SEMANTICS OF NONDETERMINISTIC AUTOMATA IN A TOPOS

As presented by Philip Kaluđerčić

2025-01-21, typeset on January 21, 2025 with the help of \LaTeX 2_{ε} , X \urcorner T \digamma X and "Beamer".

Part I

How to express a Non deterministicAutomaton in Categorical Terms?

Some preliminaries

Definition

A *subobject* is a isomorphism class of monos.

Some preliminaries

Definition

A *subobject* is a isomorphism class of monos.

where $Sub_{\mathscr{E}}(B)$ is the partial order of B subobjects.

Some more preliminaries

Definition

A (epi,mono)-factorisation of $f: A \rightarrow B$ is

Some more preliminaries

Definition

A (epi,mono)-factorisation of $f: A \rightarrow B$ is

where m is the subobject of the image of f.

Q

A object of states

¹Frank, Milius, and Urbat 2023.

 \mathcal{Q}

 \sum

A object of the input alphabet

¹Frank, Milius, and Urbat 2023.

A subobject of initial and final states

¹Frank, Milius, and Urbat 2023.

Of all possible transitions...

¹Frank, Milius, and Urbat 2023.

...a subobject of legal transitions

¹Frank, Milius, and Urbat 2023.

$$I \times (\Sigma \times Q)^{n-1} \times \Sigma \times F \xrightarrow{d_{n,A}} (Q \times \Sigma \times Q)^{n}$$

Part II

A category $\mathscr E$ is a topos topos iff

Λ.

A category & is a topos topos iff

It is finitely complete,

A category \mathscr{E} is a topos *topos* iff

► It is finitely complete,

It is a CCC (has exponentials),

- A category \mathscr{E} is a topos topos iff
- It is finitely complete,
 - ▶ It is a CCC (has exponentials),
 - It is a CCC (has exponentials),It has a subobject classifier.

true

S 1 m \int true

true

$$m \downarrow \qquad \downarrow \text{true}$$
 $B \xrightarrow{\phi} \Omega$
 $Hom_{\mathscr{E}}(B,\Omega) \cong Sub_{\mathscr{E}}(B,\Omega)$

$$\begin{array}{c}
D \\
\phi
\end{array}$$

$$\operatorname{Hom}_{\mathscr{E}}(B,\Omega) \cong \operatorname{Sub}_{\mathscr{E}}(B)$$

A power object \mathbf{P} A of an object A,

A power object \mathbf{P} A of an object A,

A power object \mathbf{P} A of an object A,

A power object P A of an object A,

A power object \mathbf{P} A of an object A,

 $\operatorname{Hom}_{\mathscr{E}}(A \times B, \Omega) \cong \operatorname{Hom}_{\mathscr{E}}(A, \mathbf{P} B)$

A power object \mathbf{P} A of an object A,

 $\operatorname{Hom}_{\mathscr{E}}(A \times B, \Omega) \cong \operatorname{Hom}_{\mathscr{E}}(A, \Omega^B)$

Power-objects are the

power-sets in a topos.

generalisation of

What a Topos gives us for "free"?

- Finitely <u>Co</u>complete,
- All (epi,mono)-factorisations,
- A power-object functor
- An internal language.

An *internal language* associates structures in a category with the syntax of a language.

An *internal language* associates structures in a category with the syntax of a language. In a CCC this language is λ -Calculus with products *or* intuitionistic minimal logic. Objects corresponds to {types,propositions} and morphisms to {terms,proofs}.

An *internal language* associates structures in a category with the syntax of a language. In a topos this language is higher-order, intuitionistic, finitary set theory.

An *internal language* associates structures in a category with the syntax of a language. In a topos this language is higher-order, intuitionistic, finitary set theory.

Example (Char. morphism of S) Given $m: S \rightarrow B$, we can define a predicate

$$\phi_m := \lambda \ b. \ (b \in S) \colon B \to \Omega$$

as the characteristic morphism.

An *internal language* associates structures in a category with the syntax of a language. In a topos this language is higher-order, intuitionistic, finitary set theory.

Example (Extension of ϕ)

Given $\phi \colon B \to \Omega$, we can define

$$S := \{ b : B \mid \phi(b) = \text{true} \} : \mathbf{P} B$$

as the subobject $m \colon S \rightarrowtail B$.

An *internal language* associates structures in a category with the syntax of a language. In a topos this language is higher-order, intuitionistic, finitary set theory.

