File PCF.CBN

Require Import Nat Bool List.

From PCF Require Import PCF.

Call-by-Name Operational Semantics for PCF


Inductive value : form Prop :=
  | v_bool :
       b,
        value (f_bool b)
  | v_nat :
       n,
        value (f_nat n)
  | v_star :
      value (f_star)
  | v_pair : t s,
      is_term t
      is_term s
      is_closed t
      is_closed s
      value (f_pair t s)
  | v_func :
       x t,
        is_term t
        is_closed (f_abs x t)
        value (f_abs x t).

Inductive bigCBN : form form Prop :=
  | bigCBN_refl_nat :
       n,
        bigCBN (f_nat n) (f_nat n)
  | bigCBN_refl_bool :
       b,
        bigCBN (f_bool b) (f_bool b)
  | bigCBN_refl_star :
      bigCBN f_star f_star
  | bigCBN_refl_pair :
       t s,
        bigCBN (f_pair t s) (f_pair t s)
  | bigCBN_abs_refl :
       x p,
        bigCBN (f_abs x p) (f_abs x p)
  | bigCBN_beta :
       p x p' q r,
        bigCBN p (f_abs x p')
        bigCBN (subst p' x q) r
        bigCBN (f_app p q) r
  | bigCBN_pair_fst :
       t p q r,
        bigCBN t (f_pair p q)
        bigCBN p r
        bigCBN (f_fst t) r
  | bigCBN_pair_snd :
       t p q r,
        bigCBN t (f_pair p q)
        bigCBN q r
        bigCBN (f_snd t) r
  | bigCBN_ite_true :
       b p r q,
        bigCBN b (f_bool true)
        bigCBN p r
        bigCBN (f_ite b p q) r
  | bigCBN_ite_false :
       b p r q,
        bigCBN b (f_bool false)
        bigCBN q r
        bigCBN (f_ite b p q) r
  | bigCBN_fix :
       f A r,
        bigCBN (f_app f (f_app (f_fix A) f)) r
        bigCBN (f_app (f_fix A) f) r

  | bigCBN_leq :
       n1 n2 m p q,
        bigCBN p (f_nat n1)
        bigCBN q (f_nat n2)
        m = Nat.leb n1 n2
        bigCBN (f_leq p q) (f_bool m)
  | bigCBN_mul :
       n1 n2 m p q,
        bigCBN p (f_nat n1)
        bigCBN q (f_nat n2)
        m = n1 × n2
        bigCBN (f_mul p q) (f_nat m)
  | bigCBN_minus :
       n1 n2 m p q,
        bigCBN p (f_nat n1)
        bigCBN q (f_nat n2)
        m = n1 - n2
        bigCBN (f_minus p q) (f_nat m).