File CoMoEx.Laws

Require Import Classical_Prop.

In diesem File soll es um übliche und (teilweise) bekannte klassische logische Gesetze gehen. Eine weitere Annotierung bleibt hier aktuell aus, da die Gesetze ja eh schon ausgeschrieben sind.

Section trivial_iff.

  Variable p : Prop.

  Theorem trivial_iff_true : (p True) p.
  Proof.
  Admitted.

  Theorem trivial_iff_false : (p False) ¬p.
  Proof.
  Admitted.

End trivial_iff.

Section comm.
  Variables p q : Prop.

  Theorem and_comm : (p q) (q p).
  Proof.
  Admitted.

  Theorem or_comm : (p q) (q p).
  Proof.
  Admitted.

End comm.

Section assoc.

  Variables p q r : Prop.

  Theorem and_assoc : ((p q) r) (p (q r)).
  Proof.
  Admitted.

  Theorem or_assoc : ((p q) r) (p (q r)).
  Proof.
  Admitted.

End assoc.

Section de_morgan.

  Variables p q : Prop.

  Theorem de_morgan_1 : (p q) ¬ (~p ¬q).
  Proof.
  Admitted.

  Theorem de_morgan_2 : (p q) ¬ (~p ¬q).
  Proof.
  Admitted.

End de_morgan.

Section implsem.

  Variables p q : Prop.

  Theorem impl_with_disj : (p q) (¬p q).
  Proof.
  Admitted.

  Theorem impl_with_conj : (p q) ~(p ¬q).
  Proof.
  Admitted.

End implsem.

Section distr.

  Variables p q r : Prop.

  Theorem distr_1 : (p q) r (p r) (q r).
  Proof.
  Admitted.

  Theorem distr_2 : (p q) r (p r) (q r).
  Proof.
  Admitted.

End distr.

Section p_not_p.

  Variables p : Prop.

  Theorem p_and_not_p : ¬ (p ¬p).
  Proof.
  Admitted.

  Theorem excluded_middle : (p ¬p).
  Proof.
  Admitted.

End p_not_p.

Section idem.

  Variables p : Prop.

  Theorem idem_and : p p p.
  Proof.
  Admitted.

  Theorem idem_or : p p p.
  Proof.
  Admitted.

End idem.

Section absorb.

  Variables p q : Prop.

  Theorem absorb_and : p (p q) p.
  Proof.
  Admitted.

  Theorem absorb_or : p (p q) p.
  Proof.
  Admitted.

End absorb.

Section neutr.

  Variables p : Prop.

  Theorem neutr_and : p True p.
  Proof.
  Admitted.

  Theorem neutr_or : p False p.
  Proof.
  Admitted.

End neutr.

Section contrapos.

  Variables p q : Prop.

  Theorem contrapos : (p q) (¬q ¬p).
  Proof.
  Admitted.

  Corollary mod_tollens : ((p q) ¬q) ¬p.
  Proof.
  Admitted.

End contrapos.

Section impl_trans.

  Variables p q r : Prop.

  Hypothesis A1 : p q.
  Hypothesis A2 : q r.

  Theorem impl_trans : p r.
  Proof.
  Admitted.

End impl_trans.

Section currying.

  Variables p q r : Prop.

  Theorem curry : ((p q) r) (p q r).
  Proof.
  Admitted.

End currying.

Section peirce_law.

  Variables p q : Prop.

  Theorem peirce : ((p q) p) p.
  Proof.
  Admitted.

End peirce_law.