Example (An internal image)

Given $f: A \rightarrow B$, we can define

$$\operatorname{Im}(f) := \{ b \colon B \mid \exists a \in A. f(a) = b \}$$

as the (epi,mono)-factorisation.

An *internal language* associates structures in a category with the syntax of a language. In a topos this language is higher-order, intuitionistic, finitary set theory.

Example (Intersection of subobjects) Given $m: S \rightarrow B$ and $n: T \rightarrow B$, w.c.d.

$$S \cap T := \{ b : B \mid \phi_m(b) \land \phi_n(b) \}$$

as the pullback of m and n.

Part III

How to describe the Semantics of a \mathscr{C} -Automaton internally?

First, the accepted runs

First, the accepted runs

 $\mathsf{AccRun}_A^{(0)} \coloneqq I \cap F$

First, the accepted runs

$$\mathsf{AccRun}_{A}^{(0)} \coloneqq I \cap F$$

$$\mathsf{AccRun}_A^{(n)} \coloneqq \mathrm{Im}(d_{n,A}) \cap \mathrm{Im}(m_\delta^n)$$
 where $n \ge 1$

$$L^{(0)}(A) \coloneqq \begin{cases} \{\epsilon\} & \text{if } I \cap F \neq \varnothing \\ \varnothing & \text{otherwise} \end{cases}$$

$$L^{(0)}(A) \coloneqq \begin{cases} \{\epsilon\} & \text{if } I \cap F \neq \varnothing \\ \varnothing & \text{otherwise} \end{cases}$$

$$L^{(n)}(A) := \Big\{ \ w \colon \Sigma^n \ \Big| \ \exists \ a \in \mathsf{AccRun}_A^{(n)}. \ \pi_2^n(a) = w \Big\}$$
 where $n > 1$

$$L^{(0)}(A) \coloneqq \begin{cases} \{\epsilon\} & \text{if } I \cap F \neq \varnothing \\ \varnothing & \text{otherwise} \end{cases}$$

$$L^{(n)}(A) := \left\{ w \colon \Sigma^n \mid \exists \ a \in \mathsf{AccRun}_A^{(n)}. \ \pi_2^n(a) = w \right\}$$

where $n \geq 1$, and

$$\pi_2^n(a) := \pi_2(\pi_1(a))\pi_2(\pi_2(a))\dots\pi_2(\pi_{n-1}(a))\pi_2(\pi_n(a))$$

Part IV

How to describe the Semantics of a Coalgebra in a Topos?

The Coalgebra in Question

$$FQ = \Omega \times (\mathbf{P} \ Q)^{\Sigma}$$

²Jacobs, Silva, and Sokolova 2012.

The Coalgebra in Question

$$FQ = \Omega \times (\mathbf{P} \ Q)^{\Sigma}$$

By reusing a result involving Eilenberg-Moore Algebras by Jacobs, Silva, and Sokolova², we can show that the final coalgebra of F is $(\mathbf{P} \Sigma^*)$.

²Jacobs, Silva, and Sokolova 2012.

The Coalgebra in Question

The tedious part!

$$FQ = \Omega \times (\mathbf{P} Q)^{\Sigma}$$

By reusing a result involving Eilenberg-Moore Algebras by Jacobs, Silva, and Sokolova², we can show that the final coalgebra of F is $(\mathbf{P} \Sigma^*)$.

²Jacobs, Silva, and Sokolova 2012.

But wait! The object

$$\Sigma^* := \coprod_{n < \omega} \Sigma^n$$

is *not* a finite colimit, and therefore doesn't exist in an arbitrary topos!

But wait! The object

$$\Sigma^* := \coprod_{n < \omega} \Sigma^n$$

is *not* a finite colimit, and therefore doesn't exist in an arbitrary topos!

So assume that $\mathscr E$ has countable coproducts...

