Klausur Systemprogrammierung

Februar 2025

Aufgabe 1: Ankreuzfragen (30 Punkte)

1) Einfachauswahlfragen (22 Punkte)

Bei den Einfachauswahlfragen in dieser Aufgabe ist jeweils nur eine richtige Antwort eindeutig
anzukreuzen. Auf die richtige Antwort gibt es die angegebene Punktzahl.

Wollen Sie eine Antwort korrigieren, streichen Sie bitte die falsche Antwort mit drei waagrechten
Strichen durch () und kreuzen die richtige an.

Lesen Sie die Frage genau, bevor Sie antworten.

a) Welche der folgenden Aussagen zu statischem bzw. dynamischem Binden ist
richtig?

O

O

O

O

Bei dynamischem Binden miissen zum Ubersetzungszeitpunkt alle Adressbe-
ziige vollstindig aufgelost werden.

Bei dynamischem Binden konnen Fehlerkorrekturen in Bibliotheken leichter
tibernommen werden, da nur die Bibliothek selbst neu erzeugt werden muss.
Programme, die die Bibliothek verwenden, miissen nicht neu kompiliert und
gebunden werden.

Bei statischem Binden werden durch den Compiler alle Adressbeziige vollstin-
dig aufgelost.

Beim statischen Binden werden alle Adressen zum Ladezeitpunkt aufgelost

b) Ein Betriebssystem setzt logische Adressrdume auf der Basis von Segmentierung
ein. Welche Aussage ist richtig?

O

O
O
O

Segmente konnen verschiedene Langen haben. Die Einhaltung der Lingenbe-
grenzung wird vom C-Compiler iiberpriift.

Die Segmentierung schrinkt den logischen Adressraum derart ein, dass nur auf
giiltige Speicheradressen erfolgreich zugegriffen werden kann.

Adressraumschutz durch Segmentierung erfordert keine Hardwareunterstiitzung.

Die Bindung von Programm- an Arbeitsspeicheradressen erfolgt zur Ladezeit
des Programms.

¢) Wie funktioniert Adressraumschutz durch Eingrenzung?

O

O
O
O

Beim Laden eines Programms priift das Betriebssystem, ob alle Speicherzugriffe
im giiltigen Bereich liegen.

Begrenzungsregister legen einen Adressbereich im logischen Adressraum fest,
auf den alle Speicherzugriffe beschrinkt werden.

Zur Laufzeit eines Programms ist durch Begrenzungsregister festgelegt, auf
welchen Bereich des physikalischen Speichers das Programm zugreifen darf.

Der Compiler grenzt beim Erzeugen des Codes die Adresszugriffe auf einen
bestimmten Bereich ein.

-1 von 18 -

2 Punkte

2 Punkte

2 Punkte




Klausur Systemprogrammierung

Februar 2025

d) Welche der folgenden Aussagen zum Thema Adressrdume ist richtig?

O

O
O
O

Die maximale GroB3e des virtuellen Adressraums kann unabhéngig von der
verwendeten Hardware frei gewihlt werden.

Virtuelle Adressrdaume sind Voraussetzung fiir die Realisierung logischer Adress-
raume.

Der physikalische Adressraum ist durch die gegebene Hardwarekonfiguration
definiert.

Der virtuelle Adressraum eines Prozesses kann nie gro3er sein als der physika-
lisch vorhandene Arbeitsspeicher.

e) Welche der folgenden Aussagen zum Thema Prozesszustinde ist richtig?

O

O

O

O

Das Auftreten eines Seitenfehlers kann dazu fithren, dass der aktuell laufende
Prozess in den Zustand beendet iiberfithrt wird.

Der Planer (scheduler) kann einen Prozess in den Zustand ,,blockiert* iiberfiih-
ren, indem er einen anderen Prozess einlastet.

In einem Vierkernsystem konnen sich maximal vier Prozesse gleichzeitig im
Zustand ,,bereit* befinden.

In einem Achtkernsystem gibt es stets genau acht laufende Benutzerprozesse.

f) Gegeben seien die folgenden Priaprozessor-Makros:

#define ADD(x, y) X + y

#define SUB(x, y) x -y

Was ist das Ergebnis des folgenden Ausdrucks? SUB(3, ADD(1, 4)) * 2

O -7

O
O
O

10

4

12

g) Welche der folgenden Aussagen zum Thema Synchronisation sind richtig?

