File CoMoLang.L_an
In this file, we have a look on a language, which only contains words of the form a^n.
TODO: Improve this language by using any alphabet (and any letter).
We define a grammar to produce this language.
Inductive R_an : let term := list (unit + unit) in term → term → Prop :=
| R_an_1 : R_an (inl tt :: nil) (inr tt :: inl tt :: nil)
| R_an_2 : R_an (inl tt :: nil) nil
.
Definition R_an' (t : prod (list (unit + unit)) (list (unit + unit))) :=
let (t1,t2) := t in R_an t1 t2.
#[export,refine] Instance G_an : Grammar unit unit := { rule := R_an; S := tt}.
Proof.
- ∃ (tt :: nil); intros []; firstorder.
- ∃ (tt :: nil); intros []; firstorder.
Defined.
| R_an_1 : R_an (inl tt :: nil) (inr tt :: inl tt :: nil)
| R_an_2 : R_an (inl tt :: nil) nil
.
Definition R_an' (t : prod (list (unit + unit)) (list (unit + unit))) :=
let (t1,t2) := t in R_an t1 t2.
#[export,refine] Instance G_an : Grammar unit unit := { rule := R_an; S := tt}.
Proof.
- ∃ (tt :: nil); intros []; firstorder.
- ∃ (tt :: nil); intros []; firstorder.
Defined.
G_an is indeed a CFG.
#[export] Instance G_an_cfg : CFG unit unit.
Proof.
econstructor;
destruct 1; ∃ tt; reflexivity.
Defined.
Proof.
econstructor;
destruct 1; ∃ tt; reflexivity.
Defined.
G_an is indeed a RG.
#[export] Instance G_an_rg : RG unit unit.
Proof.
econstructor;
destruct 1; [left; do 2 eexists | right;right]; reflexivity.
Defined.
Proof.
econstructor;
destruct 1; [left; do 2 eexists | right;right]; reflexivity.
Defined.
We show, that our grammar G_an indeed produces L_an.
Theorem L_an_equiv_G_an : grammar_produces G_an L_an.
Proof.
split.
-
induction w as [|[] w IH]; intros H1.
+
apply derive_step; apply step_rule; constructor.
+
eapply derive_multi.
apply derive_step; apply step_rule; exact R_an_1.
assert (inr tt :: inl tt :: nil = (inr tt :: nil) ++ (inl tt :: nil) ∧ convert unit (tt :: w) = (inr tt :: nil) ++ convert unit w) as [H2 H3]. { split; reflexivity. }
rewrite H2,H3.
apply derive_derive_r; apply IH; easy.
-
easy.
Qed.
Proof.
split.
-
induction w as [|[] w IH]; intros H1.
+
apply derive_step; apply step_rule; constructor.
+
eapply derive_multi.
apply derive_step; apply step_rule; exact R_an_1.
assert (inr tt :: inl tt :: nil = (inr tt :: nil) ++ (inl tt :: nil) ∧ convert unit (tt :: w) = (inr tt :: nil) ++ convert unit w) as [H2 H3]. { split; reflexivity. }
rewrite H2,H3.
apply derive_derive_r; apply IH; easy.
-
easy.
Qed.
In addition, we can show now, that L_an is rg, because there is a RG, which produces L_an.
Corollary L_an_regulary : is_regular L_an.
Proof.
repeat red.
∃ unit.
∃ G_an_rg.
exact L_an_equiv_G_an.
Qed.
Proof.
repeat red.
∃ unit.
∃ G_an_rg.
exact L_an_equiv_G_an.
Qed.