Given a coalgebra $\langle o,t \rangle$: $Q \rightarrow \Omega \times (\mathbf{P} \ Q)^{\Sigma}$,

Given a coalgebra $\langle o, t \rangle : Q \rightarrow \Omega \times (\mathbf{P} Q)^{\Sigma}$, we can now give a unique homomorphism

we can now give a unique homomorphism
$$[\![q]\!] \coloneqq \left\{ \ w \colon \Sigma^* \ \middle| \ o(\overline{t(q)}(w)) = \mathrm{true} \ \right\},$$

Given a coalgebra $\langle o, t \rangle : Q \rightarrow \Omega \times (\mathbf{P} Q)^{2}$, we can now give a unique homomorphism

$$\llbracket q \rrbracket \coloneqq \left\{ \; w \colon \Sigma^* \; \middle| \; o(\overline{t(q)}(w)) = \operatorname{true} \; \right\},$$

where $\overline{t(-)}\colon Q \to (\mathbf{P}\ Q)^{\Sigma^*}$ is the extension of $t\colon Q \to \mathbf{P}\ Q^\Sigma$ over a monoid Σ^* :

$$t(q)(w) =$$

Given a coalgebra $\langle o, t \rangle : Q \rightarrow \Omega \times (\mathbf{P} Q)^{2}$, we can now give a unique homomorphism

we can now give a unique homomorphism
$$\llbracket q \rrbracket \coloneqq \left\{ \; w \colon \Sigma^* \; \middle| \; o(\overline{t(q)}(w)) = \mathrm{true} \; \right\},$$

where $\overline{t(-)}\colon\thinspace Q \to (\mathbf{P}\ Q)^{\Sigma^*}$ is the extension of $t\colon\thinspace Q \to \mathbf{P}\ Q^\Sigma$ over a monoid $\Sigma^*\colon$

$$t\colon\thinspace Q o \mathbf{P} \ Q^\Sigma$$
 over a monoid $\Sigma^*\colon$
$$ig(\{g\} \qquad \qquad \text{if } w = \epsilon$$

$$\overline{t(q)}(w) = \begin{cases} \{q\} & \text{if } w = 0 \end{cases}$$

Given a coalgebra $\langle o, t \rangle : Q \rightarrow \Omega \times (\mathbf{P} Q)^{\Sigma}$, we can now give a unique homomorphism

$$[\![q]\!] \coloneqq \left\{ \ w \colon \Sigma^* \ \middle| \ o(\overline{t(q)}(w)) = \mathrm{true} \ \right\},$$

where $\overline{t(-)}\colon\thinspace Q \longrightarrow (\mathbf{P}\ Q)^{\Sigma^*}$ is the extension of $t \colon Q \to \mathbf{P} \ Q^{\Sigma}$ over a monoid Σ^* :

where
$$\overline{t(-)}\colon Q o (\mathbf{P} \ Q)^{\Sigma^*}$$
 is the extension of $t\colon Q o \mathbf{P} \ Q^\Sigma$ over a monoid $\Sigma^*\colon$
$$\overline{t(q)}(w) = \begin{cases} \{q\} & \text{if } w = \epsilon \\ \bigcup_{q' \in f(q)(s)} & \text{if } w = sw' \end{cases}.$$

Given a coalgebra $\langle o, t \rangle : Q \rightarrow \Omega \times (\mathbf{P} Q)^{\Sigma}$, we can now give a unique homomorphism

$$[\![q]\!] \coloneqq \left\{ \ w \colon \Sigma^* \ \middle| \ o(\overline{t(q)}(w)) = \operatorname{true} \right\},$$

where
$$\overline{t(-)}\colon Q o (\mathbf{P} \ Q)^{\Sigma^*}$$
 is the extension of $t\colon Q o \mathbf{P} \ Q^\Sigma$ over a monoid $\Sigma^*\colon$
$$\overline{t(q)}(w) = \begin{cases} \{q\} & \text{if } w = \epsilon \\ \bigcup_{q' \in f(q)(s)} \overline{f(q')}(w') & \text{if } w = sw' \end{cases}.$$

where $\overline{t(-)}\colon Q \to (\mathbf{P} \ Q)^{\Sigma^*}$ is the extension of $t\colon Q \to \mathbf{P} \ Q^\Sigma$ over a monoid Σ^* :

Part V

Do the descriptions match?

Coalgebra $\iff \mathscr{C}$ -Automaton?

Given a $A=(Q,\Sigma,I,F,\delta)$, we can define a coalgebra $\langle o,t\rangle: Q \to \Omega \times (\mathbf{P} \ Q)^{\Sigma}$:

Coalgebra $\iff \mathscr{C}$ -Automaton?

Given a $A=(Q,\Sigma,I,F,\delta)$, we can define a coalgebra $\langle o,t\rangle:Q\to\Omega\times(\mathbf{P}\ Q)^\Sigma$:

$$o(q) := q \in F$$

Coalgebra $\iff \mathscr{C}$ -Automaton?

