N,

πn
2 (AccRun(n)

A ) =
(
π(n+1) ◦ γ(n+1)

)
(q) ∩ Σn ⊆

(
π(n+1) ◦ γ(n+1)

)
(q). (4.6)

Proof. We begin with a case-distinction to distinguish between empty and non-empty words.
For empty-words and a state q, we consider the following:

ϵ ∈ πn
2 (AccRun(0)

A )
⇐⇒ q ∈ I ∧ q ∈ F TODO

⇐⇒ q ∈ {q} ∧ q ∈ F By A being SISNDA
⇐⇒ q ∈ F

⇐⇒ o(q)
⇐⇒ ϵ ∈ { ϵ | o(q) }
⇐⇒ ϵ ∈ { ϵ | π1(γ(q)) } TODO

⇐⇒ ϵ ∈
((
π1 ◦ γ(1)

)
(q)
)

∩ Σ0

Now consider a non-empty word w = s1 . . . sn+1 and the potentially empty subword w′ =

25



s2 . . . sn+1, where the annotated steps are elaborated on below:

w ∈ πn
2 (AccRun(n+1)

A )
⇐⇒ ∃ r : (Q× Σ ×Q)n+1. π1,1(r) ∈ I ∧ π3,n+1(r) ∈ F ∧ Acc(n+1)(r) ∧ πn+1

2 (r) = w

(†)⇐⇒ ∃ r : (Q× Σ ×Q)n. π3,n(r) ∈ F ∧ Acc(n)(r) ∧ s1π
n
2 (r) = w

(∗)⇐⇒ ∃ q′ ∈ γ(q)(s1). ι1(
w′︷ ︸︸ ︷

s2 . . . sn+1) ∈ γ(n)(q′)
⇐⇒ ∃ q′ ∈ γ(q)(s1). ι1(w′) ∈ γ(n)(q′)

⇐⇒ w ∈
((
π1 ◦ γ(n+1)

)
(q)
)

∩ Σn+1

Step (†) We are making use of the fact of the assumption that there is a single initial state
I = {q}, and therefore fix this in the accepted run. Doing so allows us to focus only on
the remaining run, as we know that π1

(
AccRun(n+1)

A

)
= (q, s1, q

′), for some q′ ∈ Q.

Step (∗) in the “⇒” direction Given an accepted run, we know there is a sequence of states
and input symbols

q1, s1, q2, s2, . . . , qn−1, sn−1, qn, sn, qn+1

with qn+1 being an accepting state. It is clear that q = q1 plays the role of the witness q′.
From this state, γ(n)(q′) contains all words up to a length of n. As the underlying coalgebra
corresponds directly to the automaton, we know that the word s2 . . . sn+1 of length n− 1
must be contained in this subobject.

Step (∗) in the “⇐” direction Given the step from q to q′ via s1, we know that the remaining
word s2 . . . sn+1 is accepted. This means that qn+1 is in a final state (qn+1 ∈ F ) and that
there is an accepting chain of transitions (Acc(n)(r)). ■

Let us convince ourselves of the intuitive fact, that the α-pretrace semantics of greater depth
contain strictly more words, as each “level” collects all words up to a given depth:

Lemma 4.5. All accepted words in γ(n)(q) are contained in γ(n+1)(q).

Proof. Consider the base-case n = 0,(
π(0) ◦ γ(0)

)
(q)

= { ϵ | π1(γ(q)) }
⊆ { ϵ | π1(γ(q)) } ∪

{
⟨s⟩

∣∣ ∃ q′ ∈ γ(q)(s). π1(γ(q′))
}

= { ϵ | π1(γ(q)) } ∪
{
sw

∣∣∣ ∃ q′ ∈ γ(q)(s). ι1w ∈ γ(0)(q′)
}

=
(
π(1) ◦ γ(1)

)
(q).

