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Part |

How to express a
Nondeterministic
Automaton in
Categorical Terms?



Some preliminaries

Definition
A subobject is a isomorphism class of monos.
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where Subg (B) is the partial order of B
subobjects.



Some more preliminaries

Definition
A (epi,mono)-factorisation of f: A — B'is
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Some more preliminaries

Definition
A (epi,mono)-factorisation of f: A — B'is

where m is the subobject of the image of f.



A €-Automaton consists of!..

A object of states
IFrank. Milius. and Urbat 2023.




A €-Automaton consists of!..

A object of the input alphabet
IFrank. Milius. and Urbat 2023.




A €-Automaton consists of!..

I

[

9
mFI

F

A subobject of initial and final states
IFrank. Milius. and Urbat 2023.




A %-Automaton consists of*..
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Of all possible transitions...
IFrank. Milius. and Urbat 2023.




A €-Automaton consists of!..

..a subobject of legal transitions
IFrank. Milius. and Urbat 2023.
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Construction of accepted runs
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..and for the empty word
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Part |l
What is a Topos?



A category & is a topos topos iff



A category & is a topos topos iff
» |t is finitely complete,



A category & is a topos topos iff
» It is finitely complete,
» It is a CCC (has exponentials),



A category & is a topos topos iff
» |t is finitely complete,
» It is a CCC (has exponentials),
» It has a subobject classifier.
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Definition
A power object P A of an object A,
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Definition
A power object P A of an object A,
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Definition
A power object P A of an object A,

A Bx A
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Homg (A X B, Q) = Homg(A, P B)



Definition
A power object P A of an object A,

A Bx A

g idp X g !

B B

Q2 B x € TMZ)Q

Homg (A x B,Q) = Home(A, QF)



Power-objects are the
generalisation of
power-sets In a topos.



What a Topos gives us for “free”?

» Finitely Cocomplete,
» All (epi,mono)-factorisations,
» A power-object functor

» An internal language.



Definition
An internal language associates structures in
a category with the syntax of a language.



Definition

An internal language associates structures in
a category with the syntax of a language.

In a CCC this language is A\-Calculus with
products or intuitionistic minimal logic.
Objects corresponds to {types,propositions}
and morphisms to {terms,proofs}.



Definition

An internal language associates structures in
a category with the syntax of a language.

In a topos this language is higher-order,
intuitionistic, finitary set theory.



Definition

An internal language associates structures in
a category with the syntax of a language.

In a topos this language is higher-order,
intuitionistic, finitary set theory.

Example (Char. morphism of S)

Given m: S.— B, we can define a predicate
Gm=Ab. (b€ S): B

as the characteristic morphism.



Definition

An internal language associates structures in
a category with the syntax of a language.

In a topos this language is higher-order,
intuitionistic, finitary set theory.

Example (Extension of ¢)

Given ¢: B — (), we can define
S={b: B|¢b)=true}: PB

as the subobject m: S.— B.



Definition

An internal language associates structures in
a category with the syntax of a language.

In a topos this language is higher-order,
intuitionistic, finitary set theory.

Example (An internal image)

Given f: A — B, we can define
Im(f) ={b: B|Jac A.fla) =0}

as the (epi,mono)-factorisation.



Definition

An internal language associates structures in
a category with the syntax of a language.

In a topos this language is higher-order,
intuitionistic, finitary set theory.

Example (Intersection of subobjects)
Given m: S+ Band n: T B, w.c.d.

SNT={b: B| ¢m(b) A pn(b)}

as the pullback of m and n.



Part Il

How to describe the
Semantics of a
¢ -Automaton
internally?



First, the accepted runs



First, the accepted runs

AccRunEf) =INF



First, the accepted runs

AccRunEf) =INF

AccRunEéln) = Im(d, 4) N Im(my)

where n > 1



Then, the accepted languages



Then, the accepted languages
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Then, the accepted languages

%] otherwise

LO(4) {{e} if INF+@

L(")(A) = {w: P

Jda e AccRun(A”). m3(a) = w}

where n >1



Then, the accepted languages

%] otherwise

LO(4) {{e} if INF+@

L(")(A) = {w: P

Jda e AccRun(A”). m3(a) = w}
where n > 1, and

m"(a) = m(m(a))ma(ma(a)) . . . ma(mp-1(a))ma(mn(a))



Part IV

How to describe the
Semantics of a
Coalgebra in a

Topos?



