
Klausur Systemprogrammierung Februar 2025

Aufgabe 1: Ankreuzfragen (30 Punkte)

1) Einfachauswahlfragen (22 Punkte)

Bei den Einfachauswahlfragen in dieser Aufgabe ist jeweils nur eine richtige Antwort eindeutig
anzukreuzen. Auf die richtige Antwort gibt es die angegebene Punktzahl.

Wollen Sie eine Antwort korrigieren, streichen Sie bitte die falsche Antwort mit drei waagrechten
Strichen durch (⊠) und kreuzen die richtige an.

Lesen Sie die Frage genau, bevor Sie antworten.

2 Punktea) Welche der folgenden Aussagen zu statischem bzw. dynamischem Binden ist
richtig?

□ Bei dynamischem Binden müssen zum Übersetzungszeitpunkt alle Adressbe-
züge vollständig aufgelöst werden.

□ Bei dynamischem Binden können Fehlerkorrekturen in Bibliotheken leichter
übernommen werden, da nur die Bibliothek selbst neu erzeugt werden muss.
Programme, die die Bibliothek verwenden, müssen nicht neu kompiliert und
gebunden werden.

□ Bei statischem Binden werden durch den Compiler alle Adressbezüge vollstän-
dig aufgelöst.

□ Beim statischen Binden werden alle Adressen zum Ladezeitpunkt aufgelöst

2 Punkteb) Ein Betriebssystem setzt logische Adressräume auf der Basis von Segmentierung
ein. Welche Aussage ist richtig?

□ Segmente können verschiedene Längen haben. Die Einhaltung der Längenbe-
grenzung wird vom C-Compiler überprüft.

□ Die Segmentierung schränkt den logischen Adressraum derart ein, dass nur auf
gültige Speicheradressen erfolgreich zugegriffen werden kann.

□ Adressraumschutz durch Segmentierung erfordert keine Hardwareunterstützung.

□ Die Bindung von Programm- an Arbeitsspeicheradressen erfolgt zur Ladezeit
des Programms.

2 Punktec) Wie funktioniert Adressraumschutz durch Eingrenzung?

□ Beim Laden eines Programms prüft das Betriebssystem, ob alle Speicherzugriffe
im gültigen Bereich liegen.

□ Begrenzungsregister legen einen Adressbereich im logischen Adressraum fest,
auf den alle Speicherzugriffe beschränkt werden.

□ Zur Laufzeit eines Programms ist durch Begrenzungsregister festgelegt, auf
welchen Bereich des physikalischen Speichers das Programm zugreifen darf.

□ Der Compiler grenzt beim Erzeugen des Codes die Adresszugriffe auf einen
bestimmten Bereich ein.

- 1 von 18 -

Klausur Systemprogrammierung Februar 2025

2 Punkted) Welche der folgenden Aussagen zum Thema Adressräume ist richtig?

□ Die maximale Größe des virtuellen Adressraums kann unabhängig von der
verwendeten Hardware frei gewählt werden.

□ Virtuelle Adressräume sind Voraussetzung für die Realisierung logischer Adress-
räume.

□ Der physikalische Adressraum ist durch die gegebene Hardwarekonfiguration
definiert.

□ Der virtuelle Adressraum eines Prozesses kann nie größer sein als der physika-
lisch vorhandene Arbeitsspeicher.

2 Punktee) Welche der folgenden Aussagen zum Thema Prozesszustände ist richtig?

□ Das Auftreten eines Seitenfehlers kann dazu führen, dass der aktuell laufende
Prozess in den Zustand beendet überführt wird.

□ Der Planer (scheduler) kann einen Prozess in den Zustand „blockiert“ überfüh-
ren, indem er einen anderen Prozess einlastet.

□ In einem Vierkernsystem können sich maximal vier Prozesse gleichzeitig im
Zustand „bereit“ befinden.

□ In einem Achtkernsystem gibt es stets genau acht laufende Benutzerprozesse.

2 Punktef) Gegeben seien die folgenden Präprozessor-Makros:
#define ADD(x, y) x + y
#define SUB(x, y) x - y
Was ist das Ergebnis des folgenden Ausdrucks? SUB(3, ADD(1, 4)) * 2

□ -7

□ 10

□ -4

□ 12

2 Punkteg) Welche der folgenden Aussagen zum Thema Synchronisation sind richtig?

□ Für nicht-blockierende Synchronisationsverfahren ist spezielle Unterstützung
durch das Betriebssystem notwendig.