O

O
O
O

Fiir nicht-blockierende Synchronisationsverfahren ist spezielle Unterstiitzung
durch das Betriebssystem notwendig.

Der Einsatz von nicht-blockierenden Synchronisationsmechanismen kann zu
Verklemmungen (Deadlocks) fithren.

Das Sperren von Interrupts kann von Benutzerprogrammen ohne weiteres zur
Synchronisation auf Multiprozessor-Systemen eingesetzt werden.

Der Einsatz von nicht-blockierenden Synchronisationsmechanismen kann nicht
zu Verklemmungen (Deadlocks) fiihren.

-2 von 18 -

2 Punkte

2 Punkte

2 Punkte

2 Punkte




Klausur Systemprogrammierung

Februar 2025

h) Man unterscheidet zwischen Traps und Interrupts. Welche Aussage ist richtig?

O

O

O

O

Bei der mehrfachen Ausfiihrung eines unverinderten Programmes mit den
selben Eingabedaten treten Interrupts immer an den selben Stellen auf.

Traps stehen immer in ursdchlichem Zusammenhang zu der Ausfiihrung eines
Maschinenbefehls.

Ein Trap wird immer durch das Programm behandelt, welches den Trap ausge-
16st hat, Interrupts werden hingegen immer durch das Betriebssystem behandelt.

Traps konnen nicht durch Speicherzugriffe ausgeldst werden.

1) Welche Aussage zu Zeigern ist richtig?

O

O
O

O

Der Compiler erkennt bei der Verwendung eines ungiiltigen Zeigers die pro-
blematische Code-Stelle und generiert Code, der zur Laufzeit die Meldung
”Segmentation fault” ausgibt.

Die Ubergabesemantik fiir Zeiger als Funktionsparameter ist call-by-reference.

Zeiger konnen verwendet werden, um in C eine call-by-reference Ubergabese-
mantik nachzubilden.

Ein Zeiger kann zur Manipulation von schreibgeschiitzten Datenbereichen
verwendet werden.

J) Welche Aussage zum Thema Systemaufrufe ist richtig?

O

O

O

Nach der Bearbeitung eines beliebigen Systemaufrufes ist es fiir das Betriebs-
system nicht mehr moglich, zu dem Programm zu wechseln, welches den
Systemaufruf abgesetzt hat.

Durch einen Systemaufruf wechselt das Betriebssystem von der Systemebene
auf die Benutzerebene, um unprivilegierte Operationen ausfiihren zu konnen.

Mit Hilfe von Systemaufrufen kann ein Benutzerprogramm privilegierte Opera-
tionen durch das Betriebssystem ausfiihren lassen, die es im normalen Ablauf
nicht selbst ausfiihren diirfte.

Benutzerprogramme diirfen keine Systemaufrufe absetzen, diese sind dem
Betriebssystem vorbehalten.

k) Welche der folgenden Aussagen iiber UNIX-Dateisysteme ist richtig?

O

O
O
O

Hard-links auf Dateien konnen nur innerhalb des Dateisystems angelegt werden,
in dem auch die Datei selbst liegt.

Wenn der letzte symbolic link, der auf eine Datei verweist, geloscht wird, wird
auch der zugehorige Dateikopf (inode) geldscht.

Auf eine Datei in einem Dateisystem verweisen immer mindestens zwei hard-
links.

In einem Verzeichnis darf es mehrere Eintrige mit dem selben Namen geben,
falls diese Eintrige auf unterschiedliche Dateikopfe (inodes) verweisen.

-3 von 18 -

2 Punkte

2 Punkte

2 Punkte

2 Punkte




Klausur Systemprogrammierung Februar 2025

2) Mehrfachauswahlfragen (8 Punkte)

Bei den Mehrfachauswahlfragen in dieser Aufgabe sind jeweils m Aussagen angegeben, davon
sind n (0 = n < m) Aussagen richtig. Kreuzen Sie alle richtigen Aussagen an.