Given a $A = (Q, \Sigma, I, F, \delta)$, we can define a coalgebra $\langle o, t \rangle : Q \to \Omega \times (\mathbf{P} \ Q)^{\Sigma}$:

$$o(q) := q \in F$$

$$t(q) := \lambda s. \{ p : Q \mid (q, s, p) \in \delta \}$$

Coalgebra $\leftrightarrow \mathscr{C}$ -Automaton?

Given a $A = (Q, \Sigma, I, F, \delta)$, we can define a coalgebra $\langle o, t \rangle : Q \rightarrow \Omega \times (\mathbf{P} \ Q)^{\Sigma}$:

$$o(q) := q \in F$$

$$t(q) := \lambda s. \{ p : Q \mid (q, s, p) \in \delta \}$$

To handle multiple initial states, we adjust $[\![q]\!] \coloneqq \left\{ \begin{array}{l} w \in \Sigma^* \; \middle| \; o(\overline{t(q)}(w)) \end{array} \right\}$

Coalgebra $\leftrightarrow \mathscr{C}$ -Automaton?

Given a $A = (Q, \Sigma, I, F, \delta)$, we can define a coalgebra $\langle o, t \rangle : Q \rightarrow \Omega \times (\mathbf{P} \ Q)^{\Sigma}$:

$$o(q) := q \in F$$

$$t(q) := \lambda s. \{ p : Q \mid (q, s, p) \in \delta \}$$

$$\llbracket \textbf{\textit{I}} \rrbracket^* := \left\{ \ w \in \Sigma^* \ \middle| \ \exists \ \textbf{\textit{q}} \in \textbf{\textit{I}}. \ o(\overline{t(q)}(w)) \ \right\}$$

Coalgebra $\leftrightarrow \mathscr{C}$ -Automaton?

Given a $A=(Q,\Sigma,I,F,\delta)$, we can define a coalgebra $\langle o,t\rangle: Q \to \Omega \times (\mathbf{P} \ Q)^{\Sigma}$:

$$o(q) \coloneqq q \in F$$

$$t(q) \coloneqq \lambda \, s. \, \{ \, p \colon Q \mid (q, s, p) \in \delta \, \}$$

To handle multiple initial states, we adjust $\llbracket I \rrbracket_{\mathbf{n}}^* \coloneqq \left\{ \left. w \in \Sigma^{\mathbf{n}} \; \middle| \; \exists \; q \in \mathit{I.} \; o(\overline{t(q)}(w)) \right. \right\}$

For any accepting run a: AccRun $_A^{(n)}$,

 $(q_1, s_1, q_2), (q_2, s_2, q_3), \ldots, (q_n, s_n, q_{n+1}),$

For any accepting run a: $AccRun_A^{(n)}$,

$$(q_1, s_1, q_2), (q_2, s_2, q_3), \ldots, (q_n, s_n, q_{n+1}),$$

For any accepting run a: $AccRun_A^{(n)}$,

$$(q_1, s_1, q_2), (q_2, s_2, q_3), \ldots, (q_n, s_n, q_{n+1}),$$

$$t(q_1)(s_1) \ni q_2$$

For any accepting run a: $\mathsf{AccRun}_A^{(n)}$,

$$(q_1, s_1, q_2), (q_2, s_2, q_3), \ldots, (q_n, s_n, q_{n+1}),$$

$$t(q_1)(s_1) \ni q_2$$

$$t(q_2)(s_2) \ni q_3$$

For any accepting run a: $AccRun_A^{(n)}$,

$$(q_1, s_1, q_2), (q_2, s_2, q_3), \ldots, (q_n, s_n, q_{n+1}),$$

we know $q_i \in I$ and $q_{n+1} \in F$ and

$$t(q_1)(s_1) \ni q_2$$

$$t(q_2)(s_2) \ni q_3$$

. . .