□ Der Einsatz von nicht-blockierenden Synchronisationsmechanismen kann zu
Verklemmungen (Deadlocks) führen.

□ Das Sperren von Interrupts kann von Benutzerprogrammen ohne weiteres zur
Synchronisation auf Multiprozessor-Systemen eingesetzt werden.

□ Der Einsatz von nicht-blockierenden Synchronisationsmechanismen kann nicht
zu Verklemmungen (Deadlocks) führen.

- 2 von 18 -

Klausur Systemprogrammierung Februar 2025

2 Punkteh) Man unterscheidet zwischen Traps und Interrupts. Welche Aussage ist richtig?

□ Bei der mehrfachen Ausführung eines unveränderten Programmes mit den
selben Eingabedaten treten Interrupts immer an den selben Stellen auf.

□ Traps stehen immer in ursächlichem Zusammenhang zu der Ausführung eines
Maschinenbefehls.

□ Ein Trap wird immer durch das Programm behandelt, welches den Trap ausge-
löst hat, Interrupts werden hingegen immer durch das Betriebssystem behandelt.

□ Traps können nicht durch Speicherzugriffe ausgelöst werden.

2 Punktei) Welche Aussage zu Zeigern ist richtig?

□ Der Compiler erkennt bei der Verwendung eines ungültigen Zeigers die pro-
blematische Code-Stelle und generiert Code, der zur Laufzeit die Meldung
”Segmentation fault” ausgibt.

□ Die Übergabesemantik für Zeiger als Funktionsparameter ist call-by-reference.

□ Zeiger können verwendet werden, um in C eine call-by-reference Übergabese-
mantik nachzubilden.

□ Ein Zeiger kann zur Manipulation von schreibgeschützten Datenbereichen
verwendet werden.

2 Punktej) Welche Aussage zum Thema Systemaufrufe ist richtig?

□ Nach der Bearbeitung eines beliebigen Systemaufrufes ist es für das Betriebs-
system nicht mehr möglich, zu dem Programm zu wechseln, welches den
Systemaufruf abgesetzt hat.

□ Durch einen Systemaufruf wechselt das Betriebssystem von der Systemebene
auf die Benutzerebene, um unprivilegierte Operationen ausführen zu können.

□ Mit Hilfe von Systemaufrufen kann ein Benutzerprogramm privilegierte Opera-
tionen durch das Betriebssystem ausführen lassen, die es im normalen Ablauf
nicht selbst ausführen dürfte.

□ Benutzerprogramme dürfen keine Systemaufrufe absetzen, diese sind dem
Betriebssystem vorbehalten.

2 Punktek) Welche der folgenden Aussagen über UNIX-Dateisysteme ist richtig?

□ Hard-links auf Dateien können nur innerhalb des Dateisystems angelegt werden,
in dem auch die Datei selbst liegt.

□ Wenn der letzte symbolic link, der auf eine Datei verweist, gelöscht wird, wird
auch der zugehörige Dateikopf (inode) gelöscht.

□ Auf eine Datei in einem Dateisystem verweisen immer mindestens zwei hard-
links.

□ In einem Verzeichnis darf es mehrere Einträge mit dem selben Namen geben,
falls diese Einträge auf unterschiedliche Dateiköpfe (inodes) verweisen.

- 3 von 18 -

Klausur Systemprogrammierung Februar 2025

2) Mehrfachauswahlfragen (8 Punkte)

Bei den Mehrfachauswahlfragen in dieser Aufgabe sind jeweils m Aussagen angegeben, davon
sind n (0 ≤ n ≤ m) Aussagen richtig. Kreuzen Sie alle richtigen Aussagen an.
Jede korrekte Antwort in einer Teilaufgabe gibt einen Punkt, jede falsche Antwort einen Minuspunkt.
Eine Teilaufgabe wird minimal mit 0 Punkten gewertet, d. h. falsche Antworten wirken sich nicht
auf andere Teilaufgaben aus.

Wollen Sie eine falsch angekreuzte Antwort korrigieren, streichen Sie bitte das Kreuz mit drei
waagrechten Strichen durch (⊗).