As for the induction-step, grant
(
π(n−1) ◦ γ(n−1)

)
(q) ⊆

(
π(n) ◦ γ(n)

)
(q) for n ≥ 1:(

π(n) ◦ γ(n)
)

(q)

= { ϵ | π1(γ(q)) } ∪
{
sw

∣∣∣ ∃ q′ ∈ γ(q)(s). ι1w ∈ γ(n−1)(q′)
}

⊆ { ϵ | π1(γ(q)) } ∪
{
sw

∣∣∣ ∃ q′ ∈ γ(q)(s). ι1w ∈ γ(n)(q′)
}

By I.H.

=
(
π(n+1) ◦ γ(n+1)

)
(q). ■
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Lemma 4.6. Each level n+ 1 of the α-pretrace semantics only adds words of length n.

Proof. Expressed symbolically, we want to prove (π(n+1) ◦ γ(n+1)(q)) \ (π(n) ◦ γ(n)(q)) ⊆ Σn for
any state q, by induction:

Induction Basis For n = 0, we consider that({
sw

∣∣∣ ∃ q′ ∈ γ(q)(s). ι1(ϵ) ∈ γ(0)(q′)
}

∪ { ϵ | π1(γ(q)) }
)

\ { ϵ | π1(γ(q)) } ⊆ Σ1

holds as it is easy to see, { ϵ | π1(γ(q)) } is removed from γ(1)(q), leaving us only with
singleton words.

Induction Step Setting aside the empty word, it is easy to see that

(π(1) ◦ γ(n+1)(q)) \ (π(1) ◦ γ(n)(q))

=
{
sw

∣∣∣ ∃ q′ ∈ γ(q)(s). ι1(w) ∈ γ(n)(q′)
}

\
{
sw

∣∣∣ ∃ q′ ∈ γ(q)(s). ι1(w) ∈ γ(n−1)(q′)
}

=
{
sw

∣∣∣ ∃ q′ ∈ γ(q)(s). ι1(w) ∈
(
γ(n)(q′) \ γ(n−1)(q′)

)}
⊆ Σn+1

must hold, as by the induction hypothesis γ(n)(q′) \ γ(n−1)(q′) consists only of words of
length n, and hence the extension by a input symbol s results in words of only length
n+ 1. ■

We can restate this result as saying γ(n+1) \ γ(n) = γ(n+1) ∩ Σn.

Theorem 4.7. The α-pretrace semantics only contains words contained in the accepted runs
semantics.

In this case we consider the union of the accepted runs up to a length of n, and even strengthen
the statement:

n⋃
i=0

πi
2(AccRun(i)

A ) =
(
π(n+1) ◦ γ(n+1)

)
(q). (4.7)

Proof. We proceed by induction over n. In the base-case n = 0, we have the same situation as
in the proof of Theorem 4.4.

From Lemma 4.5, we can derive that the difference(
π(n+1) ◦ γ(n+1)

)
(q) ⊆

(
π(n) ◦ γ(n)

)
(q)

denotes all new words recognised by the next depth. As such, we know that all words in the
difference must be of length n:

=
(
π(n+1) ◦ γ(n+1)

)
(q) ∩ Σn+1.

For the induction step, we assume that Equation (4.7) holds for n− 1.
n⋃

i=0
πn

2 (AccRun(i)
A ) =

(
π(n+1) ◦ γ(n+1)

)
(q)

⇐⇒
n⋃

i=0
πi

2(AccRun(i)
A ) \

n−1⋃
i=0

πi
2(AccRun(i)

A ) =
(
π(n+1) ◦ γ(n+1)

)
(q) \

(
π(n) ◦ γ(n)

)
(q)

(∗)⇐⇒ πn
2 (AccRun(n)

A ) =
(
π(n+1) ◦ γ(n+1)

)
(q) ∩ Σn+1.

In the last inference (∗) uses Lemma 4.6 to reshape the right-hand-side of the equation, and
holds by Theorem 4.4. ■

These results give us an alternative perspective on categorical automata in an arbitrary topos
E , i.e. without having to assume that E is countably extensible.
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