$$t(q_n)(s_n) \ni q_{n+1}$$
 and $o(q_{n+1}) = \text{true}$

For any accepting run a: $AccRun_A^{(n)}$,

$$(q_1, s_1, q_2), (q_2, s_2, q_3), \ldots, (q_n, s_n, q_{n+1}),$$

$$t(q_1)(s_1) \ni q_2$$

$$t(q_2)(s_2) \ni q_3$$

$$t(q_n)(s_n) \ni q_{n+1}$$
 and $o(q_{n+1}) = \text{true}$

For some $q_1 \in I$ and chain of transitions

$$q_1 \xrightarrow{t(s_1)} q_2 \xrightarrow{t(s_2)} \dots \xrightarrow{t(s_n)} q_{n+1}$$

with $o(q_{n+1}) = \text{true}$,

For some $q_1 \in I$ and chain of transitions

$$q_1 \xrightarrow{t(s_1)} q_2 \xrightarrow{t(s_2)} \dots \xrightarrow{t(s_n)} q_{n+1}$$

with $o(q_{n+1}) = \text{true}$, we know that

$$(q_1,s_1,q_2)=\pi_1(\mathsf{AccRun}_A^{(n)})$$

For some $q_1 \in I$ and chain of transitions

$$q_1 \xrightarrow{t(s_1)} q_2 \xrightarrow{t(s_2)} \dots \xrightarrow{t(s_n)} q_{n+1}$$

with $o(q_{n+1}) = \text{true}$, we know that

$$(q_1, s_1, q_2) = \pi_1(\mathsf{AccRun}_A^{(n)})$$

 $(q_2, s_2, q_3) = \pi_2(\mathsf{AccRun}_A^{(n)})$

. . .

For some $q_1 \in I$ and chain of transitions

$$q_1 \xrightarrow{t(s_1)} q_2 \xrightarrow{t(s_2)} \dots \xrightarrow{t(s_n)} q_{n+1}$$

with $o(q_{n+1}) = \text{true}$, we know that

$$(q_1,s_1,q_2)=\pi_1(\mathsf{AccRun}_A^{(n)})$$

 $(q_2,s_2,q_3)=\pi_2(\mathsf{AccRun}_A^{(n)})$

$$(q_n, s_n, q_{n+1}) = \pi_3(\mathsf{AccRun}_A^{(n)})$$

For some $q_1 \in I$ and chain of transitions

$$q_1 \xrightarrow{t(s_1)} q_2 \xrightarrow{t(s_2)} \dots \xrightarrow{t(s_n)} q_{n+1}$$

with $o(q_{n+1}) = \text{true}$, we know that

$$(\mathbf{q}_1, s_1, q_2) = \pi_1(\mathsf{AccRun}_A^{(n)})$$

 $(q_2, s_2, q_3) = \pi_2(\mathsf{AccRun}_A^{(n)})$

$$(q_n, s_n, \mathbf{q_{n+1}}) = \pi_3(\mathsf{AccRun}_4^{(n)})$$

Part VI

What if we don't want to be countably extensive?

A graded monad is a family of endofunctors

$$(M_n\colon\mathscr{C}\to\mathscr{C})_{n\in\mathbb{N}},$$

A graded monad is a family of endofunctors

$$(M_n\colon\mathscr{C}\to\mathscr{C})_{n\in\mathbb{N}},$$

with a natural transformation $\eta \colon \mathrm{Id} \Rightarrow M_0$

A graded monad is a family of endofunctors

$$(M_n\colon\mathscr{C}\to\mathscr{C})_{n\in\mathbb{N}},$$

with a natural transformation $\eta \colon \operatorname{Id} \Rightarrow M_0$ and a family

$$(\mu^{n,k}: M_n M_k \Rightarrow M_{n+k})_{n \in \mathbb{N}, k \in \mathbb{N}}.$$

that satisfy a unit and associativity law.

A graded monad is a family of endofunctors

$$(M_n\colon\mathscr{C}\to\mathscr{C})_{n\in\mathbb{N}},$$

with a natural transformation $\eta\colon \mathrm{Id}\Rightarrow M_0$ and a family The laborious part!

$$(\mu^{-,n}: M_n M_k \Rightarrow M_{n+k})_{n \in \mathbb{N}, k \in \mathbb{N}}.$$

that satisfy a unit and associativity law.

Example (Depth-Limited Semantics)

$$M \coloneqq \left(\mathbf{P}\left(\Sigma^{< n} + - \times \Sigma^n\right)\right)_{n \in \mathbb{N}}$$

³Milius, Pattinson, and Schröder 2015.

Example (Depth-Limited Semantics)

$$M := (\mathbf{P}(\Sigma^{< n} + - \times \Sigma^n))_{n \in \mathbb{N}}$$

gives the $\alpha\text{-pretrace sequence}^{\text{3}}$ of coalgebra γ

$$\left(\gamma^{(n)}: Q \to \mathbf{P}\left(\Sigma^{< n} + \Sigma^n \times Q\right)\right)_{n \in \mathbb{N}}$$

³Milius, Pattinson, and Schröder 2015.