Lesen Sie die Frage genau, bevor Sie antworten.

4 Punktea) Gegeben sei folgendes Programmfragment:

static int a = 81034;
int main(int argc, char *argv[]) {
static int b;
int c;
int (*d)(int, char **) = main;
long *e = malloc(800);
argc++;
// ...

}

Welche der folgenden Aussagen zu den Variablen im Programm sind richtig?

○ Die Adresse e liegt auf dem Stack.

○ Die Anweisung argc++ ändert den Wert von argc und beeinflusst somit den
Aufrufer.

○ e zeigt auf ein Array, in dem Platz für 800 Ganzzahlen vom Typ long ist.

○ Die in e nach der Zuweisung enthaltene Speicheradresse kann problemlos
verwendet werden.

○ Das Ergebnis des Aufrufs der Funktion main wird in d gespeichert.

○ c ist uninitialisiert und enthält einen undefinierten Wert.

○ c verliert beim Rücksprung aus main seine Gültigkeit.

○ b ist mit 0 initialisiert und liegt im BSS-Segment.

- 4 von 18 -

Klausur Systemprogrammierung Februar 2025

4 Punkteb) Welche der folgenden Aussagen zum Thema Einplanungsverfahren sind richtig?

○ First-Come-First-Served ist nur bei lang laufenden Aufträgen sinnvoll einsetz-
bar.

○ Shortest-Process-Next (SPN) ist nur theoretisch interessant, weil die Länge der
nächsten Rechenphase (CPU-Stoß) in der Praxis nicht abgeschätzt werden kann.

○ Zur Realisierung von verdrängenden Einplanungsverfahren wird Hardwareun-
terstützung durch eine MMU benötigt.

○ Round-Robin benachteiligt E/A-intensive Prozesse zu Gunsten von recheninten-
siven Prozessen

○ Prioritäten-basierte Verfahren sind auch für interaktiven Betrieb gut geeignet.

○ Virtual-Round-Robin benachteiligt E/A-intensive Prozesse zu Gunsten von
rechenintensiven Prozessen.

○ Shortest-Process-Next (SPN) basiert auf einer Heuristik, die die erwartete Länge
des nächsten Rechenstoßes der Prozesse verherzusagt.

○ Strategien die eine Multilevel-Feedback-Queue (MLFQ) verwenden, sind eine
Erweiterung von Round-Robin um höhere Prioritätsebenen.

- 5 von 18 -

Klausur Systemprogrammierung Februar 2025

Aufgabe 2: dir - Directory Information Retriever (60 Punkte)

Sie dürfen diese Seite zur besseren Übersicht bei der Programmierung heraustrennen!

Schreiben Sie ein Programm dir, das auf dem TCP/IPv6-Port 2025 (LISTEN_PORT) einen Dienst
anbietet, über den ein Benutzer Dateien vom Server herunterladen und Verzeichnisse des Servers
auflisten kann. Die Abarbeitung parallel eintreffender Anfragen soll von einem Arbeiter-Thread-
Pool aus initial 3 (DEFAULT_THREADS) Arbeiter-Threads übernommen werden; die Threads werden
über einen entsprechend synchronisierten Ringpuffer mit Verbindungen versorgt. Der verwendete
Ringpuffer soll hierbei maximal 64 (BB_SIZE) Einträge speichern können.

Ein Client sendet nach erfolgreicher Verbindung eine Zeile, die den angeforderten Pfad enthält. Zur
Vereinfachung dürfen Sie davon ausgehen, dass eine Zeile aus maximal 256 (MAX_LINE) Zeichen
besteht. Nach Einlesen der Zeile sendet der Server die angeforderte Datei oder das angeforderte
Verzeichnis an den Client.

Das Programm soll folgendermaßen strukturiert sein:

– Das Hauptprogramm initialisiert zunächst alle benötigten Datenstrukturen, startet die be-
nötigte Anzahl an Arbeiter-Threads und nimmt auf einem Socket Verbindungen an. Eine
erfolgreich angenommene Verbindung soll zur weiteren Verarbeitung in den Ringpuffer
eingefügt werden. Nutzen Sie hierzu den aus der Übung bekannten Ringbufer jbuffer.