Jede korrekte Antwort in einer Teilaufgabe gibt einen Punkt, jede falsche Antwort einen Minuspunkt.
Eine Teilaufgabe wird minimal mit O Punkten gewertet, d. h. falsche Antworten wirken sich nicht
auf andere Teilaufgaben aus.

Wollen Sie eine falsch angekreuzte Antwort korrigieren, streichen Sie bitte das Kreuz mit drei
waagrechten Strichen durch (¥Z¥).

Lesen Sie die Frage genau, bevor Sie antworten.

a) Gegeben sei folgendes Programmfragment: 4 Punkte

static int a = 81034;

int main(int argc, char xargv[]) {
static int b;
int c;
int (xd) (int, char *x) = main;
long *xe = malloc(800);
argc++;
/] ...

}

Welche der folgenden Aussagen zu den Variablen im Programm sind richtig?

O Die Adresse e liegt auf dem Stack.

O Die Anweisung argc++ dndert den Wert von argc und beeinflusst somit den
Aufrufer.

QO e zeigt auf ein Array, in dem Platz fiir 800 Ganzzahlen vom Typ long ist.

QO Die in e nach der Zuweisung enthaltene Speicheradresse kann problemlos
verwendet werden.

(O Das Ergebnis des Aufrufs der Funktion main wird in d gespeichert.
QO c ist uninitialisiert und enthilt einen undefinierten Wert.
QO c verliert beim Riicksprung aus main seine Giiltigkeit.

QO b ist mit 0 initialisiert und liegt im BSS-Segment.

-4 von 18 -



Klausur Systemprogrammierung Februar 2025

b) Welche der folgenden Aussagen zum Thema Einplanungsverfahren sind richtig? 4 Punkte

QO First-Come-First-Served ist nur bei lang laufenden Auftrigen sinnvoll einsetz-
bar.

Shortest-Process-Next (SPN) ist nur theoretisch interessant, weil die Linge der
néchsten Rechenphase (CPU-Stof3) in der Praxis nicht abgeschitzt werden kann.

Zur Realisierung von verdringenden Einplanungsverfahren wird Hardwareun-
terstiitzung durch eine MMU bendétigt.

Round-Robin benachteiligt E/A-intensive Prozesse zu Gunsten von recheninten-
siven Prozessen

Prioritdten-basierte Verfahren sind auch fiir interaktiven Betrieb gut geeignet.

Virtual-Round-Robin benachteiligt E/A-intensive Prozesse zu Gunsten von
rechenintensiven Prozessen.

Shortest-Process-Next (SPN) basiert auf einer Heuristik, die die erwartete Linge
des nichsten RechenstoBes der Prozesse verherzusagt.

O O OO O O O

Strategien die eine Multilevel-Feedback-Queue (MLFQ) verwenden, sind eine
Erweiterung von Round-Robin um hohere Priorititsebenen.

-5von 18 -



Klausur Systemprogrammierung Februar 2025

Aufgabe 2: dir - Directory Information Retriever (60 Punkte)
Sie diirfen diese Seite zur besseren Ubersicht bei der Programmierung heraustrennen!

Schreiben Sie ein Programm dir, das auf dem TCP/IPv6-Port 2025 (LISTEN_PORT) einen Dienst
anbietet, iiber den ein Benutzer Dateien vom Server herunterladen und Verzeichnisse des Servers
auflisten kann. Die Abarbeitung parallel eintreffender Anfragen soll von einem Arbeiter-Thread-
Pool aus initial 3 (DEFAULT_THREADS) Arbeiter-Threads iibernommen werden; die Threads werden
iber einen entsprechend synchronisierten Ringpuffer mit Verbindungen versorgt. Der verwendete
Ringpuffer soll hierbei maximal 64 (BB_SIZE) Eintrige speichern konnen.

Ein Client sendet nach erfolgreicher Verbindung eine Zeile, die den angeforderten Pfad enthilt. Zur
Vereinfachung diirfen Sie davon ausgehen, dass eine Zeile aus maximal 256 (MAX_LINE) Zeichen
besteht. Nach Einlesen der Zeile sendet der Server die angeforderte Datei oder das angeforderte
Verzeichnis an den Client.