Example (Depth-Limited Semantics)

$$M:=\left(\mathbf{P}\left(\Sigma^{< n}+-\times\Sigma^n\right)\right)_{n\in\mathbb{N}}$$
 gives the $\alpha\text{-pretrace sequence}^3$ of coalgebra γ

$$\left(\gamma^{(n)}: Q \to \mathbf{P}\left(\Sigma^{< n} + \Sigma^n \times Q\right)\right)_{n \in \mathbb{N}}$$

using which we can define a semantic map

$$\llbracket I \rrbracket_n^{\gamma} := \left\{ w \colon \Sigma^n \mid \exists \ q \in I. \ \iota_1(w) \in \gamma^{(n+1)}(q) \right\}.$$

³Milius, Pattinson, and Schröder 2015.

$$\gamma^{(n)} \colon Q \longrightarrow \mathbf{P} \left(\Sigma^{< n} + \Sigma^n \times Q \right)$$

 $\gamma^{(0)}(q) = \{ \iota_2(\epsilon, q) \}$

$$\gamma^{(n)} \colon Q \longrightarrow \mathbf{P} (\Sigma^{< n} + \Sigma^n \times Q)$$

$$\gamma^{(n)} \colon Q \longrightarrow \mathbf{P} \left(\Sigma^{< n} + \Sigma^n \times Q \right)$$

 $\gamma^{(1)}(q) = \{ \iota_1(\epsilon) \mid o(q) \}$

 $\cup \left\{ \iota_2(sw,p) \mid \exists q' \in t(q)(s). \, \iota_2(w,p) \in \gamma^{(0)}(q') \right\}$

$$\gamma^{(n)} \colon Q \longrightarrow \mathbf{P} \left(\Sigma^{< n} + \Sigma^n \times Q \right)$$

$$\gamma^{(2)}(q) = \{ \iota_1(\epsilon) \mid o(q) \}$$

$$\cup \{ \iota_1(sw) \mid \exists q' \in t(q)(s). \, \iota_1(w) \in \gamma^{(1)}(q') \}$$

$$\cup \{ \iota_2(sw, p) \mid \exists q' \in t(q)(s). \, \iota_2(w, p) \in \gamma^{(1)}(q') \}$$

$$\gamma^{(n)} \colon Q \longrightarrow \mathbf{P} \left(\Sigma^{< n} + \Sigma^n \times Q \right)$$

$$\gamma^{(3)}(q) = \{ \iota_{1}(\epsilon) \mid o(q) \}$$

$$\cup \{ \iota_{1}(sw) \mid \exists q' \in t(q)(s). \, \iota_{1}(w) \in \gamma^{(2)}(q') \}$$

$$\cup \{ \iota_{2}(sw, p) \mid \exists q' \in t(q)(s). \, \iota_{2}(w, p) \in \gamma^{(2)}(q') \}$$

$$\gamma^{(n)} \colon Q \longrightarrow \mathbf{P} \left(\Sigma^{< n} + \Sigma^n \times Q \right)$$

$$\gamma^{(4)}(q) = \left\{ \iota_1(\epsilon) \mid o(q) \right\}$$

$$\cup \left\{ \iota_1(sw) \mid \exists q' \in t(q)(s). \, \iota_1(w) \in \gamma^{(3)}(q') \right\}$$

$$\cup \left\{ \iota_2(sw, p) \mid \exists q' \in t(q)(s). \, \iota_2(w, p) \in \gamma^{(3)}(q') \right\}$$

$$\gamma^{(n)} \colon Q \longrightarrow \mathbf{P} \left(\Sigma^{< n} + \Sigma^n \times Q \right)$$

$$\gamma^{(5)}(q) = \{ \iota_{1}(\epsilon) \mid o(q) \}
\cup \{ \iota_{1}(sw) \mid \exists q' \in t(q)(s). \, \iota_{1}(w) \in \gamma^{(4)}(q') \}
\cup \{ \iota_{2}(sw, p) \mid \exists q' \in t(q)(s). \, \iota_{2}(w, p) \in \gamma^{(4)}(q') \}$$

$$\gamma^{(n)} \colon Q \to \mathbf{P} \left(\Sigma^{< n} + \Sigma^{n} \times Q \right)$$

