An equational lifting monad is a commutative monad satisfying one additional equational law
module Monad.EquationalLifting {o ℓ e} {C : Category o ℓ e} (cartesian : Cartesian C) where
open Category C
open Cartesian cartesian using (products)
open BinaryProducts products
open CartesianMonoidal cartesian using (monoidal)
open Symmetric (symmetric C cartesian) using (braided)
IsEquationalLiftingMonad : ∀ (CM : CommutativeMonad braided) → Set (o ⊔ e)
IsEquationalLiftingMonad CM = ∀ {X} → τ.η _ ∘ Δ {M.F.₀ X} ≈ M.F.₁ ⟨ M.η.η X , id ⟩
where
open CommutativeMonad CM
module τ = strengthen