The Coalgebra in Question

FQ=0x (P Q)"

2 Jacobs, Silva, and Sokolova 2012.



The Coalgebra in Question

FQ=Qx (P Q)

By reusing a result involving
Eilenberg-Moore Algebras by Jacobs, Silva,
and Sokolova?, we can show that the final

coalgebra of F'is (P X¥).

2 Jacobs, Silva, and Sokolova 2012.



The Coalgebra in Question

The tedioys part!

By reusing a result involving

Eilenberg-Moore Algebras by Jacobs, Silva,
and Sokolova?, we can show that the final
coalgebra of F'is (P X¥).

2 Jacobs, Silva, and Sokolova 2012.



But wait! The object
so=1]E
n<w

is not a finite colimit, and therefore doesn’t
exist in an arbitrary topos!



But wait! The object
so=1]E
n<w

is not a finite colimit, and therefore doesn’t
exist in an arbitrary topos!

So assume that & has countable coproducts...



Given a coalgebra (o, %) : @ — Q x (P Q)E,
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[d] = { w: 2% | o(t(q)(w)) = true } :
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Given a coalgebra (o, %) : @ — Q x (P Q)E,

we can now give a unique homomorphism

[d] = { w: 2% | o(t(q)(w)) = true } :

where {(—): Q — (P Q)" is the extension of
t: Q—P QZ over a monoid >*:

{q} if w=¢e
t(q)(w) = U if w=su -

7€f(q)(s)




Given a coalgebra (o, %) : @ — Q x (P Q)E,

we can now give a unique homomorphism

[d] = { w: 2% | o(t(q)(w)) = true } :

where {(—): Q — (P Q)" is the extension of
t: Q—P QZ over a monoid >*:

{q} o if w=¢e

How = | W) ifw=sul -
7€fg)(s)




Part V

Do the descriptions
match?



Coalgebra «~» % -Automaton?

Givena A = (Q, X, [, F,§), we can define a
coalgebra (0, 1) : Q — Q x (P Q)™
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Coalgebra «~» % -Automaton?
Givena A = (Q, X, [, F,§), we can define a
coalgebra (0, 1) : Q — Q x (P Q)™

o(q) =q€F
t(q) =As.{p: Q| (gsp) €0}

To handle multiple initial states, we adjust

[a) = { we | ofi{g)(w) }




Coalgebra «~» % -Automaton?
Givena A = (Q, X%, [, F,¢), we can define a
coalgebra (0, 1) : Q — Q x (P Q)™

o(q) =q€F
t(q) =As.{p: Q| (gsp) €0}

To handle multiple initial states, we adjust
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Coalgebra «~» % -Automaton?
Givena A = (Q, X, [, F,§), we can define a
coalgebra (0, 1) : Q — Q x (P Q)™

o(q) =q€F
t(q) =As.{p: Q| (gsp) €0}

To handle multiple initial states, we adjust

11 = { we X" | Iqge I o(tq)(w)) }
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Given a ©¥-Automaton A..
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(QIa 51, QQ)a (QZy 52, Q3)7 SR (an Sns QTH-l))

we know ¢; € [ and ¢,.1 € F and

t(q1)(s1) > @
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Given a %-Automaton A..
(n)

For any accepting run a: AccRun},”,

(Q17 81, qQ)) (qQ7 52, Q3)7 SR <QTL7 Sns QTH—l))

we know ¢; € I and ¢, € F and

t(q1)(s1) > @
tHq2)(s2) 2 g3

t(qn)(Sn) D quy1 and o(q, 1) = true



Given a Coalgebra (o, 1)..

For some ¢; € I and chain of transitions
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Given a Coalgebra (o, 1)..

For some ¢; € I and chain of transitions
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with o(q,.1) = true, we know that
(g1, 81, o) = 7T1<ACCRun(An))
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Given a Coalgebra (o, 1)..

For some ¢; € I and chain of transitions

t(s1) (s2) t(sn)
B —> @ — . g

with o(q,.1) = true, we know that

(411, S1, 612) = 7T1<ACCRun(An))

(qo, $2, q3) = Wg(AccRun(An))

(Qna Sns Qn—irl) - 773(ACCRun(An))



Given a Coalgebra (o, 1)..