$$\llbracket I \rrbracket_{0}^{\gamma} \quad \llbracket I \rrbracket_{1}^{\gamma} \quad \llbracket I \rrbracket_{2}^{\gamma} \quad \llbracket I \rrbracket_{3}^{\gamma} \quad \llbracket I \rrbracket_{4}^{\gamma} \quad \llbracket I \rrbracket_{5}^{\gamma}$$

$$\gamma^{(6)}(q) = \{ \iota_1(\epsilon) \mid o(q) \}$$

$$\cup \{ \iota_1(sw) \mid \exists q' \in t(q)(s). \, \iota_1(w) \in \gamma^{(5)}(s) \}$$

$$\gamma^{(6)}(q) = \{ \iota_1(\epsilon) \mid o(q) \}$$

$$\cup \left\{ \iota_1(sw) \mid \exists q' \in t(q)(s). \, \iota_1(w) \in \gamma^{(5)}(q') \right\}$$

 $\cup \left\{ \iota_2(sw,p) \mid \exists q' \in t(q)(s). \, \iota_2(w,p) \in \gamma^{(5)}(q') \right\}$

Part VII

Do these also match?

We can show

1. The "accepted runs" semantics gather up to the α -pretrace sequence

$$\llbracket I \rrbracket_n^{\gamma} = \coprod L^{(n)}(A)$$

We can show

1. The "accepted runs" semantics gather up to the α -pretrace sequence

$$\llbracket I \rrbracket_n^{\gamma} = \coprod_{i=0}^n L^{(n)}(A)$$

2. The α -pretrace sequence contain the "accepted runs" semantics

$$[\![I]\!]_n^{\gamma} \cap \Sigma^m = L^{(m)}(A)$$
 for $m \le n$

We can show

1. The "accepted runs" semantics gather up to the α -pretrace sequence

$$\llbracket I \rrbracket_n^{\gamma} = \coprod_{i=0}^n L^{(n)}(A)$$

2. The α -pretrace sequence contain the "accepted runs" semantics

$$[\![I]\!]_n^{\gamma} \cap \Sigma^m = L^{(m)}(A) \qquad \text{for } m \le n$$

To show $\llbracket I \rrbracket_n^{\gamma} \cap \Sigma^m \subseteq L^{(m)}(A)$... Given $w = s_1 \dots s_m \in \llbracket I \rrbracket_n^{\gamma} \cap \Sigma^m$, we know

To show $\llbracket I \rrbracket_n^{\gamma} \cap \Sigma^m \subseteq L^{(m)}(A)$... Given $w = s_1 \dots s_m \in \llbracket I \rrbracket_n^{\gamma} \cap \Sigma^m$, we know

$$w = s_1 \dots s_m \in \llbracket I \rrbracket_m^{\gamma}$$

To show $\llbracket I \rrbracket_n^{\gamma} \cap \Sigma^m \subseteq L^{(m)}(A)$... Given $w = s_1 \dots s_m \in \llbracket I \rrbracket_n^{\gamma} \cap \Sigma^m$, we know

$$w = s_1 \dots s_m \in \llbracket I \rrbracket_m^{\gamma}$$

$$\iff \exists q_1 \in I. \, \iota_1(s_1 \dots s_m) \in \gamma^{m+1}(q_1)$$

To show $[\![I\!]\!]_n^\gamma \cap \Sigma_{\mathrm{res}}^m \subseteq L^{(m)}(A)$...

Given $w = s_1 \dots s_m \in \llbracket I \rrbracket_n^{\gamma} \cap \Sigma^m$, we know

$$w = s_1 \dots s_m \in \llbracket I \rrbracket_m^{\gamma}$$

$$\iff \exists q_1 \in I. \ \iota_1(s_1 \dots s_m) \in \gamma^{m+1}(q_1)$$

$$\iff \exists q_1 \in I, \ q_2 \in t(q_1)(s_1). \ \iota_1(s_2 \dots s_m) \in \gamma^m(q_2)$$

To show $[\![I\!]\!]_n^\gamma \cap \Sigma^m \subseteq L^{(m)}(A)$...