– Funktion void* thread_worker(void *arg):
Hauptfunktion der Arbeiter-Threads. Entnimmt in einer Endlosschleife dem Ringpuffer eine
Verbindung, und ruft – falls es sich um “normale” Dateideskriptoren handelt (s.u.) – die
Funktion handle_connection zur weiteren Verarbeitung auf. Achten Sie darauf, dass
während der Beantwortung von Clientanfragen aufgetretene Fehler (bspw. nicht vorhandene
Dateien oder fehlende Zugriffsrechte) nicht zur Terminierung des Servers führen dürfen.

– Funktion void handle_connection(int clientSock):
Liest den Pfad (= eine Zeile) vom Client und sendet den Inhalt an den Client.

– Verzeichnis: Rekursives Auflisten aller Dateien und Unterverzeichnisse via dump_dir

– Reguläre Datei: Dateiinhalt an Client senden

– Sonst: Anfrage ignorieren

Zur Vereinfachung dürfen Sie davon ausgehen, dass kein Client Zeilen länger als MAX_LINE
Zeichen sendet.

– Funktion void dump_dir(FILE *fh, char *path):
Schreibt den Inhalt des übergebenen Verzeichnisses (und aller Unterverzeichnisse) auf den
übergebenen Dateizeiger fh.

Mithilfe der Signale SIGUSR1 (bzw. SIGUSR2) soll die Anzahl der laufenden Arbeiter-Threads
um einen Thread erhöht respektive verringert werden. Hierzu fügt der jeweilige Signalhandler die
Werte BIRTH (POISON) in den Ringpuffer ein; das Erzeugen (Terminieren) von Threads soll in
der Funktion thread_worker durchgeführt werden. Zur Vereinfachung dürfen Sie den Fall “kein
Arbeiter-Thread läuft mehr” ignorieren.

Achten Sie bei Ihrer Implementierung auf korrekte und sinnvolle Fehlerbehandlung. Insbesondere
dürfen Fehler während der Abhandlung von Clientanfragen nicht zum Abbruch des Programms
führen. Behandeln Sie SIGPIPE zur Vereinfachung nicht.

- 6 von 18 -

Klausur Systemprogrammierung Februar 2025

#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <signal.h>
#include <pthread.h>
#include <unistd.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>

// Prototypen des Ringpuffers
BNDBUF* bbCreate(size_t size);
void bbPut(BNDBUF *bb, int value);
int bbGet(BNDBUF *bb);

// Konstanten, Hilfsfunktionen
#define MAX_LINE 256
#define BB_SIZE 64
#define LISTEN_PORT 2017
#define DEFAULT_THREADS 3
#define POISON (-1)
#define BIRTH (-2)

static void die(char *msg) {
perror(msg); exit(EXIT_FAILURE);

}

// Funktionsdeklarationen, globale Variablen usw.

- 7 von 18 -

Klausur Systemprogrammierung Februar 2025

// Signalhandler

// Funktion main()

// Threads starten

- 8 von 18 -

Klausur Systemprogrammierung Februar 2025

// Signalbehandlung aufsetzen

// Auf eingehende Verbindungen warten

- 9 von 18 -

Klausur Systemprogrammierung Februar 2025

// Ende Funktion main() M:

- 10 von 18 -

Klausur Systemprogrammierung Februar 2025

// Funktion dump_dir()

- 11 von 18 -

Klausur Systemprogrammierung Februar 2025

// Ende Funktion dump_dir() D:

- 12 von 18 -

Klausur Systemprogrammierung Februar 2025

// Funktion handle_connection()

- 13 von 18 -

Klausur Systemprogrammierung Februar 2025

// Ende Funktion handle_connection() H:

- 14 von 18 -

Klausur Systemprogrammierung Februar 2025

// Funktion thread_worker()

// Ende Funktion thread_worker T:

- 15 von 18 -

Klausur Systemprogrammierung Februar 2025

Aufgabe 3: Fehler und Ausnahmen (12 Punkte)

Gegeben ist folgende C-Funktion, die Programmierfehler enthält.

int *new_array(size_t size, int value) {
int *array = calloc(size, sizeof(*array));
for (size_t i = 0; i <= size; i++)

array[i] = value;
return array;

}

1) Welcher der Fehler wird -wenn er auftritt- zuverlässig von der Hardware erkannt? (1 Punkt)