Das Programm soll folgendermalen strukturiert sein:

— Das Hauptprogramm initialisiert zunichst alle benétigten Datenstrukturen, startet die be-
notigte Anzahl an Arbeiter-Threads und nimmt auf einem Socket Verbindungen an. Eine
erfolgreich angenommene Verbindung soll zur weiteren Verarbeitung in den Ringpuffer
eingefiigt werden. Nutzen Sie hierzu den aus der Ubung bekannten Ringbufer jbuffer.

— Funktion void* thread_worker(void *arg):
Hauptfunktion der Arbeiter-Threads. Entnimmt in einer Endlosschleife dem Ringpuffer eine
Verbindung, und ruft — falls es sich um “normale” Dateideskriptoren handelt (s.u.) — die
Funktion handle_connection zur weiteren Verarbeitung auf. Achten Sie darauf, dass
wihrend der Beantwortung von Clientanfragen aufgetretene Fehler (bspw. nicht vorhandene
Dateien oder fehlende Zugriffsrechte) nicht zur Terminierung des Servers fiihren diirfen.

— Funktion void handle_connection(int clientSock):
Liest den Pfad (= eine Zeile) vom Client und sendet den Inhalt an den Client.

— Verzeichnis: Rekursives Auflisten aller Dateien und Unterverzeichnisse via dump_dir

— Reguldre Datei: Dateiinhalt an Client senden
— Sonst: Anfrage ignorieren

Zur Vereinfachung diirfen Sie davon ausgehen, dass kein Client Zeilen ldnger als MAX_LINE
Zeichen sendet.

— Funktion void dump_dir(FILE *xfh, char xpath):
Schreibt den Inhalt des libergebenen Verzeichnisses (und aller Unterverzeichnisse) auf den
tibergebenen Dateizeiger fh.

Mithilfe der Signale SIGUSR1 (bzw. SIGUSR2) soll die Anzahl der laufenden Arbeiter-Threads
um einen Thread erhoht respektive verringert werden. Hierzu fiigt der jeweilige Signalhandler die
Werte BIRTH (POISON) in den Ringpuffer ein; das Erzeugen (Terminieren) von Threads soll in
der Funktion thread_worker durchgefiihrt werden. Zur Vereinfachung diirfen Sie den Fall “kein
Arbeiter-Thread lduft mehr” ignorieren.

Achten Sie bei Ihrer Implementierung auf korrekte und sinnvolle Fehlerbehandlung. Insbesondere
diirfen Fehler wihrend der Abhandlung von Clientanfragen nicht zum Abbruch des Programms
fiihren. Behandeln Sie SIGPIPE zur Vereinfachung nicht.

-6 von 18 -



Klausur Systemprogrammierung

Februar 2025

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

// Proto
BNDBUF *

void bbP
int bbGe

<stdlib.h>
<errno.h>
<stdio.h>
<stdbool.h>
<string.h>
<signal.h>
<pthread.h>
<unistd.h>
<netinet/in.h>
<sys/types.h>
<sys/socket.h>
<sys/wait.h>

typen des Ringpuffers
bbCreate(size_t size);

ut (BNDBUF xbb, int value);
t (BNDBUF xbb) ;

// Konstanten, Hilfsfunktionen

#define
#define
#define
#define
#define
#define

MAX_LINE 256

BB_SIZE 64
LISTEN_PORT 2017
DEFAULT_THREADS 3
POISON (-1)
BIRTH (-2)

static void die(char =*msg) {

perr

}

or(msg); exit(EXIT_FAILURE);

-7 von 18 -



Klausur Systemprogrammierung Februar 2025

-8 von 18 -




Klausur Systemprogrammierung Februar 2025

-9 von 18 -




Klausur Systemprogrammierung Februar 2025

-10 von 18 -




Klausur Systemprogrammierung Februar 2025

-11 von 18 -




Klausur Systemprogrammierung Februar 2025

-12 von 18 -




Klausur Systemprogrammierung Februar 2025

// Funktion handle_connection()




Klausur Systemprogrammierung Februar 2025

- 14 von 18 -




Klausur Systemprogrammierung Februar 2025

// Funktion thread_worker()