Given $w = s_1 \dots s_m \in \llbracket I \rrbracket_n^{\gamma} \cap \Sigma^m$, we know

$$w = s_1 \dots s_m \in \llbracket I \rrbracket_m^{\gamma}$$

$$\iff \exists q_1 \in I. \, \iota_1(s_1 \dots s_m) \in \gamma^{m+1}(q_1)$$

$$\iff \exists q_1 \in I, q_2 \in t(q_1)(s_1). \, \iota_1(s_2 \dots s_m) \in \gamma^m(q_2)$$

$$\dots$$

 $\iff \exists q_1 \in I, \ldots, q_{m+1} \in t(q_m)(s_m). \ o(q_{m+1})$

To show $[\![I\!]\!]_n^\gamma \cap \Sigma_-^m \subseteq L^{(m)}(A)$...

Given $w = s_1 \dots s_m \in \llbracket I \rrbracket_n^{\gamma} \cap \Sigma^m$, we know

$$w = s_1 \dots s_m \in \llbracket I \rrbracket_m^{\gamma}$$

$$\iff \exists q_1 \in I. \, \iota_1(s_1 \dots s_m) \in \gamma^{m+1}(q_1)$$

$$\iff \exists q_1 \in I, q_2 \in t(q_1)(s_1). \, \iota_1(s_2 \dots s_m) \in \gamma^m(q_2)$$

$$\dots$$

 $\iff \exists q_1 \in I, \ldots, q_{m+1} \in t(q_m)(s_m). \ o(q_{m+1})$

Tom this data we can construct a doc. I'd.

$$(q_1, s_1, q_2), (q_2, s_2, q_3), \ldots, (q_m, s_m, q_{m+1})$$

To show $[\![I\!]\!]_n^\gamma \cap \Sigma_-^m \subseteq L^{(m)}(A)$...

Given $w = s_1 \dots s_m \in \llbracket I \rrbracket_n^{\gamma} \cap \Sigma^m$, we know

$$w = s_1 \dots s_m \in \llbracket I \rrbracket_m^{\gamma}$$

$$\iff \exists q_1 \in I. \, \iota_1(s_1 \dots s_m) \in \gamma^{m+1}(q_1)$$

$$\iff \exists q_1 \in I, q_2 \in t(q_1)(s_1). \, \iota_1(s_2 \dots s_m) \in \gamma^m(q_2)$$

$$\dots$$

From this data we can construct a acc. run

 $\iff \exists q_1 \in I, \ldots, q_{m+1} \in t(q_m)(s_m), o(q_{m+1})$

$$(q_1, s_1, q_2), (q_2, s_2, q_3), \ldots, (q_m, s_m, q_{m+1})$$

To show $[\![I\!]\!]_n^\gamma \cap \Sigma^m \supseteq L^{(m)}(A)$...

Given a accepting run

$$(q_1, s_1, q_2), (q_2, s_2, q_3), \ldots, (q_m, s_m, q_{m+1})$$

To show $[\![I]\!]_n^{\gamma} \cap \Sigma^m \supseteq L^{(m)}(A)$...

Given a accepting run

$$(q_1, s_1, q_2), (q_2, s_2, q_3), \ldots, (q_m, s_m, q_{m+1})$$

we already know that there exists a chain

$$q_1 \xrightarrow{t(s_1)} q_2 \xrightarrow{t(s_2)} \dots \xrightarrow{t(s_m)} q_{m+1}$$

To show $[\![I]\!]_n^{\gamma} \cap \Sigma^m \supseteq L^{(m)}(A)$...

Given a accepting run

$$(q_1, s_1, q_2), (q_2, s_2, q_3), \ldots, (q_m, s_m, q_{m+1})$$

we already know that there exists a chain

$$q_1 \xrightarrow{t(s_1)} q_2 \xrightarrow{t(s_2)} \dots \xrightarrow{t(s_m)} q_{m+1}$$

and hence

$$s_1 s_2 \dots s_m \in \llbracket I \rrbracket_n^{\gamma}$$
.

▶ It is straightforward to describe the semantics of a *C*-automaton in a topos

- ▶ It is straightforward to describe the semantics of a *C*-automaton in a topos
- It is easy to see that the coalgebraic trace semantics coincide in toposes with countable coproducts

- ▶ It is straightforward to describe the semantics of a *C*-automaton in a topos
- It is easy to see that the coalgebraic trace semantics coincide in toposes with countable coproducts
- It is clear that the α -pretrace sequence also match the accepted runs semantics

- ▶ It is straightforward to describe the semantics of a *C*-automaton in a topos
- It is easy to see that the coalgebraic trace semantics coincide in toposes with countable coproducts
- It is clear that the α -pretrace sequence also match the accepted runs semantics