File PCF.CBN

Require Import Nat Bool List.

From PCF Require Export Terms.

Values


Inductive value : form Prop :=
  | v_abs :
       t,
        is_closed (f_abs t)
        value (f_abs t)

  | v_star :
      value (f_star)
  | v_nat :
       n,
        value (f_nat n)

  | v_pair : t s,
      is_closed t
      is_closed s
      value (f_pair t s)

  | v_inl : t,
      is_closed t
      value (f_inl t)
  | v_inr : t,
      is_closed t
      value (f_inr t).

Big-Step Call-by-Name


Inductive bigCBN : form form Prop :=
  | bigCBN_value :
       v,
        value v
        bigCBN v v
  
Beta reduction
  | bigCBN_app :
       p p' q r,
        bigCBN p (f_abs p')
        bigCBN (subst p' 0 q) r
        bigCBN (f_app p q) r

  | bigCBN_fst :
       t p q r,
        bigCBN t (f_pair p q)
        bigCBN p r
        bigCBN (f_fst t) r
  | bigCBN_snd :
       t p q r,
        bigCBN t (f_pair p q)
        bigCBN q r
        bigCBN (f_snd t) r

  | bigCBN_case_inl :
       b b' p r q,
        bigCBN b (f_inl b')
        bigCBN (subst p 0 b') r
        bigCBN (f_case b p q) r
  | bigCBN_case_inr :
       b b' p r q,
        bigCBN b (f_inr b')
        bigCBN (subst q 0 b') r
        bigCBN (f_case b p q) r

  | bigCBN_fix :
       f A r,
        bigCBN (f_app f (f_app (f_fix A) f)) r
        bigCBN (f_app (f_fix A) f) r

        
I wanted to remove the following two rules, but I wasn't able to proove them with the other rules. In addition, I'm currently not convinced, that they are solvable because of binding issues.
  | bigCBN_ite_true :
       b p r q,
        bigCBN b (f_bool true)
        bigCBN p r
        bigCBN (f_ite b p q) r
  | bigCBN_ite_false :
       b p r q,
        bigCBN b (f_bool false)
        bigCBN q r
        bigCBN (f_ite b p q) r

  | bigCBN_le :
       n1 n2 m p q,
        bigCBN p (f_nat n1)
        bigCBN q (f_nat n2)
        m = (n1 <=? n2)
        bigCBN (f_le p q) (f_bool m)
  | bigCBN_lt :
       n1 n2 m p q,
        bigCBN p (f_nat n1)
        bigCBN q (f_nat n2)
        m = (n1 <? n2)
        bigCBN (f_lt p q) (f_bool m)

  | bigCBN_add :
       n1 n2 m p q,
        bigCBN p (f_nat n1)
        bigCBN q (f_nat n2)
        m = n1 + n2
        bigCBN (f_add p q) (f_nat m)
  | bigCBN_sub :
       n1 n2 m p q,
        bigCBN p (f_nat n1)
        bigCBN q (f_nat n2)
        m = n1 - n2
        bigCBN (f_sub p q) (f_nat m)
  | bigCBN_mul :
       n1 n2 m p q,
        bigCBN p (f_nat n1)
        bigCBN q (f_nat n2)
        m = n1 × n2
        bigCBN (f_mul p q) (f_nat m)
  | bigCBN_div :
       n1 n2 m p q,
        bigCBN p (f_nat n1)
        bigCBN q (f_nat n2)
        m = n1 / n2
        bigCBN (f_div p q) (f_nat m).

Theorem bigCBN_reduces_to_value :
   p v,
    bigCBN p v
    value v.
Proof.
  induction 1 as
  [v H1
  |p p' q r H1 IH1 H2 IH2

  |t p q r H1 IH1 H2 IH2
  |t p q r H1 IH1 H2 IH2

  |b b' p r q H1 IH1 H2 IH2
  |b b' p r q H1 IH1 H2 IH2

  |f A r H1 IH1

  |b p r q H1 IH1 H2 IH2
  |b p r q H1 IH1 H2 IH2

  |n1 n2 m p q H1 IH1 H2 IH2 H3
  |n1 n2 m p q H1 IH1 H2 IH2 H3

  |n1 n2 m p q H1 IH1 H2 IH2 H3
  |n1 n2 m p q H1 IH1 H2 IH2 H3
  |n1 n2 m p q H1 IH1 H2 IH2 H3
  |n1 n2 m p q H1 IH1 H2 IH2 H3
  ];
  eauto using bigCBN, value; destruct m; constructor; reflexivity.
Qed.

Theorem bigCBN_bool :
   b,
    bigCBN (f_bool b) (f_bool b).
Proof.
  intros [|]; do 2 constructor; reflexivity.
Qed.