2) Welche Hardwarekomponente ist dafür verantwortlich und wie wird die Ausnahme dem Be-
triebssystem signalisiert? (2 Punkte)

3) Aunahmesituationen lassen sich in die Kategorien Trap und Interrupt einteilen. (6 Punkte)

a) Beschreiben Sie, wodurch Ausnahmesituationen der einzelnen Kategorien entstehen. (2 Punkte)

b) Geben Sie je ein Beispiel pro Kategorie. (2 Punkte)

c) Nennen Sie zwei Eigenschaften, in denen sich die Kategorien unterscheiden. (2 Punkte)

4) Ein weiterer Fehler kann nicht so zuverlässig durch die Hardware entdeckt werden. Nennen Sie
die fehlerhafte Stelle und begründen Sie mit einem Beispiel weshalb der Fehler von der Hardware
unerkannt bleiben kann. (3 Punkte)

- 16 von 18 -

- calloc gibt 0 zurück => ungültiger Speicherzugriff

- MMU, Trap

- Trap: Durch das laufende Programm
- Int.: externe Hardware

- Trap: Systemaufruf
- Int.: Daten von Festplatte kommen an, Taste auf Tastatur wird gedrückt, Netzwerkpaket
kommt an, Timer-Interrupt

- T: det., synch.
- Int.: nichtdet., asynch.

- out-of-bounds-Zugriff in Zeile 4
- Speicher liegt trotzdem im Bereich des Prozesses
- Beispiel: Addresse liegt im internen Verschnitt

Klausur Systemprogrammierung Februar 2025

Aufgabe 4: Koordinierung (18 Punkte)

1) Zur Koordinierung von nebenläufigen Vorgängen, die auf gemeinsame Betriebsmittel zugreifen,
unterscheidet man zwischen einseitiger und mehrseitiger Synchronisation. Wie unterscheidet sich
einseitige von mehrseitiger Synchronisation? (2 Punkte)

2) Betriebsmittel lassen sich in zwei Kategorien einteilen. Nennen und beschreiben Sie diese und
geben Sie je zwei Beispiele. (6 Punkte)

3) Erläutern Sie das Konzept Semaphor. Welche Operationen sind auf Semaphoren definiert und
was tun diese Operationen? (5 Punkte)

- 17 von 18 -

- einseitige Synchronisation: Ein Vorgang schließt einen anderen aus
- mehrseitige Synchronisation: Vorgänge schließen sich gegenseitig aus

- wiederverwendbar:
Werden belegt/freigegeben
Beispiele: Prozessor, Speicher, kritischer Abschnitt
- konsumierbar:
Werden erstellt/zerstört
Beispiele: Signale, Nachrichten, Strom (?)

synchronisierter Zähler

- up/V: Inkrementieren um 1, Eventuell wartende Threads freigeben
- down/P: Dekrementieren, wenn Zähler > 0, sonst warten

Klausur Systemprogrammierung Februar 2025

4) Skizzieren Sie in Programmiersprachen-ähnlicher Form, wie mit Hilfe von zählenden Sema-
phoren das folgende Szenario korrekt synchronisiert werden kann: Zu jedem Zeitpunkt müssen so
viele Threads wie möglich, maximal jedoch 4, die Funktion threadFunc ausführen. Dabei soll
die Ergebnisausgabe in der jeweils ausgeführten Funktion doWork zusätzlich serialisiert werden.
Ihnen stehen dabei folgende Semaphor-Funktionen zur Verfügung: (5 Punkte)

– SEM * semCreate(int);

– void P(SEM *);

– void V(SEM *);

Beachten Sie, dass nicht unbedingt alle freien Zeilen für eine korrekte Lösung nötig sind. Kenn-
zeichnen Sie durch /, wenn Ihre Lösung in einer freie Zeile keine Operation benötigt.

Hauptthread:

static SEM *s;
static SEM *p;
int main(void){

while(1) {

startWorkerThread(threadFunc);

}

}

Arbeiterthread:

void threadFunc(void) {

doWork();

}

void doWork(void) {

int result = doCalculations();

printf("Result: %d\n", res);

}

- 18 von 18 -

s = semCreate(1);

p = semCreate(4);

P(p);

V(p);

P(s);

V(s);