-15von 18 -




Klausur Systemprogrammierung Februar 2025

Aufgabe 3: Fehler und Ausnahmen (12 Punkte)

Gegeben ist folgende C-Funktion, die Programmierfehler enthilt.

int xnew_array(size_t size, int value) {
int xarray = calloc(size, sizeof(*array));
for (size_t 1 = 0; 1 <= size; 1i++)
array[i] = value;
return array;

}

1) Welcher der Fehler wird -wenn er auftritt- zuverldssig von der Hardware erkannt? (1 Punkt)

2) Welche Hardwarekomponente ist dafiir verantwortlich und wie wird die Ausnahme dem Be-
triebssystem signalisiert? (2 Punkte)

- MMU, Trap

3) Aunahmesituationen lassen sich in die Kategorien Trap und Interrupt einteilen. (6 Punkte)

a) Beschreiben Sie, wodurch Ausnahmesituationen der einzelnen Kategorien entstehen. (2 Punkte)

- Trap: Durch das laufende Programm

b) Geben Sie je ein Beispiel pro Kategorie. (2 Punkte)

- Trap: Systemaufruf

c) Nennen Sie zwei Eigenschaften, in denen sich die Kategorien unterscheiden. (2 Punkte)

- T: det., synch.

4) Ein weiterer Fehler kann nicht so zuverlissig durch die Hardware entdeckt werden. Nennen Sie
die fehlerhafte Stelle und begriinden Sie mit einem Beispiel weshalb der Fehler von der Hardware
unerkannt bleiben kann. (3 Punkte)

- out-of-bounds-Zugriff in Zeile 4

- Speicher liegt trotzdem im Bereich des Prozesses
-~ - Beispiel: /Addresse liegt im internenVerschnitt -~~~ """ oo

-16 von 18 -



Klausur Systemprogrammierung Februar 2025

Aufgabe 4: Koordinierung (18 Punkte)

1) Zur Koordinierung von nebenldufigen Vorgingen, die auf gemeinsame Betriebsmittel zugreifen,
unterscheidet man zwischen einseitiger und mehrseitiger Synchronisation. Wie unterscheidet sich
einseitige von mehrseitiger Synchronisation? (2 Punkte)

2) Betriebsmittel lassen sich in zwei Kategorien einteilen. Nennen und beschreiben Sie diese und
geben Sie je zwei Beispiele. (6 Punkte)

- wiederverwendbar:

e A PN o o — o — 2 = = — — ]| =t — — =

3) Erldutern Sie das Konzept Semaphor. Welche Operationen sind auf Semaphoren definiert und
was tun diese Operationen? (5 Punkte)

synchronisierter Zahler

-~ up/V: Inkrementieren-um 1, Eventuell- wartende Threads freigeben - - - - - - ___
- down/P: Dekrementieren, wenn Zahler > 0, sonst warten

-17 von 18 -



Klausur Systemprogrammierung Februar 2025

4) Skizzieren Sie in Programmiersprachen-dhnlicher Form, wie mit Hilfe von zdhlenden Sema-
phoren das folgende Szenario korrekt synchronisiert werden kann: Zu jedem Zeitpunkt miissen so
viele Threads wie moglich, maximal jedoch 4, die Funktion threadFunc ausfiihren. Dabei soll
die Ergebnisausgabe in der jeweils ausgefithrten Funktion doWork zusitzlich serialisiert werden.
Ihnen stehen dabei folgende Semaphor-Funktionen zur Verfiigung: (5 Punkte)

— SEM * semCreate(int);
— void P(SEM x);
— void V(SEM x*);

Beachten Sie, dass nicht unbedingt alle freien Zeilen fiir eine korrekte Losung notig sind. Kenn-
zeichnen Sie durch /, wenn Thre Losung in einer freie Zeile keine Operation benotigt.

Hauptthread: Arbeiterthread:

static SEM xs;
static SEM xp; void threadFunc(void) {

int main(void){

s = semCreate(1);

p = semCreate(4); doWork();
while(1) { V(p) 7777777777777777777777777777777
}
PO
startWorkerThread(threadFunc); void doWork(void) {
}

printf("Result: %d\n", res);

- 18 von 18 -