For some ¢; € I and chain of transitions

t(s1) (s2) t(sn)
B —> @ — . g

with o(q,.1) = true, we know that

(q1, 81, @) = Wl(AccRun%))

(qo, $2, q3) = Wg(AccRun(An))

(s Sn Gn1) = m3(AccRun’”)



Part VI
What if we don’t

want to be countably
extensive?



Definition
A graded monad is a family of endofunctors

neN»
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A graded monad is a family of endofunctors
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with a natural transformation n: Id = M



Definition
A graded monad is a family of endofunctors

(Mni Cg — %)nel\h

with a natural transformation n: Id = M
and a family

(u™*: MMy = M) neN, kN

that satisfy a unit and associativity law.



Definition
A graded monad is a family of endofunctors

(Mni Cg — (g)nEI\U

Los 1) : Id = M,

with a natural transforma

o M k:>M”+k)nEN,kEN'

that satisfy a unit and associativity law.



Example (Depth-Limited Semantics)

M= P X"+ —x3")

neN

3Milius, Pattinson, and Schroder 2015.



Example (Depth-Limited Semantics)

M= (P (55" 4 — X 5),
gives the a-pretrace sequence® of coalgebra ~

(47 @~ PR+ x Q)

neN

3Milius, Pattinson, and Schroder 2015.



Example (Depth-Limited Semantics)

M= P X"+ —x3")

neN

gives the a-pretrace sequence® of coalgebra ~

(M; Q- P(I" 4+ 5" x Q))

neN

using which we can define a semantic map

[ = { w: O

Jqe I u(w) ey (g } :

3Milius, Pattinson, and Schroder 2015.



,\/(n): Q*} P <Z<n LY Q)

Y g) = {a(e. q) }



,\//,(n): Q*> P <Z<" D S Q)

YW(g) = {ue) | o(q)}

U {alsw.p) | 34 € €a)(9). 1w, p) €10 }



,\/(n): Q*> P <Z<" D S Q)

u(sw) | 34 € g)(s). ulw) € 1V(q) |
a(sw.p) | 34 € €a)(s). a(wp) €1V (d) |



7" Q — P (IS + X" x Q)

n(sw) | 34 € a)(s). ulw) € 12 (q) |
a(sw.p) | 34 € Ua)(s). alwp) €77(d) |



7" Q — P (IS + X" x Q)

n(sw) | 34 € g)(s). ulw) € 4 9(q) |
a(sw.p) | 34 € Ua)(s). talwp) €79(d) |



A Q- P(X<"+3X"x Q)

{
{nsw) | 34 € Ua)(9).u(w) €19 |
{12(50,0) | 3¢ € Ua)(8). 2w, p) € /() |



A QPS4+ 57 x Q)

Vg = {u() | ofa)}
u(sw) | 34 € g)(s). ulw) € 19(q) |

U b
U { (o) | 34 € Ua)(9). ol p) €4(d) |



Part VII

Do these also match?



We can show
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We can show

1. The "accepted runs” semantics gather
up to the a-pretrace sequence

[, = H L(4)

2. The a-pretrace sequence contain the
“accepted runs” semantics

[} nEm™ = Li™(A) for m <n
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To show [[]]]7 NX™ C LIm(4)..
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To show [[]]]7 NX™ C LIm(4)..
Given w=s; ... 5, €[] NE™, we know
w=s...5,€ [
< g elu(s...sm) €7 (q)
<< dgelLpectiqa)s) uls... sn) €v™(g)

m—i—l(

< dqg el ..., qm1 € t(qn)(Sm) o( 1)

From this data we can construct a acc. run

(QI7 51, QQ), (QZv 52, Q3)7 S} (Qm7 Sm; Qm+1)
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To show [/]) NX™ D LM A)..
Given a accepting run

(Q17 51, qQ)a (Q2> 592, Q3)7 IR (Qma Sm Qm-|—1>

we already know that there exists a chain
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7 7 .. 7 Qma1
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To show [/]) NX™ D LM A)..
Given a accepting run

(Q17 51, qQ)a (Q2> 592, Q3)7 IR (Qma Sm Qm-|—1>

we already know that there exists a chain

tls1)  Us2) t(sm)
7 7 .. 7 Qma1

41

and hence

$182. .. Sm € [1]]
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Conclusions

» |t is straightforward to describe the
semantics of a %-automaton in a topos

» |t is easy to see that the coalgebraic
trace semantics coincide in toposes with
countable coproducts

» It is clear that the a-pretrace sequence
also match the accepted runs semantics
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